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SYSTEMS WITH PARAMETERS, OR EFFICIENTLY
SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS 33
YEARS LATER. II

A. L. Chistov* UDC 513.6, 518.5

Consider a system of polynomial equations with parametric coefficients over an arbitrary ground
field. We show that the variety of parameters can be represented as a union of strata. For values
of the parameters from each stratum, the solutions of the system are given by algebraic formulas
depending only on this stratum. FEach stratum is a quasiprojective algebraic variety with degree
bounded from above by a subexponential function in the size of the input data. The number of
strata is also suberponential in the size of the input data. Thus, here we avoid double exponential
upper bounds on the degrees and solve a long-standing problem. Bibliography: 12 titles.

INTRODUCTION TO THE SECOND PART

This paper continues [8] and is the second part in a three-part series. In all parts, the
numbering of theorems (respectively, lemmas, sections, and so on) is the same. It is continued
from [8] and will be further continued in the third part, which will be prepared for publication.
For example, in this paper the reference to Lemma 6 means Lemma 6 of [8]. Similarly, Sec. 3
means Sec. 3 from [8]. The list of references in this paper (apart from the reference to the
first part [8], which is added here) coincides with that from [8]. In the present paper, we prove
Theorem 1. In the last third part, we will prove Theorem 2.

In this second part, we use the construction for solving systems of polynomial equations
with finitely many solutions in the projective space described in Sec. 3. Actually, to obtain an
algorithm in the general case, we need only the part of this construction until Remark 6 (in
particular, we will not use the tree T introduced in Sec. 3). Of course, many other ideas are
needed to prove Theorem 1 in full generality.

To prove assertion (d) of Theorem 1, we need to use estimates on the lengths of coefficients
of absolutely irreducible factors of parametric polynomials with integer coefficients. Unfortu-
nately, we forgot to give such estimates in the statement of Theorem 1 in [6]. But they are
straightforward. Namely, under the conditions of Theorem 1 in [6], the following assertion
holds.

(c) Assume that k = Q and f € Z[ay,...,ay, X1,...,X,], and let the lengths of integer
coefficients satisfy 1(f) < M for a real number M > 0. Then all the polynomials

wgfi, . ,zz;g%aﬁ, Aa,05 Aa,1, Hj, F, f; have integer coefficients with lengths bounded
from above by (M + n + vlogd)d°") with an absolute constant in O(1).

The proof of this assertion immediately follows from the construction described in [6] (we leave
the details to the reader; perhaps, minor modifications are required in [6] to obtain (c)).

For better understanding, note that in many cases, to obtain a bound on the lengths of
integer coefficients 1(¥) of a polynomial ¥, we estimate the logarithm of the sum of the
absolute values of the coefficients of this polynomial. This gives a fortiori a required bound
on 1().
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For example, assume that we have an N x N matrix (¢ j)1<; j<n with
1/12',]‘ S Z[al, ... ,a,j,Xl, ... ,Xn],

W(vi;) < M, and deg,, ., vij<d,degx, x, vij<dforalli,j. Wewould like to estimate
the lengths of integer coefficients of the determinant det((1; ;)i<ij<n). Then we proceed as
follows. The sum of the absolute values of the integer coefficients of each polynomial 1); ;
is bounded from above by 2Md™(d’)”. Hence, the sum of the absolute values of the integer
coefficients of the determinant is bounded from above by N12MNgnN (@")»N | TIts logarithm is
bounded from above by (M + nlogd+ vlog d/)No(l). Hence, the same upper bound holds for
the lengths of integer coefficients of this determinant.

Also, to prove assertion (d) of Theorem 1, we need a remark on Lemma 2 from Sec. 1.
Namely,

(t) Under the conditions of Lemma 2, assume that char(k) = 0. Then one can choose
matrices B; € M, (Z) and C; € My, »(Z) such that all entries b; o g of the matrices
B; have lengths bounded from above by n©(M), and all entries ¢j,a,8 of the matrices C}
have lengths bounded from above by m® | with an absolute constant in O(1).

This immediately follows from the proof of this lemma and [9]. More precisely, the construction
in [9] is explicit. By [9], the matrices D; from the proof of Lemma 2 can be chosen with
integer coefficients of lengths bounded from above by m©() with an absolute constant in O(1).
Therefore, all entries c;, g of the matrices C; have lengths bounded from above by mOM).
Similarly, all entries b; o g of the matrices B; have lengths bounded from above by nfW.
Note also that we implicitly used these assertions (c) and (f) in [8] to prove assertion (d) for
the weakened (and weakened modified) Theorem 1 with ¢ = 0. We would like to emphasize
again that in this second part we will not need these results for the particular case ¢ = 0.

In [8], we proved them only to demonstrate the strength of the developed techniques.

At the end of this short introduction, we would like to correct the misprints noticed in [8].

1. In the formulation of condition (x) from the introduction, one must everywhere replace
max by max;.

2. In Sec. 4, in the formulation of property (ay,—.), one must replace dy, —d;—1 by di—1 — d,.

3. In Sec. 4, in formula (27), one must replace

ha*,j = Z Qj,wfa*,w

j<w<m-—1
by
ha*,j = fa*,j—l + Z qj,wfa*@.
j<w<m—1

These misprints can easily be corrected from the context.
Now we are ready to proceed to the next section of the paper.

5. SEVERAL LEMMAS

In this section, ¢ is an integer such that —1 < ¢ < n — 1. Let ¢ be an integer such that
0 < ¢ < ¢ (so q exists if ¢ > 0). Consider polynomials kg« 1,...,he* n—q € ko [Xo,..., Xy
satisfying condition (au,—4), see Sec. 4, and the following property:
(%’l_q) Z(he* 1, ha* p—g) = Va’i’ﬂ U Uqgsgc Va* s, where the varieties V= ¢ are defined in the
introduction and V¥ is some projective algebraic variety such that dim V;¥ , = q or
n
= J.

a* 7q

595



Hence, each irreducible component of the algebraic variety V,  is of dimension g.

Let € be a new variable. Let A!(k) have coordinate ¢ and P"(k) x A!(k) have coordinates
(Xo:...: Xy),e). We identify P*(k) with the subvariety Z(¢) c P*(k) x A'(k). Consider
the algebraic variety

Z(hae = X8, har g — eXp g ) (28)

It is a closed subvariety of P"(k) x Al(k). Denote by V-, the union of all components E
irreducible over k of the algebraic variety (28) such that £ is not contained in any hyperplane
Z(e—c),c€k Put V)i = Va0 Z(e) CPE). One can easily prove (cf. [2]) that every
irreducible component of V%  is of dimension n — ¢ and Ve g O Var qUVY . Denote by V.
the union of all components E of V. irreducible over k such that E C Z(fa+.0,---, fa*m—1)-

S

Thus, V% , O V. ; O Vax 4. Moreover, obviously, the closure of V.  \ (Uq+1<s<c Ve ) with

respect to the Zariski topology in P"(k) coincides with V= 4. Denote by V"  the union of all
components E irreducible over k of the algebraic variety Va’*7q such that £ ¢ Vg« 4. So, we
have V. | = Vo (UVY and VL = Vi UV UVY | and each irreducible component of the
algebraic variety V%  is an irreducible component of only one of the varieties Vi« o, V¥ |, VoY .

In what follows, s = ¢. In this section, Yp,...,Y, € k[Xy,...,X,] are arbitrary linear
forms in Xy,..., X, linearly independent over k (we do not assume now that necessarily
(Yo,...,Ysr1) € LT x L),

Let us extend the ground field k to k(g). Denote by YN/a*,s the algebraic variety (28) regarded
as a subvariety in P"(k(e)).

Let t1,...,ts be elements algebraically independent over k. Let k° = k(t1,..., t5), kox =
kg=(t1,...,ts), and k= k(ty,...,ts) be purely transcendental extensions of the fields k, kq-,
and k, respectively.

Let Vi= Y vi;jXj, 0<i<mn, wherey;; € k. Put
0<j<n

8O = det((yi)o<ij<n))- (29)

Then 690 £ 0. For an arbitrary polynomial g € k(¢)[Xo,...,X,], we define polynomials

9 € k@)Y, ..., Y, and ¢° € k(€)[Yo, Yay1,- .., Yy]. Namely,
9O (Yo, Yn) = (80) 850009

and
go = g(O)(Yb7tl%7 e 7t53/b7 }/:S-i-la e 7Yn)

Hence, if g is a homogeneous polynomial in Xy, ..., X, then ¢° is a homogeneous polynomial
in Yy, Yey1,...,Y, with coefficients in k(e)(ty,...,ts). If g € k[, X, ..., Xy], then, obviously,
¢ €k e, Xo, ..., X,

Let the projective algebraic variety P"~*(k°(e)) (and also P" *(k°)) have homogeneous
coordinates Yy, Ysi1,..., Yn.

Let ©1,...,0m, € kaxle, Xo,...,X,] be homogeneous polynomials in X,...,X, such that
Vars=Z(P1,-- -, 0my ). Set

con(Vgss) = Z(@1,. -, ¢my) C A"H(E) X Al(E)

where A"T!(k) has coordinates Xo, ..., X, and A'(k) has coordinate . Obviously, the irre-
ducible components of the varieties V,« s and con(V,+ 5) are in a natural one-to-one correspon-
dence.
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Set p, = goi(O,Xo,..., Xp), 1 <i < my. Then, obviously, Vi ; = Z(@y,..., By, ). Put
5= Z(95, - om,) CPTTO(RS) x AL (RO),
Cars = Z(95, -+ 9my) C P2 (k0 (),

=CarsN2(e) = 2(FY,- ., Ppy) CPO(R°).
Similarly to con(Va*,s), we define the varieties

con(Car,s) = Z(p7, -, ¢h,) C AT TH(ER) x AL (R?),

con(é’a*ﬁ) = Z(¢1,-- 1 Pmy) C A”_5+1(/€°(e)),
con(Cll ) = Z(B5,...,@m,) C A" 5T (ko).

In all these formulas, the affine space A"t has coordinates Yy, Vi1, ..., Yy.
Note that Vo s=Z (01, ..., 0m, ) CP*(k(e)) and Cyr o= Z(hS. REREEER L

a*n—s) CPTE (k0 (€)).
Lemma 9. The following assertions hold true.

(a) The intersection 1~/a*78 NZYo, Y1,...,Ys) is empty in ]P’”(@)

(b) 5a*78 is a finite subset in P*~5(k°(¢)), and Cy- sNZ(Yy) =

(c) The intersection V. ;N Z(Yo,Y1,...,Ys) is empty in P"(k ) zf and only if is a

finite subset in P"5(k°) and CJl. ;N Z(Yy) =

Proof. This is straightforward. For example, assertion (a) essentially follows from the fact that
2Z(Xo, X1,..., Xpn—s-1,Y0,...,Y;) = @ in P"(k). Assertion (b) is equivalent to (a), and hence
(b) is also true. The lemma is proved. O

Denote by &; the set of all components of the algebraic variety Va*,s irreducible over k.

Denote by &5 set of all components of the algebraic variety V% ; irreducible over k.

For any affine algebraic variety W defined over a field K, we will denote by K[W] the ring of
regular functions on W defined over K, and by K (W) the total quotient ring of the ring K[W].

The following assertions (I)~(IV) are straightforward. Their detailed proofs are left to the
reader.

(I) Denote by & the set of all components of the algebraic variety 17&*,3 defined and ir-
reducible over k(g). Take Sy to be the multiplicatively closed set k[g] \ {0}. Then, by the
definition of the algebraic variety V- s, the variety con(va*7s) is defined over the field k(e),
and one can identify the ring of regular functions E(e)[con(f/a*,s)] with Sy ' E[con (V- ¢)] (it is
the localization of the ring k[con(V 4« )] with respect to the multiplicatively closed set Sa).
Hence, the total quotient ring E(e)(con(%*78)) coincides with k(con(V s s)). Therefore, there
is a natural bijection ¢19 : & — &2, and Va*,s = UWGEQ w

(IT) Denote by & the set of all components of the algebraic variety Cy« s defined and
irreducible over % . By Lemma 9(a), one can make the identification

ti=Y;/Yy € k(con(V ), 1<i<s, (30)

i.e., the functions Y;/Yp, 1 < i < s, from the ring k(con(V 4+ 5)) are algebraically independent
over k. Take S3 to be the multiplicatively closed set k[ty,...,ts] \ {0}. Then the variety Cp«
is defined over the field &°, and one can identify the ring of regular functions & [con(Cyx 5]
with S5 'k[con(V = s)][t1, . . ., ts]. Hence, the total quotient ring  (con(Cye5)) coincides with
k(con(V s))- Therefore, there is a natural bijection ¢1 3 : & — &3, and Ua*78 = UW€53 w
(I11) Denote by &4 the set of all components of the algebraic variety 6a*,s defined and
irreducible over &’ (g). Take Sy to be the multiplicatively closed set k[e, t1, ..., ts] \ {0}. Then
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the variety 6’a*78 is defined over the field k°(¢), and, taking into account (30), one can identify
the ring of regular functions EO(E)[COH(6Q*78)] with S} 'k[con(V s ¢)][t1,...,ts]. Hence, the
total quotient ring &~ (¢) (con(éwn s)) coincides with k(con(V 4« 5)). Therefore, there is a natural
bijection ¢1 4 : £ — &4, and 6@*73 = UWE€4 wW.

(IV) Denote by & the set of all components of the algebraic variety Cp.  defined and
irreducible over k°. Assume that Vi nZ(Y,...,Ys) = @ in P"(k) x A'(k). Now, by
Lemma 9(c), one can make the identification

ti =Y;/Yy € k(con(V,. ), 1<i<s. (31)

Take Sg to be the multiplicatively closed set k[ty,...,ts] \ {0}. Then the variety C s 18
defined over the field k°, and one can identify the ring of regular functions % [con(Cys )]
with Sglg[con(Va’i,s)][tl, ..., ts]. Hence, the total quotient ring Eo(con(C’[’l’*’s)) coincides with

k(con(V g« 5)). Therefore, there is a natural bijection t56 : & — &, and Oyl ;= Upeg, W-

Let K D k be an extension of the ground field linearly disjoint with k(g) over k. Put
K° = K(t1,...,ts). Let L € K[Xy,...,X,] be a linear form with coefficients from K. Hence
L° e KO[va sz—i-lv s 7Yn]

Let W € &,. Then the component W is defined and irreducible over the field K°(g) by (III).
Therefore, for every W € &, there is a polynomial &y € Kle, tq,...,ts, Yy, Z] irreducible
over K such that the polynomial @y (e, tq,...,ts, Yy, L°) vanishes on W. It is uniquely de-
fined up to a nonzero factor from K. The polynomial @y is homogeneous in Yy, Z, and, by
Lemma 9(b), we have lez; @y € K|[ty,...,ts, ] and deg, Py > 1. Let n € W. Then, obviously,
Oy (e, t1,...,ts,1,7) is a minimal polynomial over the field K°(¢) of the element (L°/Yy)(n).
Conversely, if Uy € Kle,t1,...,ts, Z] is a minimal polynomial of the element (L°/Yp)(n)
over the field K°(¢), then its homogenization Yodegz \IIW\I/W(E,tl, ..., ts, Z/Yp) coincides with
Py up to a factor from K°(e). Put @y, = Pw(e,Y1/Y0,...,Ys/Y0, Yy, Z). We will write
Oy = Py, By = CIJ&/’L, Uy = Uy, when the dependence on L is important.

Assume that V). N Z(Yp,...,Y,) = @ in P"(k). Let W € &. Then the component W is
defined and irreducible over the field K° by (IV). Therefore, for every W € &g there is a polyno-
mial @y € K[ty,...,ts, Yy, Z] irreducible over K such that the polynomial @y (¢1, ..., ts, Yo, L°)
vanishes on W. It is uniquely defined up to a nonzero factor from K. The polynomial ®yy is
homogeneous in Yy, Z, and, by Lemma 9(c), we have lcz®y € K|t1,...,ts] and deg, Py > 1.
Let n € W. Then, obviously, ®w(t1,...,ts, 1, 7Z) is a minimal polynomial over the field K° of
the element (L°/Y()(n). Conversely, if Yy € K|t1,...,ts, Z] is a minimal polynomial of the
element (L°/Yy)(n) over the field K°, then its homogenization Yodegz \IIW\I/W(tl, o ts, Z/Y0)
coincides with @y up to a factor from K°. Put @y, = ®w (Y1/Y0,...,Ys/Y), Yo, Z). We will
write @y = Py, L, Py = @1, Yw = ¥y, when the dependence on L is important.

Lemma 10. (a) Let W € €4, n € W, and 11 4(W') = W, see (I11). Then, in the above notation,
le;®w € Kle|. Hence, the element (L/Yy)(n) is integral over the ring K(e)[t1,...,ts]. Fu-
rthermore, we have @y, € Kle,Yy,...,Ys,Z]). The polynomial @y, is irreducible in the ring
Kle,Yo,...,Ys, Z], and Oy, (,Y0, ..., Ys, L) vanishes on the variety W'. Besides,

lez @y, € Kle].

(b) Assume that V' .NZ(Yp,...,Ys) =@ inP"(k). Let W € &, n € W, and 156(W') = W,
see (IV). Then, in the above notation, lcz®yw € K. Hence, the element (L/Yy)(n) is integral
over the ring Klti,...,ts). Furthermore, the polynomial @y, € K[Yy,...,Ys, Z] is irreducible
(in this ring), Oy, (Yo, ..., Ys, L) vanishes on the variety W', and lez @y, € K.
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Proof. (a) Indeed, one can represent @y, in the form @y}, = Q/Y where Q € Kle, Yy, ...,Ys, Z]
is an irreducible polynomial, ) # AYy for A € K, and e is a nonnegative integer. The
polynomial Q(e, Yy, ..., Ys, L) vanishes on W’ by (III). If e > 1 or lez @y & K|e], then lezQ ¢
Kle|. This contradicts Lemma 9(a) and proves the required claim (a).

The proof of claim (b) is similar to that of claim (a) and is left to the reader. O

Corollary 1. Assume that K = k(t) where t is a transcendental element over the field & (¢).
Let L = Ly +tLy where Ly, Ly € k[Xo, ..., X, are linear forms.

(a) Under the conditions of Lemma 10(a), one can choose @y, € k[t,e,t1, ..., ts, Yo, Z] such
that @y, is irreducible in the last ring and lcz®w, 1, € k[e]. For such a choice of ®w,1,, we have
Oy 1li=0 = >\<I>§V7Ll where 0 # X\ € kle] and e = ew.r,.L, > 1. Hence, ®w rli=o0/lcz(Pw,r) =
(Pw,, /lez(Pw,L, )"

(b) Furthermore, under the conditions of Lemma 10(b), one can choose a polynomial ®yy 1, €
E[t,tl, ooy ts, Yo, Z] such that @y, is irreducible in the last ring and lcz®w, 1, € k. For such a
choice of ®w 1, we have Py p|i=0 = )‘(I)?/V,Ll where 0 A\ €k and e = ew,r,,L, => 1. Hence,

Pw,Llt=0/lcz(Pw,L) = (Pw,L, /lez(Pw,L,))".
Proof. (a) By Lemma 10(a), the elements (L;/Yy)(n), i = 1,2, are integral over the ring

k(e)[t1,. .., ts]. Hence, the element ((Li+tLy)/Yy)(n) is integral over the ring k(e)[t, ty,. .., ts].
Therefore, one can choose Wy .1, € k[e,t,t1,. .. ,ts, Z] such that lez Uy 1, € klg]. We take @y,
to be the homogenization of Wy 1, see above. Then, obviously, lcz®w, 1, € E[E] and Wy g, is
irreducible in the ring ke, t,t1,...,ts, Yo, Z].

Each root of the polynomial Wy 7, has the form Z = ((Ly + tLs)/Yy)(nM)) where () € W.
Therefore, each root of the polynomial Wyy 1 |;—o has the form Z = (Ll/Yo)(n(l)) wheren, € W.
The polynomial Wy, is irreducible in the ring k[e, t1,. .., ts, Z]. Hence, Wy 1 |—0 = AU,
where 0 # )\ € k[¢] and e > 1. It remains to take the homogenization of the last equality.
Claim (a) is proved.

