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SYSTEMS WITH PARAMETERS, OR EFFICIENTLY
SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS 33
YEARS LATER. II

A. L. Chistov∗ UDC 513.6, 518.5

Consider a system of polynomial equations with parametric coefficients over an arbitrary ground
field. We show that the variety of parameters can be represented as a union of strata. For values
of the parameters from each stratum, the solutions of the system are given by algebraic formulas
depending only on this stratum. Each stratum is a quasiprojective algebraic variety with degree
bounded from above by a subexponential function in the size of the input data. The number of
strata is also subexponential in the size of the input data. Thus, here we avoid double exponential
upper bounds on the degrees and solve a long-standing problem. Bibliography: 12 titles.

Introduction to the second part

This paper continues [8] and is the second part in a three-part series. In all parts, the
numbering of theorems (respectively, lemmas, sections, and so on) is the same. It is continued
from [8] and will be further continued in the third part, which will be prepared for publication.
For example, in this paper the reference to Lemma 6 means Lemma 6 of [8]. Similarly, