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RELATIONS BETWEEN SECOND-ORDER FUCHSIAN
EQUATIONS AND FIRST-ORDER FUCHSIAN SYSTEMS

M. V. Babich∗ and S. Yu. Slavyanov† UDC 517.289, 517.923, 517.926

Each component of any solution of a Fuchsian differential system satisfies a Fuchsian differential
equation. The set of Fuchsian systems is fibered into equivalence classes. Each class consists of
systems with similar sets of matrix residues, the conjugation matrix being the same for all elements
of the set. We investigate the corresponding classes of scalar equations. Bibliography: 15 titles.

It has been discovered that the Fuchsian second-order equation with four singularities gen-
erates the Painlevé VI equation [1–3]. On the other hand, the isomonodromic property for
an apropriate Fuchsian first-order system also leads to the Painlevé VI equation [4–7]. This
paper reveals links between the above-mentioned approaches. These links simplify comparing
the theory of Painlevé transcendents [8, 9] and the theory of Heun functions [10,11].

1. The scalar equation and the matrix system

Any second-order differential equation

ψ′′ + Pψ′ +Qψ = 0 (1)

can be written as a differential system:(
ψ
ψ′

)′
=

(
0 1

−Q −P

)(
ψ
ψ′

)
.

Let (1) be a Fuchsian equation. It is well known that there is a polynomial transformation

(ψ,ψ′)T → g(z)(ψ,ψ′)T =: �ψ

such that the first-order system

�ψ′ = A(z)�ψ, A = g

(
0 1

−Q −P

)
g−1 + g′g−1,

is Fuchsian. This means that A(z)dz has only simple poles in C.
Let us start from a system

�ψ′ = A(z)�ψ. (2)

To obtain a scalar equation, we exclude the second component ψ2 of the vector �ψ = (ψ,ψ2)
T

using �ψ′′ = (A′ +A2)�ψ. The coefficients P , Q of the scalar equation (1) are

P = − log′ A12 − trA, Q = detA−A12

(
A11

A12

)′
. (3)

We consider the problem of recovering the Fuchsian system from a Heun equation, which is
a Fuchsian equation with four singular points.

The roots ρ1,2 = ρ1,2(zj) of the quadratic equation

ρ(ρ− 1) + ρRes|z=zj
P + Res|z=zj

((z − zj)Q) = 0
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are called the characteristic exponents. They are related to the eigenvalues Θ′
k,Θk of the

residues A(k) of the matrix-valued function A(z) =
∑
k

A(k)

z−zk
:

{ρ1, ρ2} = {Θ′
k,Θk + sk + 1},

where sk is the degree of A12(z) at zk:

A12(z) ∼ (z − zk)
sk .

A transformation of the form ψ →
4∏

k=1

(z − zk)
αkψ,

∑
k

αk = 0, is called an S-homotopic

transformation. It shifts both the characteristic exponents and the eigenvalues:

{Θ′
k,Θk} → {Θ′

k + αk,Θk + αk}.
Using an appropriate S-homotopic transformation, one can set Θk = 0, k = 1, 2, 3. The
formulas become simpler, and the matrices-residues A(k) for the system corresponding to the
Heun equation

σ(z)
d2

dz2
ψ + τ(z)

d

dz
ψ + (αβz − λ)ψ = 0, (4)

σ(z) =
3∏

j=1

(z − zj), τ(z) =
3∑

j=1

(1−Θj)σj(z), σj = σ(z)/(z − zj),

can be written as

A(1) =

(
0 0
h Θ1

)
, A(2) =

( α
1−t −t

α
t(1−t) (

α
1−t −Θ2) Θ2 − α

1−t

)
,

A(3) =

( −tα
1−t t

−α
1−t(

tα
1−t +Θ3) Θ3 +

tα
1−t

)
, A(∞) = −

∑
k

A(k).

We say that the sets A(k), k = 1, 2, 3, 4, are equivalent if the corresponding matrices are
related by the same similarity transformation g, i.e., {A(k)} ∼ {g−1A(k)g} for every k. Thus,
we obtain an algebraically open set of equivalence classes.

In every class there is a unique representative such that

A(1) =

(
Θ′

1 

0 Θ1

)
, A(2) =

(

 −1

 


)
, A(3) =

(
Θ′

3 0

 Θ3

)
.