The proof of claim (b) is similar to that of claim (a) and is left to the reader. O

Remark 9. In what follows, for W € & and L = LM + ¢tL®) (for arbitrary linear forms
JAON AN k[Xo, ..., Xn]), using the notation Dy, 1, we will always assume that the polynomial
Sy € kle, t,t1,. .., ts, Yo, Z] is irreducible in this ring.

Assume that V% ;N Z(Yp,...,Ys) = @ in P"(k). Then, analogously, for W € & and
L=LW 4++¢L® using the notation Oy 1, we will always assume that the polynomial ®yy ;€
k[t t1,...,ts, Yy, Z] is irreducible in this ring.

Let L; € k[Xp,...,X,] be a linear form. Let W € & and 11 4(W') = W, 11 3(W') = W".
Let ©1,...,%m, € ke, X0, ..., X,] be polynomials such that W’ = Z (11, ..., %m,). Put ¢; =
¥i(0, X0, -, Xp), 1 <i <mo. Hence W = Z(45,...,94%,) and W' N Z(e) = Z(7, ..., %)
Put

o
AL = Ape, ()30, Yot 1y Yarit sty 0, L5, € Kax (€)[Uo, Un,

— . o o
Ag = Ak;*;Yoysﬂ,...,Yn;wi.wan;Yo,L; € ka+[Uo, Unl,

A3 = Ape (€Yo, Yap 1, YuihSs b Y0,LS € Ko (8)[Uo, Un],

a*,s’

see the notation in Remark 6 from Sec. 3.

Lemma 11. (a)

A3(Z,-Ye) = ] @wr,/lez(@w.,) W
WeéEy
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for some integers e%/V,LI > 1.
(b) Assume that V. .0 Z(Yo,...,Ys) = @ in P"(k) (see also Lemma 9(c)). Then

Ay(Z,—Yo) = H ((I>W1,L1/ICZ((I)Wl,Ll))eW’Wl’Ll

W1€&s,
Wi cw”

for some integers eww, , > 1. )
(c) A1(Z,-Yp) = (<I>W7L1/ICZ(CI>W7L1))erL1 for an integer e{/’V’Ll > 1.

Proof. (a) Let Ly € k[Xo,...,X,] be a linear form such that (La/Yp)(m) # (La/Yo)(n2) for
all pairwise distinct 11,72 € Cyx 5. Put L = L1 +tLy and

[¢]
A= Ape (Y0, Yar 1 YuihSu ke 0,10 € Kge (8,8)[U0, Un.

O oo
Then, by Lemma 4 and Remark 6, we have Ay € kS.(g)[t,Up,Ur] and Ayli—p = Asz. By
Lemma 4 and since all polynomials ®yy ., W € &4, are pairwise distinct and irreducible in the
ring k° (e)[t, Y, Z], we have

Ay(Z,~Yy) = ] @w.p/lez(@w,p)) e
Weé&y

for some integers ey, ; > 1. Now, applying Corollary 1(a), we establish claim (a).
The proofs of claims (b) and (c) are similar to that of claim (a) and are left to the reader. [

Lemma 12. Let V. NZ(Yy,...,Ys)=2 inP"(k). Let We &y and 1y 4(W') =W, 11 3(W')=W"
and let L1, A1, Ag be as above. Then lez(®Pw.r,)|e=0 # 0 (recall that lez(®w,r,) € kle]),
A1|€:0 = AQ, and

(®w,z, /(lez(@wr)))le=o= ][] (@w,.1,/(ez(@w, 1)) WWe s (32)

W1€&s,
Wy cw”

: /
for some integers ey, 1, > 1.

Proof. In Sec. 3, we have defined the matrix A = (A’, A”). Consider the case v = 0. In the
definition of the matrix A with v = 0, replace n, k, (Xo,...,Xn), (fo,---, fm—-1), Yo,...,Yy)
by n—s, EO(E), (Yo, Y1, .-, Yn), (W7, ., ¢m,), (Yo, L1,0,...,0), respectively. We will denote
the obtained matrix again by A = (A’, A”). Now, the entries of the matrix A" belong to
kaxle,t1, ... ts, Y0, Ys11,...,Yy], and the entries of the matrix A” are linear forms in Uy, U;
with coefficients from the latter ring. Let + be the number of rows of A.

Let rank(A’|c—g) = +'. Then, by Lemma 4(b), we have rank(.A|.—¢) = 7 and, by Lemma 4(c),
the number of roots in P"~%(k°) of the system

P1=. =y, =0 (33)
counting multiplicities is equal to v —~'. Let A} be a submatrix of A’ of size v x 7/ such that
rank(A}|.—0) = 7. Let A/ be a submatrix of A" of size v x (y—~') such that the v x v matrix
(Al |e=0, Af|e=0) is of rank y. Set Ay = (A}, AY). Put Ay = det(Ay) € ko=[e, t1,. .., ts,Up, Ui].
This is a homogeneous polynomial in Uy, U;.

Then, by Lemma 4(c), the polynomial Ay |.—o coincides with As up to a nonzero factor
from k;.. Hence, Ay # 0 and A; divides Ay .

Note that leg, (Aw) € kle,t1,...,ts]. We have Yy(n) # 0 for every n € W (respectively,
for every n € W"” N Z(¢)). Hence, by Lemma 4(c), we have degy, Aw = degy, y, Aw =
deg, v, Awle=0 = degy, py, A2 = degy, Az = degy, Aw|:=0. Therefore, (lcy,Aw)|-=0 # 0,
the polynomial (A /lcy,Aw)|e=o is defined, and (Aw /ley, Aw)|e=0 = Aa.
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Let us show that degy, 7, Aw = degy, 1, A1. By Lemma 4(c), it suffices to prove that the

number § of roots (in P"~%(k°(e)), counting multiplicities) of the system

Y =...=v,, =0 (34)
is equal to the number & of roots (in P"—$(k°), counting multiplicities) of the system (33).
Indeed, 0 = degy, ¢, A1 and § = degy, y, A2 = degy, y, Aw. Note that we have proved that
5 < §. Tt remains to prove that 6 > 9.

Recall that 17 € k‘o[s,YO, Yei1,...,Yn]. Put
¢£:¢5(5717n+17”'7yn)7 1§7’§m2

We identify the ring of regular functions & [W\ Z(Yo)] with &°(€)[Yas1, - - -, Yl /(¥4 - - s ¥,)-
Now, by the well-known definition of the multiplicities,

o= dimEO(E) EO[W \ Z(Yb)] = dimﬁo(g) EO(E)[YYS-FM s 7Yn]/(¢i7 R 771)1/77,2)'

We identify the ring of regular functions & [W"\ Z(Yp)] with k°[e, Yey1,. .., Yol /(¥ . ., Uy )-
The element ¢ is not a zero-divisor in the ring k°[W” \ Z(Yp)] by the definition of the variety
Vi o We have

6 = dimge k' [W”\ Z(Yo)/(e) = dimpo k' [e, Yair, .., Yl /(W1 .- 00, €).
Let z1,...,25 € k [W"\ 2(Yp)] be functions such that their residues
zimod (¢) € K [W"\ Z(Yp)]/(e)
are linearly independent over k. We claim that 21,..., 25 are linearly independent over I (€)
in &°(e)[Yay1,--., Yol /(04 ... ,Win,)- Assume the contrary. Then there is a linear relation

c121+ ...+ c5z5 = 0 where ¢; € I [e] and not all of these coifficients are zeros. Since € is not a
zero-divisor in k°[W”\ Z(Yp)], we may assume without loss of generality that e does not divide
at least one of ¢;. Now, taking the residues mod(e), we see that the elements z; mod (¢) are
linearly dependent over the field k°. This is a contradiction. Thus, § > 4.

Therefore, 6 = ¢ and Aw /ley, (Aw) = Aj. Hence, the polynomial Aj|.—¢ is defined, and
Atle—o = As.

Put Aw(Z,-Yy) = Aw|vy=z,U1=—v,, i-e., in this notation we regard Ay, as an element of
% (¢)[Uo, U1]. Obviously, lez(Aw (Z,—Yp)) = leg,Aw € Ele, t1,...,t,]. By Lemma 11(c), we
have

Aw(Z,~Yo) /lez(Aw(Z,~Yp)) = (Pw.L, /lez(Pw.r,)) Wobs.

Recall that the polynomial ®yy 1, is irreducible. Hence, Ay (Z, —Yp) = AW,qu);[‘;‘j};Lll where
M\w.L, € ke, t1,...,ts]. This implies

0 # lez(Aw (Z, =Y0))le=0 = (Aw;Ly |e=0) - (lez(Pw; 1, )[e=0) L1
Therefore, lcz(®Pw 1, )|e=0 # 0, the polynomial (®w, 1, /lcz(®w,r,))|e=0 is defined, and

As(Z,—Yo) = (Aw /lez(Aw))le=0 = ((Pw,L, /lez(Pw;L,))|e=0) W1
Hence, by Lemma 11(b),

(@wiz, /lez(Pw,r,))lemo) W1 = IT (@win/(ez(@w, L))ot (35)

Wl 6867
Wwicw’

Let us replace the ground field & by k(t) where ¢ is a transcendental element over k, and choose
a linear form Lo € k[X), ..., X,,] such that (La/Yy)(m) # (L2/Yy)(n2) for all pairwise distinct
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n,ne € W" N Z(e), cf. the proof of Lemma 11. Put L = Ly + tLs. Then (35) holds true
with L in place of Ly. All polynomials @y, 1, Wi € &, Wi C W, are pairwise distinct and
irreducible in the ring k[t, e, t1, ..., ts, Yy, Z], see the remark after the proof of Corollary 1. We
have already seen that lcz(®w.r) € kle] and lez(®w, 1) € k. Hence, 1 < ew.r/ewwi L € Z,
and (32) (see the statement of Lemma 12) is fulfilled for L in place of L;. Now, applying

Corollary 1, we get (32) also for L;. The lemma is proved. O
Corollary 2. The degree of the projective algebraic variety deg V. . satisfies the inequality

degVL{i78 <dy:...-dp_s1= D;_S.

,S

(in place of V') with D = deg V. , we

a*,s’

Proof. Applying Lemma 7 to the algebraic variety V..
obtain linear forms Yy, ..., Ys11 and a polynomial ®;. There are linear forms

n+2,...,Yn€E[XQ,...,Xn]

such that Yy, ...,Y,, are linearly independent over k. Put L; = Y, ;. The polynomials ®7 and

II <I>2; oWz, coincide up to a nonzero factor from k, see (IV). Now, by Lemma 7(b), we
weg ’
have

deg Vil = degy = > degz @) gy, = > degy Pwyp,.
WeEs Wie&s

By Lemma 12 and the definition of the algebraic variety Va’i’S, for every Wy € & there is
W € &4 such that Wi € W” (in the notation of Lemma 12) and (32) holds true. Hence, we
have

Z deg; Pw, 1, < Z deg, ®w,r, < Z degW:degéa*78.

Wi€e&s Weé&y Weé&y
But 5a*,5 = Z(hg«1,---»hg+ n_s). Therefore, by Bézout’s theorem, degé’a*78 <dy-...-
dyp—s—1 = D),_,. The corollary is proved. O

Let the field K D k be as above and L € K[X,..., X,] be an arbitrary linear form. Recall
that K° = K(t,,...,ts). Put

AL = AKO(E);YO7YS+1,...,Yn;hO ho, :Yy,L° S K(E)[tl,...,ts,Uo,Ul], (36)

* ARG} * bl
a*,1 a*,s

see the notation in Remark 6. So, if L = L; € k[Xy, ..., X,], then Ap = A3, see above. Put
AP = AL /Yo, ... Ys/ Yo, Z, ~Yo).

Denote by Kle]) the local ring of the prime ideal (¢) C K[e], i.e., z € K[¢]() if and only
if z € K(g) and one can represent z in the form z = z1 /29 where z1, 29 € Kle| and ¢ does not
divide 2s.

Lemma 13. Let Lgyq,...,L, € K[Xo,...,X,] be linear forms such that the linear forms
Yo,...,Ys, Lsy1,..., Ly are linearly independent over K. Then the following assertions are
equivalent.

(a) Va’iﬁ NZ(Yy,...,Ys) =@ in P*(k).

(b) For s+ 1 <1i<mn, we have Af) € Kle]»[Yo,---,Ys, Z] and (ICZA%?)‘E:O # 0.

Assume that condition (b) is fulfilled. Then, obviously, ICZAS-i) = ley, Ay, for s+1<i<n.
Assume additionally that K = k(t) (see above) and L; € k[t][Xo,...,X,]. Then we have
Ar, € K|t tr, . ts, U, Url, AY € K[|t Yo, -..,Ys, 2], and lezAY = 1ey,Ap €
K[E] (e) \EK[E] (e) fOT all i.
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Proof. Assertion (a) implies (b) by Lemma 11(a) and Lemma 12 (with the ground field K in
place of k and L; in place of Ly).

Conversely, under the conditions of (b), the polynomial Ag’) (Y1,...,Ys, L;) vanishes on Vg« ¢

for every i. Put ¢ = ] ICZAS:?’) € K|e]. Hence 9(0) # 0, and the morphism

s+1<i<n ‘

" S(K)x (ANENZ (1)) = P (K)x (AN ENZ@)), (Xo: ... Xn),e) = (Yo:...:Yd),e),

*
ar,

is finite dominant. Therefore, the restriction of this morphism V. [(K) x {0} — P*(K) x {0}
is also finite dominant. This implies (a).

Let us prove the last assertion of the lemma. For every n € 5@*’37 the elements (X;/Yp)(n),
0 < i < n, are integral over the ring k(¢)[t1,...,ts]. Hence, the elements (L;/Yo)(n),
s+1<i<n, are integral over k(e)[t,t1,...,ts], cf. the proof of Corollary 1. Therefore,
lez(®w.r,;) € k() for s +1 <i <nand W € &. Now, the required assertion follows from (b)
and Lemma 11(a) (with the ground field K in place of k and L; in place of Lj). The lemma
is proved. O

Remark 10. Another independent proof of Lemma 13 can be deduced from Lemma 3.9 in [7,
pp. 186-189]. In [7], the proof of the latter lemma is, in a sense, more direct. It does not use
a result similar to Lemma 12.

6. THE MAIN RECURSION
Lemma 14. It suffices to prove Theorem 1 in the case ¢ <n — 1.

Proof. Indeed, let ¢, be the integers from the statement of Theorem 1 and ¢ = n. Put
g =n—1,c; =min{d,n — 1}. Assume that Theorem 1 is proved for (¢1,c}, A1) in place of
(¢,d,A). Let o™ & Ay, Let fivioysins 0 <0 <m—1,41,...,0, >0, ig + ...+, = d;, be
the family of all coefficients from k[ai,...,a,] of the polynomials fo,..., fr—1. Set W ) =
Z(fiigssins Vi,00,...,ip). Put A= A; U {a(”)}. Then (4) is a stratification of the set U,,.
Since Theorem 1 is proved for (¢1, ¢} ), all the objects from (iv)—(xiii) for the stratification (4)
with the initial values of (¢, ¢) are also obtained, and Theorem 1 with (¢, ¢’) is proved (actually,
if ¢ =n and a € A1, then even more objects corresponding to « are constructed). The lemma
is proved. ]

In what follows, we will assume that —1 < ¢ < n — 1. Let a* € U.. Let s be an integer,
0 < s < c. The variety V= 5 is defined in the introduction. We will also use the notation Va’i7 .
Vs 60 Vi 55 Vo', and so on introduced in Sec. 5.

Let Wy s = Vor g or Wes ¢ = Va’*’s. Put Wy, = {a*}. Let (Yo,...,Ysr1) € L3 x L] see
the introduction. Let us replace in conditions (iv)—(xii) from the introduction the field & by
kq, the index a by oy, the varieties Vi« 5, Vor s by Wes s, Wer 5. Denote by (iv)'—(xii)’ the
resulting new conditions.

Consider also the following condition.

(xiv)" The degrees in ay,...,a, of all nonzero polynomials ®ng s, Hj, Aj, i, Aag,sr0,
)\ao,s,r,ly Gao7s,ra Gao,s,r,iy Gj7 Gj7’i7 \Ilao7s,r,i17i27 ‘Ilj7’i1,i27 J € Jao7s,r7 are equal to 0 (1.e.,
these elements do not depend on ay,...,a,).

To avoid a confusion, we need new notation for the objects introduced in (iv)'—(xii)’.
If Wa*,s = Va* s, then q>a0,s,r7 Aao,s,r, )\ao,s,r,Oa)\ao,s,r,la Gao,s,m Gao,s,r,ia Jao,s,r will be de-
noted by
(I)a*,s,ra Aa*,s,ra )\a*,s,r,O,Aa*,s,r,ly Ga*,s,r, Ga*,s,r,i, Ja*,s,ry (37)

respectively.

603



If Wee s =
noted by

then @og 5,5 Dag,s,rs Aag,s,m0s Aag,s,m1s Gag,sirs Gag,syris Jag,s,r Will be de-

a* ,87

b o W (38)

,8,m 10 Ma* s,r0 Ma* srii0 Ya*,s,r

A0

a*,s,r,0°

1) 1)
(I)a*,s,r7 Aa*,s,r’
respectively.

We will assume without loss of generality that all sets of indices Jgx s, Jg?s,r are pairwise
disjoint, i.e., S(#Ju s+ #750) = #(U e o U Ti1)):

s,r s,r
For arbitrary Wy« 5, the other objects introduced in (iv)’-(xii)’, namely,

Hj, Aj, 5,550, Wyasgr Gjs Giis Yag,srinizs Yjiinias
will be denoted by
Ha*mj’ Ad*?j’ ¢a*7j7:‘a*7j7 Wa*7j7§7 Ga’*hj’ Ga*mjvi’ qla*757r7i177;27 ql(]f$7‘7'7i17i27 (39)

respectively.

Using the construction of Sec. 4, we get polynomials hg= 1, ..., he* n— satisfying conditions
(an—c) and (Bp—c)-

In what follows, we assume that 0 < ¢ < n — 1. We will use a decreasing recursion on g,
where 0 < g < ¢. The base of the recursion is the case ¢ = ¢. The last step of this recursion is

the case ¢ = ¢« < ¢ with dim V7', — 1. So, if V¥ | # @, then ¢ = ¢j = = 1> 0. Put
Cqx = dim V=, Then, obv1ously, c — 1 § o < egr < c

Assume that at the previous steps with numbers ¢,...,q + 1 of this recursion we have
constructed polynomials hgx 1,...,he* n—q € ko+[Xo,...,Xp] and gg= j for 1 < j < n—gq,
j <w < m — 1 satisfying conditions (a,—4), see Sec. 4, and (v,,_,), see Sec. 5.

For the base ¢ = ¢, polynomials hg« 1, ..., hgx n—c are already constructed, see above.

Let 0 < ¢ < ¢—1. Then we assume additionally that at the previous step with number ¢+ 1,
the following objects are obtained. Put s = ¢ + 1. An element (Yp,..., Y1) € £3T1 x L] is
constructed. We will write (Yo,...,Ys41) = (Ys0,...,Yss41) if the dependence on s of these
linear forms is important. The linear forms Yy, ..., Y11 satisfy the following properties.

For the case Wy« s = Vg« s, conditions (iv)’—(xii)’ hold true and all the objects (37), (39) are
obtained.

For the case Wy ¢ =
o gl

a*,s,r’ a*,s,r,i1,12
(38), (39) also in this case, but for the variety V. it suffices to have only all @fﬁ)’w, \Ilgi)s v ia
to perform the recursive step).

conditions (iv)’; (v)/, (xi)’ hold true and all the polynomials

/
a*,s)

are obtained (actually, one can satisfy (iv)’—(xii)’ and obtain all the objects

Assume that 0 < ¢ < cbut dimV,¥ | > ¢ —1, or ¢ = c. Now we are going to describe the
qth recursive step of our construction.