All matrix elements 
 are uniquely determined by the matrix A(∞) = −∑
k

A(k), and there are

no restrictions on A(∞).
Consider the scalar equation for the first component of this system-representative. It is obvi-

ous that all other equations from the corresponding equivalence class form a one-dimensional
submanifold in the manifold of all Heun equations. Its elements are parameterized by the
direction of the eigenvector of A(3) correspondung to the eigenvalue Θ3:

gp =

(
1 p
0 1

)
, {A(k)} → {g−1

p A(k)gp}.

The explicit formulas (3) for P and Q imply that P , Q have singularities at the zeros of
A12, not only at the poles zk. These are apparent singularities of the scalar equation.

The Heun equation has exactly four singular points at zk and has no apparent singularities.
This is possible only if all zeros of A12dz coincide with some of zk’s.
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It is easy to see that if a zero of A12dz coincides with zk, then the corresponding matrix
element of (A(k))12 vanishes. This means that there exists a lower triangular residue in the
set.

Assume that the zeros of A12dz are distinct. This means that two residues, say A(3), A(∞),
are lower triangular. Hence,

A(1) =

(
Θ′

1 1
0 Θ1

)
, A(2) =

(
Θ′

2 +ΘΣ −1
ΘΣ(ΘΣ +Θ′′

2) Θ2 −ΘΣ

)
,

A(3) =

(
Θ′

3 0
h Θ3

)
, A(∞) =

(
Θ′

4 0
−(ΘΣ(ΘΣ +Θ′′

3) + h) Θ4

)
,

where Θ′′
j := Θ′

j −Θj,ΘΣ :=
4∑

j=1
Θj, and h ∈ C is an accessory parameter.

In the case where both zeros of A12dz coincide with z3, we obtain

A(1) =

(
Θ′

1 − pt t
−p(pt−Θ′

1 +Θ1) Θ1 + pt

)
, A(2) =

(
Θ′

2 1− t
0 Θ2

)
,

A(3) =

(
Θ′

3 0

a
(3)
21 Θ3

)
, A(4) =

( −Σ11 −1
−Σ11Σ22 +Θ′

4Θ4 −Σ22

)
,

Σ11 := −pt+Θ′
1 +Θ′

2 +Θ′
3, Σ22 := pt+Θ1 +Θ2 +Θ3,

a
(3)
21 = p(pt−Θ′

1 +Θ1)− (pt−
∑
j

Θ′
j +Θ′

4)(pt+
∑
j

Θj −Θ4)−Θ′
4Θ4.

Here the accessory parameter is p. It is obvious that in this case

A12(z)dz = t
dz

z
+ (1− t)

dz

z − 1
=

(z − t)dz

z(z − 1)

has poles at z1 = 0, z2 = 1, z4 = ∞ and a zero at z3 = t.
If the matrices are traceless, the formulas become simpler. In the case of distinct roots, we

have

ψ′′ +
(
1

z
+

1

z − 1

)
ψ′ +

(
h

z(z − 1)(z − t)
+ Q̃

)
ψ = 0, Θj +Θ′

j = 0,

where

Q̃ = −Θ3(2(Θ2 −ΘΣ)− 1)

(z − 1)(z − t)
− Θ3(2Θ1 − 1)

(z − t)z
−

− 2Θ1Θ2 − (2ΘΣ + 1)(Θ1 +Θ2) + ΘΣ(ΘΣ + 1)

z(z − 1)
−

− Θ2
1

z2
− Θ2

2

(z − 1)2
− Θ3(Θ3 + 1)

(z − t)2
.

2. Isomonodromic deformations, the Schlesinger system, and the Painlevé VI

equation

The elements of a family of differential systems dΨ = A(z; t)dz Ψ have fixed monodromy if
and only if there exists a 1-form B(z, t)dt such that the form Adz+Bdt is flat. L. Schlesinger
introduced the following ansatz:

A(z; t)dz +B(z, t)dt =
∑
k

A(k) dz − dzk
z − zk

=: ω,

A(k) = A(k)(t), zk = zk(t). It is the general form of ω in the case of generic eigenvalues of A(k).
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The flatness condition
dω = ω ∧ ω

is equivalent to the multitime dynamical system

dA(k) +
[
A(k),

∑
i

dzk − dzi
zk − zi

]
= 0

on the Poisson space of sets {A(k)} ∈ glM (n,C). The Hamiltonian defining the dynamics with
respect to the “time” zk is Hk := h/dzk, dzs = 0, s �= k, where

h =
∑
i,j

trA(i)A(j) dzi − dzj
zi − zj

.