In what follows, s = ¢ through the whole section. First, we will find the variety V. s and
some objects related to it. We will enumerate the elements (Yp, ..., Y1) € L5 x L. Recall
that the linear forms Yj,...,Y,, are linearly independent over k, see Sec. 4. Put Lgy1 = Ysi1
and L; = Ys41 +tY;, s +2 < ¢ <n, and let

Aa L - Ako (t 5) Y07Y5+17 7Yn7h

a*, 17" a* s

. Yous € K3 (6,€)[U0, U]

for s+1 < i < n, see Remark 6 in Sec. 3. Note that, in fact, Ea*,Li € kgrle, t t1, ... ts, Uy, Up].
We find all polynomials A,« 1, using the construction from Sec. 3. By Lemma 9, we have
Ay 1, # 0 for s +1 < ¢ < n. Further, by Lemma 2,

degUO’Ul za*7Li = degU07U1 za*7L5+1, s + 2 S 7 S n. (40)
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Let us compute, applying [6], the polynomials
5@*,[4 =GCD g,t,t1,...,ts,U0,Ur (ICU()AG,*,L” Aa*,Li) € ka* [Ea t7 tla vy tS]

for s +1 < i < n. After that, using Lemma 2 from [6] and Noether normalization (see [6] for

more details), we compute the polynomial Al(ji) L € koxle,t, t1,. .., ts, Uy, Up] coinciding with

4 4
g *>’LZ_ /ey, Ag Q’Li —

Ay, in the notation of Sec. 5, see (36). We apply Lemma 11(a) with (k(t), kq=(t), Li, ﬁagLi) in
place of (k, ke, L1, As). Then, by assertion (a) of this modified lemma and Remark 9, we have
ICUOA[(;’L‘),LZ- € kq+[e]. Now, by Lemma 2, we have Az(ﬁ),Li‘ﬁO = )‘iA((ﬁ),Lsﬂ where \; € kg+[g] for
s+2<1<n.

Put A( )L = Agﬁ{Li(s,t,Yl/Yo,...,YS/YO,Z,—YO), s+ 1<i<n. If for at least one ¢ with
s+ 1 <4 < n we have AS’)LZ & karle, t,Y0,...,Ys, Z] or AS;{LZ_ € korle, t,Y0,...,Ys, Z] but

ICZA 1, & kar[€] \ (¢), then we proceed to the next element (Yp,...,Ys11) € L3t x L. By
Corollary 2, Lemma 7 applied to the variety Va’iﬁ, and Lemma 13, there is (Yp,...,Ys41) €
L5 x £ such that condition (41) stated below is fulfilled.

In what follows, we assume that

Ea*,Li/éa*,Li up to a nonzero factor from kq+ for s +1 < ¢ < n. Note that A

A(?’)L € korle,t,Y0,..., Y5, Z] & chA[(fl{Li € kgxle]\ (6), s+1<i<n. (41)

Then, by Lemma 13, we have V. ;N Z(Y,...,Y;) = @, and the polynomials Afﬁ),Li|€=0 €
ko[t t1, ..., ts,Up, U] are defined. In this case, put A[(lS*ZLi = A((ﬁ),LJ{e:O,Uo:Z,Ul:—Yo} =
A(4)(0,t,t1,...,t8,Z, —Yy) € kg+[t,t1,...,ts, Y0, Z]. Note that the condition ICZA((ﬁ)’Li €
kqx[e] \ (¢) implies ICZAEL?;),LZ- = lcUoA(4) 1, and degy A() = degy, 1, Afﬁ)’Li. Therefore,

a

chASi{LZ_ € kq+ and degy, A(*{LZ_ = degy, 1, Ag?LZ_.

Lemma 15. Assume that (41) holds true. Then there is a family of integers e, > 1, n € C. 50
such that

AD =120 TT (2= (e + 00 /Yo))Ys)” for s+2<i<n  (42)
neCys

and
en

A(S)

a*7L5+1 = 1CZ

a* Lost) H (Z s+1/Y0)(77)Y0)

C//
)

Hence, for s+ 2 < i < n the polynomial A( e lt—0 coincides with A( Lot

factor from kg«

up to a nonzero

Proof. Let usiz,...,u, be algebraically independent elements over the field k. Put K =
k(us+27 e 7un) and L = sz—i—l + Z uiY;lv
s+2<i<n

Agr = AKO(a) Yo, Yei 1y YinshO vo.1 € Kg«(t,)[Uo, Ui].

hO

a* 170 a* )

Actually, Ay € kg [e,t, Ust2, .oy Up,t1,...,ts, Uy, Up]. By Lemma 9(b) and Lemma 4 (Wlth
6’a*,5 in place of Vg+), we have lcUoﬁa* € kg+le, tyUstay .oy Up,t1, ..., ts] and degUOA « =
degyy, 1, Ag+. For every W € &4, we choose @y, € kle,t,usta,. .., Un,t1,...,ts, Yo, Z] to be
an irreducible polynomial in this ring, see Sec. 5. For every W € &4, we have lcz®w 1, € kle], cf.
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the proof of Corollary 1(a) (we leave the details to the reader; actually, the required assertion
follows immediately from Lemma 9(b)).
Let -~
5a* =GCD €t Us 4250y Uny 1. ts,Uo, Ut (ICUO Aa*y Aa* )

S0, Og« € kg+[e,t, Usq2y ... Up,t1, ..., ts]. Here one can regard ﬁa* as a polynomial in Uy, Uy
with coefficients from the last ring, and then §,+ is the greatest common divisor of all these
coefficients. Put AY Ay /bgx. We apply Lemma 11(a) with (K, K,L,Ay+) in place of

a* =

(k,kq+, L1,As). Then assertion (a) of this modified lemma implies that
4 4 er
(AW Nevy A (wo=z, 0= —v0) = 11 @w.L/tcz®w,p)we (43)
Weé&y

(4)

for some integers e%,u 1, > 1. Hence, by the Gauss lemma, lcy, A -

H (lCZq>W’L)€§/V1L
WeéEy

coincides with

up to a nonzero factor from k. Thus, lcy, Afﬁ)’ 1, € ka[€]. Recall that (41) holds true. Now, by

Lemma 13(a) and Lemma 9(b), we have lez®w 1, € k[e]\ (¢). Therefore, lcg, Agﬁ) € kax[g]\ ().
By Lemma 4(b) with Cy+ s in place of V=, we have

A =legy(AF) - TT @Wo+ (L/Yo)m)U1)™ (44)
n€C* ¢
and
AW =1er, (AW ) T Wo + (Li/Yo)m)U)™, s+1<i<n, (45)
n€C,* 4
where e, is the multiplicity of the root n € 5a*,s of the system hg. ; = ... = hg. ;= 0.

Put ve4q1;=0fors+2<j<n. Fors+2<i<n,s+2<j<n,putv;;=0if7# j and
Ui,j:tifi:j.
4)

Let ¢ be an integer, s + 1 < ¢ < n. Denote Zg*@_ = Afﬁ”{uj:ui,j vj}, 1., we substitute

u; = v;j for all j = s+ 2,...,n into the polynomial A[(ﬁ) and denote by iji), 1, the obtained

polynomial. This substitution transforms the linear form L into L;. Hence, by (44) and (45),
)

the polynomials Zfﬁ{ 1, and Afﬁ 1, coincide up to a nonzero factor from the local ring kg~ [¢] @)

. —~ (4 . .
for s +1 < i < n. Hence, Ag*{Li\{EZO,Uozz, Uy=——Y,} coincides with Afzi),Li up to a nonzero

factor from kgx.

Furthermore, put Af*) = Agﬁ)
For every W € &g, choose @y 1 € klt,usy2, ... Uun,t1,...,ts, Yy, Z]. For every W € &, we
have lez @y 1, € k, cf. the proof of Corollary 1(b) (we leave the details to the reader; actually,
the required assertion follows immediately from Lemma 9(c)). By (43) and Lemma 12 (with the

ground field K in place of k), see (32), we have Agi)/(lcUOASi)) = J[ (®w,.r/(lcy,Pw,r))WE
WeEs

{(e=0,Up=7, U1 =—Y,}- Hence ICZAE;E) = ICUOAE;M{@:O} € kg~

for some integers ey r, > 1.

But, obviously, ®w.r/(lcy, ®w.r) = [[ (Z — (L/Yy)(n)) for every W € &. Therefore,
new

AZ =1ez(A3) - T (2 - (L/Yo)m)Yo)™ (46)
neCys ,
for some integers e, > 1.
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Put ZE;?LZ_ = A[(ls*)|{uj:viyj vjy for s +1 <i < n. Then, by (46),
AL =120 T (2 = (La/Yo)(m)Yo)e (47)

neCyy |
for s +1 < ¢ < n. On the other hand, obviously,

(5) —(4)
Ay, = Aa* | {uj=vi; Vs e=0, Up=2,U1=—Yo} = Do 1, |{e=0, Uo=2, U1 =— Yo}

)

and, as we have seen, the last polynomial coincides with A((l* 1, up to a nonzero factor from
ko for s +1 < i < n. The lemma is proved. O

Put A@L = A L lyp=1 for s +1 < i < n. Now, using the construction of [6, Sec. 2],
compute the polynormals

6 . 6
Ager,j = SQF, 1, ,tS,Z(Ag*{Li)eka*[t,tl,...,ts,Z], 1< gdengg,),Li,

giving the square-free decomposition of the polynomial A( )
Actually, Ag= 1, € kax[t,t1,...,ts,Z]. The polynomials Aa*, L;; are separable (i.e., do not
have multiple factors in k[t ty,...,ts, Z]).

Recall that the integer p = p, is defined in the introduction, see (iv) with s = ¢. If the

< 1, in the sense of (48), see below.

characteristic exponent p is equal to 1, then By, = {1,...,degy, A L b, Bii=9. Ifp>1,

then B,; = {jp" : 1 < j < (degy Agi{Li)/p’“} for every integer r > 0, see [6, Sec. 2]. By
definition, put r(j) = r if and only if j € B, \ By41.
In this notation, the polynomial

11 | S VA A V- D RN (48)

0<r<pjeB, i\Brii,i

. (g r(5) r(5) (s .
where 07 . ; € kg«, and the polynomials Ay« 1, ; (7 m,t’l’ T zp (])) where 1<j <
degy, Agi) 1,» are pairwise relatively prime in the ring k- [t,t1,...,ts, Z], see [6, Sec. 2]. Hence,

for every j we have 0 < degy Ay 1, < (degy Agﬁ*)Li)/j.