The eigenvalues of A(k) are determined by the monodromy. Fix them. All equations with
equivalent sets {A(k)} ∼ {g−1A(k)g} have the same monodromy. Again, choose a representative
of the equivalence class:

A(1) =

(
Θ′

1 − pq p
−q(pq − 2Θ′

1) pq −Θ′
1

)
, A(2) =

(
pq −Θ′

Σ +Θ′
2 Θ′

Σ − pq
pq −Θ′

Σ + 2Θ′
2 Θ′

Σ −Θ′
2 − pq

)
,

A(3)=

(
Θ′

3 p(q − 1)−Θ′
Σ

0 −Θ′
3

)
, A(4)=

(
Θ′

4 0
q(p(q − 1)− 2Θ′

1) + Θ′
Σ − 2Θ′

2 −Θ′
4

)
.

The eigenvalues of A(k) are denoted by ±Θ′
k, and

4∑
k=1

Θ′
k =: Θ′

Σ. Calculating the Hamiltonian

corresponding to the dynamics with respect to z3 = t gives

H =
∑
k �=3

tr A(3)A(k) dz3 − dzk
z3 − zk

∣∣∣∣∣∣
dzk=0

/dz3 =
1

t(t− 1)
trA(3)

(
(t− 1)A(1) + tA(4)

)

=
1

t(t− 1)

(
q(q − 1)(q − t)

(
p2 − p

(
θ1
q

+
θ2

q − 1
+

θ3
q − t

))
+ 2Θ′

1θ4q

)
+ constt,

where θ1 = Θ′
Σ − 2Θ′

2, θ2 = Θ′
Σ − 2Θ′

3, θ3 = Θ′
Σ − 2Θ′

4, θ4 := Θ′
Σ are parameters of the

isomonodromic deformation, related to the set 2Θ′
1, 2Θ

′
2, 2Θ

′
3, 2Θ

′
4 by the so-called Okamoto

transformation [12], and constt does not depend on p, q. This is the well-known Hamiltonian
of the Painlevé VI system, the corresponding Euler–Lagrange equation being the Painlevé VI
equation. The coordinate functions p, q are canonical on the symplectic space

O(1) ×O(2) ×O(3) ×O(4)//GL(2),

which is the symplectic quotient of the product of orbits with respect to the diagonal (co)adjoint
action of GL(2).

Consider the Heun equation with normalization ψ(z) → ∏
k

(z − zk)
αkψ(z) such that one of

the two exponents at all finite points z1, z2, z3 vanish. The equation takes the form

3∏
j=1

(z − zj)

⎛
⎝D2ψ −

⎛
⎝ 3∑

j=1

Θj − 1

z − zj

⎞
⎠Dψ

⎞
⎠+ (αβz − λ)ψ = 0. (5)

Let us compare it with the Hamiltonian of the system P (VI):

dp ∧ dq − d

⎛
⎝ 3∏

j=1

(q − zj)

⎛
⎝p2 −

⎛
⎝ 3∑

j=1

θj
q − zj

⎞
⎠ p

⎞
⎠+ 2Θ′

1θ4q

⎞
⎠ ∧ dt

t(1− t)
.
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S. Yu. Slavyanov observed that the substitution

{D =
d

dz
, z} → {p, q}

transforms the polynomial form of the Heun equation with three vanishing characteristic ex-
ponents into the Hamiltonian of the isomonodromic deformation equation P (VI). He called
this procedure antiquantization. For more details, see [13,14]. This paper can be viewed as an
addendum to the textbook [15].

Translated by M. V. Babich.
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2. S. Slavyanov, “Painlevé equations as classical analogues of Heun equations,” J. Phys.
A, 29, 7329–7335 (1996).

3. S. Slavyanov, “Antiquantization and the corresponding symmetries,” Theoret. Math.
Phys., 185, 1522–1526 (2015).

4. D. V. Anosov and A. A. Bolibruch, The Riemann–Hilbert Problem, Vieweg, Braunschweig
(1994).

5. A. Bolibruch, Monodromy Inverse Problems of the Analytic Theory of Differential Equa-
tions [in Russian], MCCME, Moscow (2009).

6. A. Its and V. Novokshenov, The Isomonodromic Deformation Method in the Theory of
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