Denote by Resz(Ag+ 1,5, 00a* 1,,./0Z) the discriminant with respect to Z of the polynomial
Agx 1. If for at least one pair (i,7), s+1 < i <n, 1 <j < degy A[(lS*)Li, the polynomial
Ag+ 1, is not separable with respect to Z (i.e., ResZ(Aa*,th,8Aa*7Li7j/7(‘)Z) = 0), then we
proceed to the next element (Yp,...,Ysy1) € L3 x L., By Corollary 2 and Lemma 7 applied
to the variety V. ., there is (Yp,...,Ysy1) € L5 x L] such that condition (49) stated below
is fulfilled.

In what follows, we assume that
Resz(Aq- L,y O0ar,1,j/02) 20, s+1<i<n, 1<j<degz A, . (49)
Put
Ja*,Li;r = H Aa*7Li7j Eka*[t7tl7’”7t87z]7 0<r <p.
JE€Bri\Bri1,i
Therefore, each polynomial Ga*,L;r is separable with respect to Z. Again by (48), we have
degy gor L,r < degz( 1,)/p". Note that
Z degzga*,Li,r = #{(Yor1/Yo + i/ Y0) (n) : n € Cfl. ) (50)
0<r<p

(we leave the details to the reader). So, if i = s + 1, then one can omit “+tY;/Yy” in (50).
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The following lemma is similar to Lemma 6.

Lemma 16. Let (41) and (49) hold true. In the notation of (42), let e, = p"e; where ry, e,
are integers, 0 < 1y < p, e, > 1, GCD (e7,p) = 1 for every n € Cy. .. Then the following

conditions are equivalent.

(a) #H{(Yera/Yo) () = n € Cg- ;} = #CGe

(b) E degZ 9a* ,L;,r = Z degZ Ga* ,Lei1,r fO’/“ all i,
0<r<p 0<r<p
(c) degz ga* ,L;r = degy Gax Lo y1,r for all i,r, .
(d) for 0 <r < p the polynomial go= 1.\, (5 ,..., 15 ,ZP") coincides with
[I - 0/om”
7760(;/* ,8 Tn=r
up to a nonzero factor from k, and for s +2 < i < n and 0 < r < p the polynomial
Gar L, (Pt .t ZP") coincides with
[[  (Z- e/ Yo) ) = t(¥i/Yo) ()"
7760:1/*75,%:7“
up to a nonzero factor from k.
Proof. The proof is similar to the proof of Lemma 6 and is left to the reader. O

If assertion (c) of Lemma 16 is not fulfilled, then we proceed to the next element
(Yo,..., Y1) € L5 x .

By Corollary 2 and Lemma 7 applied to the variety there is (Yp,...,Ys41) € L3 x LL

such that assertion (c) of Lemma 16 is satisfied.

a* ,8?

7. THE END OF THE DESCRIPTION OF THE MAIN RECURSION

In what follows, we assume that assertion (c) of Lemma 16 holds true. Now, by Lemma 16(d),
fors+1<i<mn,0<r<pwe have (in the notation introduced in Sec. 5)

s 08 8 2 ezl ) = [T W
W€567

where &, C &. The subset &, does not depend on L;. It depends only on r. We have
W € &, if and only if r,; = r for every n € W.

Furthermore, |J &, =& and &, NEy, = @ for 0 <1y # 19 < p. Let t56(E5,) = Eor,
0<r<p
see Sec. 5. Put

1"
a*sr_ U W a*,s,r U VVv Ogrﬁp
W€g5 r We&;w

Denote by V. ;. (respectively, Vo« s, V¥

W € &, such that W C V. ,
Denote by Cy. , (respectively, Cox s,
t5,6(W) where W €& and W CV,. fog
Denote by Cp. ., (respectively, C’a*,w, w510 Cor s the union of all irreducible compo-

nents ¢5 6(1V) where W € Esrand W C Va’* (respectively, W C Vo s, W C V! W C Va/i’fs).

as?

5, Va’i’f s) the union of all irreducible components
(respectively, W C V= o, W C V2 W C V).

a*,s)
o s Cit' ) the union of all 1rredu01ble components
)

(respectively, W C VJ. , W C V! W C V).

Thus, Cgs 5, (vespectively, Cis g ., Car sy Co o1y Ca¥ s ) is the subset of all 7 from the set
O, (vespectively, Ch ., Coe s, CIL ., CI") such that 1 = r.
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Note that if n — s > m, then, by property (an_s) (see Secs. 5 and 4), we have V¥ = @

a*,s
and, therefore, also V% ;. = @ for 0 <r < p.
Put g » = ga*,Ly1r € Kar[t1,-..,ts, Z]. Now, by Lemma 16(d), for every r and every i
the polynomial go* 1, r|t=0 = ga*.1,+(0,t1,...,ts, Z) coincides with g4, up to a nonzero factor

from kq-. Let pgx, = lczges,» (respectively, piox r,r = 1czGa*. 1,7, 0 < i < n). Replacing

Ga* v by Ga* v H Ha* L;,r and each Ga*,L;,r by Ga* L;,rHa* r H Ha*,L;r, WE will assume
s+2<j<n s+2<j#i<n

without loss of generality that go« 1, ,(0,2) = gg=, for s +2 <i <n.
If degZ Ga* 5y = 0 then put q)a*,s,r = 17 )\a*,s,r,O = )\a*,s,r,l = 17 Ja*,s,r =, q)((;k),s’r =1 and
qla’*757r7i177’2 - 1 ‘Il( )

a*s.miyip = 1 for all 4,42, see the beginning of the section.

In what follows, we assume that deg, g, > 0. Consider the separable k-algebra

Ar =Kty te, Z)/ (M (8. 80, 27,
Put 04+, = Z mod gl/p (t%’l7 ,...,té’r,ZpT) € A, and
8ga* L;,r / 89a* L;,r .
i = — P — o oo 2<1<
arime < ot > 0z t1—t? . ts—>ts , stesism
t—0, Z—>0p

(this means that we substitute tfr for t;, 1 <1 < s, 0 for ¢, and 92:7r for 7).

Denote by k(t1,...,ts)[0a ] the localization of A, with respect to the multiplicatively closed
set k[ty,... ] \ {0}. Denote by k(VJ. ;.\ Z(Yp)) the total quotient ring of the ring of regular
\ Z(Yp)] of the algebraic variety \ Z(Yp). Then (cf. Sec. 3) there is a
natural isomorphism of k-algebras

E(Vit s \ 2(Y0)) = K(t1, - t)[0a ]

such that Y;/Yy —t; for 1 <i <, Ysy1/Yp = 04+, and (Y;/Yo)?P" 0. rifors+2<i<n.
Consider the separable k-algebra AN = klt1,... ,ts, Z)/(ga ). Put 96(1*)77” =Z mod gg* » EA,E )

For s +2 < i < n, we have go* L,r = Garr + Y Ga*.Lirjt € K[t t1,..., ts, Z] where
j=0
9a*,Lirj € Elt1,.. ., ts, Z]. Set gg*,r = %(Qa*,,«). We have

- aga*,Li,r / aga*,Li,r
ot 07

Let 64+, be the discriminant of the polynomial gu«, with respect to Z. Then one can
write — (ga ,L;,r, l/g;* 7«) |Z 9(1) = (5a LZ,T|Z 0(1) )/5(1* T where 5a*L T € ka* [tla'- tsaz]a

degy 0g* 1, r < degy go* r, and the coefficients from kg« of g+ 1, are polynomials in the coef-
ficients of all faxj, 0 < j <m —1, cf. the construction of d, ;, in Sec. 3. Therefore,

p" p" pp"
5&*,L¢,T(t1 PRI ,ts ,Qa*’T)

! —

G ()

functions k:[ o s o s

— (9a*,Lir1/Gie ) ‘Z:G(l*) € AW,

t=0,7=0'")

for all r,1.

Also set dg+ 1,10 = Zdgrr for 0 <r < p.

In what follows, we assume that Y¥; = X; for s +2 < ¢ < n, cf. Sec. 5. Recall that in Sec. 5,
for any polynomial F € k(¢)[Xo,...,X,] a polynomial F° € k(e)[t1,...,ts, Yo, Yer1...,Yy]
is defined. Below, we will use this definition with ¢ in place of ¢, i.e., with the field k(t) in
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place_ of k(¢). Now, for any polynomial F € k[t, Xy,...,X,] there is a unique polynomial
G € k[t ,t1,...,ts, Yy, Ysy1...,Yy] such that

(s

(FP ) =GP 88 .. 2 Y YE ... Y.

y Vs

By definition, put
FY = G(t,t1, ... ts, 0o rs0ar Losrirs s 0a L) € K[t t1, ... ts, Z]. (51)

So, by our construction, the polynomial g,«, divides hg*,i for 1 < i < n—s (we leave the
details to the reader).

Assume that s > n —m + 1 and hence n — s < m — 1. Then the polynomial ﬁa*,n_sﬂ
is defined by (27) with j = n — s + 1, see also a correction to this formula at the end of
the introduction to the second part. Let us extend the ground field k£ to k(f). So, now the

polynomial (hg+ n—st+1)" is defined according to (51). Put

4
g((z*),r =G CDt,tl,...,ts,Z (ga*,r, (ha*,n_5+1)v) .

Here GCDyy, . 4.,z is an algorithm corresponding to a computation forest, see [6, Sec. 2].
(Ai)r € ko[t t1,. .. ts, Z], degy, 4. 7 g[(ﬁ)m = Dgﬁls)ﬂ, and deg, gc(ﬁ)’r is bounded from

ar,

above by Dgfls) 41+ Put gc(fi) = LC; (gc(ﬁ) ), i.e., ggi)r is the leading coefficient of the polynomial

77’ - 7,,“ K
gc(ﬁ)m with respect to t, see [5] for a precise definition of the computation forest LC . Then,
obviously, gc(g)m is the greatest common divisor of the polynomials g4+, and fav*’i, 0<i<m-—1,
in the ring kq«[t1,...,ts, Z].
If s<n—m+1, put gc(g)m = go* - In this case, n—s—1 > m—1 and, therefore, by property
(an—s) (see Secs. 5 and 4), the polynomial g, , divides f,. ; for 0 <i <m —1.

Hence g¢

Let us return to the case of arbitrary s. Now, by the definitions of V. ; and Cf. ; and

Lemma 16(d), the polynomial g((ﬁ)’,ﬂ(tﬁf', .0, ZP") coincides with [ (Z—(Yap1/Yo)(n))?"

nectll*,s,r
up to a nonzero factor from ky«. Put es = degy, g®). Set
1 5
Ol =Ygl (Vi) Yo, ., Ye/ Yo, Yein /Y0).
Then CID((;),M € ko [Y0,...,Ys41] is a homogeneous polynomial in Yp,...,Ysy1. Furthermore,

all the assertions of (iv)’ and (v)’ for Wy« s = V. ¢ (see the beginning of the section) hold true.

Let s <n—2. Let Y1) ¢ L0 <i < 9.5, see the introduction. Let io be an integer,
s+ 2 <19 <n. Consider the resultant

O ririn = Reszy (a2 = (VO +8X0) 222, 900 (11, - 1, Z1))
Then gogi)mhm € ko[t t1,. .., ts, Z], and 3025*)””2 (tpT,t]lDT, . ,th, ZP") coincides with

sz, ) T (2 (v + Xy

neCy .

1S,T

up to a nonzero factor from kg,=.
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

WO kgt b, ts, Z]

a*,ryi1,i2
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(®)

a*,ri1,52

5

. ((1*),T,Z'1,i2 S ka*,Tand

1[)6(13)7T7i1’i2(tpr,t’17 ..., t8  ZP") coincides with  [] (Z — (Y /vp) —|—t(Xi2/Y0))(77))p up
neC’

a* s,r

coinciding with ¢ /052 up to a nonzero factor from k,«. Now lczy)

to a nonzero factor from k,«. Set

1 5
Ul ivia = Yo Uiy (0 Y1/ Y0 Yo/ Y0, 2/ V).
Then ‘I’gl*),smil,iz € ko+[t,Yp,...,Ys, Z] is a homogeneous polynomial in Yp,..., Y5, Z. Fur-

thermore, by Lemma 8, all the assertions of (xi)’ for Wy« s = V. ; (see the beginning of the
section) hold true.
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

6
g((l*)ﬂ« S ka* [tla s 7t87 Z]
coinciding with gg« ,/ gc(g)m up to a nonzero factor from k,«. By the definitions of the alge-

(©) (t’fr, .., 2, ZP") and

a*,r

"
a*,s

"
a*,s

braic varieties and and Lemma 16(d), the polynomials g

[T (Z— (Ysy1/Y0)(n))P" coincide up to a nonzero factor from kqs.
7760///

a*,s,r

Let s = ¢. Then put g(é)’w =1for 0 <r < p;.

a

({?sm in this case. Let s+1 < 51 < c¢. Recall

Let s < c. We are going to define and construct g,

that, by the recursive assumption, at step s; linear forms Yy, o,...,Ys, s,+1 and polynomials
<I>[(11*)7817T1 € ka*[Yo,515---+Ys1.51. 2], 0 < r1 < pg,, are obtained. Furthermore, if s; < n — 2,
then also polynomials \Ilt(z%*),m,m,il,iz E ke[t Y051, Y5161, 2], 0< i1 <se05,, 51 +2 < iy <m,
1<r <ps = logp D,,_s,, are obtained. If ¢ <n — 1, put ¢u+ ,—1 = 1. If c =n — 1, put
_ 1 Pt P
Pa* n—1 = H (I>a*,n—1,r1 (Yn—1,07 s 7Yn—1,n)‘
0<r1<pn—1
If s1 <n-—2, put
1) _qg® 1y pTl 1 ; 1
¢Q*7317T17i17i2 - ‘Ila*781ﬂ"1,i1,i2 G ’Y;‘l,o’ T ’Y;pl,sv (Y(Zl) + t X, »)

(recall that here Y1) € Ls) ., ). By (x)' (see the recursive assumption at the beginning of
the section), if s7 < n — 2 then
— z(a

V!
a*,s1,r1 a*,81,71,11,12”

Vi, iz) NP (k),
and if c=n — 1 then V., | = Z(@a* n-1)-

Let uy,us be transcendental elements over the field k(t). Let us extend the ground field k
to k(t). So, now (see (51)), a polynomial @y, | € kex[t1,...,ts, Z] is defined if ¢ = n — 1,

and also all polynomials (<I>(1) VW€ kgx[t,t1, ..., ts, Z] are defined if s < n — 2. Put

a*,81,71,11,02
¢1 = min{e,n — 2} and

_ v i1, 42 ¢, (1) v
Qoa*,s,r - Qoa*,n—l ' H H < Z ul 'l,L2 (@a*,sl,rl,il,ig) .
s+1<s1<c1 0<r1<ps; \0<i1<s25,
s1+2<ia<n

Set
7
gc(L*),T = GCDtuyusityents, 2 (9(5)7 900*78,7“) :
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(7)

*
ar,

bounded from above by DSE?H. Put

(7)

Hence g,+, € kq+[t,u1,u2,t1,...,ts, Z], and the degrees degy, 1.z gaz - and degy .\, 4, gc(;)’r are

)

¥ = LOH(LCu, (LCw (97 ))).

)

So, for arbitrary s < ¢, by the definitions of the algebraic varieties Vs and Cg¥, and

Lemma 16(d), the polynomial g((l?r(tifr, ...t ZP") coincides with
I Z-/Yom)y”
nec

up to a nonzero factor from k.« (we leave the details to the reader).
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

g[(l%)m S ka* [tl, ey ts, Zl]

coinciding with gé?r / gé?r up to a nonzero factor from k,«. By the definitions of the alge-

L(lgzr(t’fr, ., t2 . ZP") and
)

a*,r:

braic varieties Vg« s and Cy+ s and Lemma 16(d), the polynomials g

CH (Z — (Ys11/Y0)(n))?" coincide up to a nonzero factor from kq+. Put eg = degy g
ne a*,s,r

Set

By s = Y0l (V1) Y0, Ve Yo, Yeir/Yo).
Then ®gx 5, € ko [Y0,...,Ys41] is a homogeneous polynomial in Yp,..., Y. Furthermore,
all the assertions of (iv) and (v)’ for Wy= s = Vo= s (see the beginning of the section) hold true.

Now assume that s < n — 2. In this case, let y@) ¢ L,0<i < 9 5, see the introduction.
Let i3 be an integer, s + 2 < i3 < n. Consider the resultant

9051?‘),7“,2'1,1'2 = Resz, (5(1*77"2 - ((Y(Zl) + tXi2)v|Z=Z1)v gc(z?‘),r(tlv oo bss Zl)) :

Then gog%)mhm € ko[t t1,. .., ts, Z], and gog%)mhm (tpT,t]lDT, ... t2" . ZP") coincides with
r ” . p"
o () TT (2= (O )/v0) + 14X/ Y0)) ()
neca*,s,'r'

up to a nonzero factor from kg«.
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial
9
Y i E ket 1, 2]

(9

a*

)

a*,7i1,02 € kq», and

A 2P coincides with cH (Z = (Y@ )¥g) + H(Xs, /Yo)) ()" up
ne a* s,r

coinciding with ¢

N

a*,rit,i2

)7T7i17i2 /652 up to a nonzero factor from k,x. Now lezy)

T

to a nonzero factor from k,«. Set
Vo sminis = Yoo (Y1) Y0, . Yy /Yo, Z/Yy).

Then Yo 51400 € Kax[t,Y0,...,Ys, Z] is a homogeneous polynomial in Yp,..., Y, Z. Fur-
thermore, by Lemma 8, all the assertions of (xi) for W= s = Vg« 5 (see the beginning of the
section) hold true.

Now we return to the case of arbitrary s, ¢ with 0 < s < ¢ < n — 1. We apply the
modified version of Theorem 1 from [6] (see Remark 2 from the introduction) and construct
the decomposition of the polynomial &, , into absolutely irreducible factors in the ring
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k[Yp, ..., Ysi1]. This decomposition can be obtained by a multivalued computation forest, see
the remark at the end of Sec. 2.

So, we get a finite (or empty) family of polynomials Hyx ; € ko+[Z], j € Jg= s, their
discriminants 0 # A« j € k, the set of roots Z4+ j of each polynomial H,~ j, nonzero elements
Aa* 50,00 Aa*,s,r1 € Kax, the polynomials @y j € ko« [Z, Y1, ..., Y1), j € Jax s, the irreducible
(over k) components Was je, & € Ear j, J € Jax s, Of the algebraic variety Vi« 5. These objects
satisfy properties (vi)/—(viil)’ for Wy« s = V= 5 (see the beginning of the section), with only one
exception. Namely, applying the construction from [6], we get @q« jo0 = lcy, ., Po j € ko [Z]
with degy wq+ jo < degy Ho+ j. But in (vi)’ we need @q+ jo € ko=

Still, we can satisfy the last condition replacing each polynomial ®.+; by a new poly-
nomial. Namely, we proceed as follows. There are polynomials A;, B; € k.«[Z] such that
degy Aj<degy Hyx j, degy Bj < degy wax j0, and Ajpgx jo + BjHax j = Resz(@ax j0, Hax j)
where 0 # Resz(@qax j,0, Hor j) € kq+. Let degy,,, ®orj = e1. Put

O j = AjQqr j + (Resz(@ar 0, Hav j) — Ajpa j0) Vil

Let degy @4+ j = e, degy Hy+ j = e3, and ep3 = max{es — e3 + 1,0}. Furthermore, using
Lemma 2 from [6], we can write (lczHg j)®?®gx j = Qqa* jHj + Ryxj where Qq« j, Roxj €
ko [Yo, ..., Yst1,Z], degy R+ j < degy Hgx j, and

ley,  Raxj = (IezHgx ) **Resz(@ar 5,0, Har j) € Kax-

Finally, we replace each ®,+ j by Rq« ;. This involves also replacing Ag« 5.0, Aa*,s,r,1- Actually,
one can take the new elements A« 5,0 =lczPgx 5, Agx sr1 = [[ lczRqx ;. Now, properties
JE€JIs,r
(vi)'—(viii)’ are fulfilled for War s = Vo s.
Recall that 6©) = det((y;;)o<ij<n)), see (29). Put Ga sr = (60)?" 8, .. We are going to

define Gy» 5, for 0 < i < n. Let us write 80X, = > Y, 0 <i<n, where z; ; € k.
0<j<n
Put Ea*Y;r — 5(1*,[/2-,7“ for s + 2 < <mn; Ea* Ysr1,r = Z(Sa*,ra Ea*,Yo,r = 5a*,r7 Ea*,Y;r = tiaa*,r for

1 <i<s. Finally, put Ggs sri = . a:f;sa*,&m for 0 < <n.
0<i<n

Now we are going to construct all polynomials G+ j, Gg= j; for 0 <7 < n. Put
Pa*,j = (I)G*J(Z, 1, tl, e ,ts, Y)

So, degy @ ; = e1 and Yq= j o = lcy e j € kgx. Let degy @ox j = €4, degy Gox x, » = €6, and
e64 = max;{eg; —es + 1,0}. Using Lemma 2 from [6], we can write

@Zi’z,oGa*,Xi,r(tl, ot Y) = QaxiPar j + Rax i
where Qg+ i, Rox i € ko= [Z,t1,...,ts, Y] and degy Ry« ; < degy @q+ ;. Let degy Ry« ; = e7; and
er3 = max;{er; —e3+ 1,0}. Again using Lemma 2 from [6], we can write

(lezHax 5)°™* Rax i = Qur iar j + Roy i

where Q. ;, Ry« ; € ko [Z, 1, .., 5, Y], degy R« ; < degy @a j, degy R« ; < degy Hyx j. Put

Garj = Sar pipgs ez Hax j0)7, Gar ji = Ry -
Now properties (x)" and (ix)" are fulfilled for Wy 3 = V= s (note that one should replace

everywhere in (x) (and hence also in (x)’) max by max;; it is a small correction, see the
introduction to the second part).
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Let s <n—2and j € Jy;+s,. Now we are going to construct all the polynomials W« ;i ;,.
Let Y1) ¢ L, 0 < iy < s, see the introduction. Let i be an integer, s + 2 < iy < n.
Consider the resultant

Pa*,ji1,ia = RGSY (50*,7“21 - ((Y(Zl) + tXi2)v|Z=Y)7 Sotl*,T(Z7t17 ooy ts, Y)) .
Then @g+ jiyin € ka+[Z,t,t1,...,ts, Z1]. For every £ € Zg+ ;, the element
Pa*,ri1,iz (t? 7t€ N A )‘Z=£
coincides with

st ) T (2= () + (X Yo)) ) )

nELs,6 (Wyx ,j,&)

r

up to a nonzero factor from k.. Hence
(@a*,j7i17i2|z=§)/52’1‘,r = Pa*,j,i1,i2,¢ € E[tv t1,. .- 1sy Zl]7 g € Ea*,j- (52)

Let us write
,../581 — S Al
90(1*,‘],7,177,2 a*,r - @a*,],ll,ZQ,Z

0<i<es
where ©g+ iy o € ko= (t1,. .., ts)[t, Z1]. Solving the linear system
D U =9 jiring: €€ Ear

0<i<es

with respect to the unknowns Uy, ..., Ue,—1, we deduce that @« ;i1 isi € ka*[t,t1,...,ts, Z1).
Therefore, @a*,j7i1,i2/521,,« € kg [Z,t,t1,. .., ts, Z1].
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

wa*ijilin S ka* [Zat7tla oo ts, Z]

. . 7 . e3
coinciding with @+ j i, in/ (5(1*77" up to a nonzero factor from kq«. Now lcztgx ji, 4, € ko, and

T 'a
Vax jir o (tPT,tf R ZPT)|Z:§ coincides with

I (2 )+ XY m)"

77€L5,6(Wa*,j,§)

r

up to a nonzero factor from k.« for every § € Z4« ;. Set
o jiria = Yo Yar jirin (2,4, Y1/ Y0, ..., Y5/ Y0, Z1/Y)).

Then Wox ;i1 iy € kax[Z,1,Y0,...,Ys, Z1] is a homogeneous polynomial in Y, ..., Y, Z;. Fur-
thermore, by Lemma 8, all the assertions of (xii)’ for W+ s = Vo= 5 (see the beginning of the
section) hold true.

Thus, now properties (iv)'—(xii)’ with s = ¢ are fulfilled for W« 3 = Vg« 5. It remains to
construct the polynomial hq+ y—s41 and all polynomials gg* n—st1w, n —5+1 <w <m—1,if
Vil # @ and s = ¢ > ¢ — 1. The variety V,” ; is not empty if and only if deg, ggi)’w # 0 for
some r where 0 < r < p. Hence, in this case s > n —m + 1. Now put

(52@’,4 = Resy (gé?r, (ha*’n_s_l,_]_)v) )

€ ko[t t1,...,ts]. Put Ny = > deg, 522)7,”. We enumerate the elements

So, 0 # 69
’ 0<r<p

T

of Zy, and find t' € Zy, such that ( I1 5EL§)T> ‘ # 0. Put tgr p_sy1=t" and o n—si1,0=
o<r<p ) 1=
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Gn—s+1,w|t=t for n—s+1 <w <m—1; qg* n—s+1n-s = L and gg* n—st1,0 = 0for 0 <w <mn — s —1.
Set hgx p—s+1 = ha* n—s+1|t=t, see Sec. 4. Then, obviously, dim( (l’i”s NZ(hg* p-st+1)) = s — 1.

If V)Y # @ and s = ¢ > ¢ — 1, we proceed to the next, (¢ — 1)th, recursive step.
IfVY,=@ors=gq=c —1, then the gth step is the final one. We set ¢/. = s =g¢. In

a*,
this case, we have Vg« , = @ and Vs 5o, = @ for 0 < 50 < g—1,0 < 73 < ps,. We put
@i s0,m0 = 1y Aa* 50,00,0 = Aax 59,01 = 1, Jax spmy = &5 a0d Wor g5 194y iy = 1 for 0 < s <g—1,
0< 12 < ps,y, 0< 01 <sr9 g, S2+2 <19 <

Put
Qar :({(Cba*,s,r,Aa*,s,r,OyAa*,s,r,l)}Vs,r, {Gar sritvsiris AVar s,minin Vs, rin ias
{(Ha j, Dar gy Par ) iedn o Vsrs AV jrinsia Yi€don g Vit in, Vs,rs
{h’a*,i}lﬁign—c;* ) {Qa*,i,il}lgign—c;*,ogil gm—1> .

So, Qg+ is a 7-tuple of some families. Elements of these families are defined above.
Now, similarly to Sec. 3, under condition (g) the described construction defines a multivalued
function (or a binary relation)

Y0+ A
0 U ETTTT oK, df e Qe
n,do,...,dm—1
which is an algorithm corresponding to a multivalued computation forest
Ty = {T1 n.do,...dvm—1 }¥n,do,....dom 1

in the sense of Sec. 2. So, § = §(71). The values of this function depend on the choice of

linear forms Yy, ...,Ys 41 for ¢ < s < min{e,n — 1}.
Let v be a vertex of the tree 11 5, 4,..4,,_,- Then the quasiprojective algebraic variety
Wo = Z(Wu, - Vo) \ 21415+ Yoy ) CUe (53)

corresponds to v.
Take Ag = L(T' n,dy...d,,_. ) to be the set of leaves of the tree T} ,, 4,...d,, .- Let a € Ag. Then
(see (53) with v = «) all polynomials ¢, ; € klai,...,a,] have degrees bounded from above by

DPW with an absolute constant in O(1). Note also that each leaf « is of level 1(a)) = p°WY

n—c n—c'"
We have |J W, =U,, i.e., we get a covering of the set U..
€Ay
Furthermore, the 7-tuple

Qa :<{(q>a,s,ry Aa,s,r,Oy Aa,s,r,l)}Vs,m {Ga,s,r,i}VS,r,u {‘Ila,s,r,il,ig }VS,T,il,i27
{(Haj, Bajs Paj)bjcas e, s {%ajisioj€lasr, isis, ¥s,rs
{ha,i}lgign—cga {Q(x,i,il}lgign—cfx,OSilgm—l)

corresponds to «. Here, all the objects from the right-hand side are defined in the introduction,
and for them conditions (iv)—(xiii) hold true. Besides, for ¢/ < s < min{¢,n — 1}, linear forms
Ys0,...,Y5 441 correspond to a.

Now, for every a* € W, we have Q,+ = Qa|a1:a;m,au:a;. In particular, ¢, = c,., and we
identify Jy s with Jo+ 5, and Eg+ j with E; 4« for all j € J, 5, and for all s,r. The linear forms
Ys0,...,Ys 441 corresponding to o coincide with the ones appearing in the main recursion for
the element a* € W,, see Sec. 6 and the present section.

From the description of the main recursion and the results of [6], it follows immediately that
assertions (b), (c), and (d) of Theorem 1 are fulfilled with A4 in place of A.

615



Moreover, let s be fixed. Put
Qa,s = ({(q>a,s,r7 )\a,r,Oy Aa,s,r,l)}Vm {Ga,s,r,i}Vnia {‘I/a,s,r,il,ig }Vnil,iz,

{(Hajs Aajs Povj) i danm ¥rs {Wanjiinia }jeJa,r,wl,z’z,w)-

Then, from the description of the main recursion and the results of [6], it follows that all the
objects from the left-hand side of the last equality are computed already at some vertex v of

with level 1(v) = DU The leaf « is a descendant of v. Furthermore

see , all polynomials v.i € at,...,ay ave degrees boundade rom apove ) wit
(see (53)), all polynomials ¢y, ; € k| ] have degrees bounded from above by DY with

an absolute constant in O(1).

Assume that condition (g) does not necessarily hold. Denote by f the family of coefficients
from k[ay,...,a,] of all the polynomials fy,..., f;—1. Then, by Theorem 3 applied to the
tree T dy....d,,_, (f) (see the definition of this tree in Sec. 2), we get an irredundant subtree
T uo...d,,_, (f) of the tree T1 g, a,, ,(f) such that S(T} 4, 4 (f) = S(T1dy,...dp . (f)- Put
A= L(T} 4. a,_,(f). Now, all assertions of the modified Theorem 1 hold true. Thus, the
modified Theorem 1 is proved.

Put I' = A and assume that A is not used in any notation introduced earlier (i.e., we change

the notation). Finally, applying Lemma 3 to the covering U, = |J W,, we prove Theorem 1.
~yel’

the tree T 5, 4y,....d

m—1

Translated by the author.
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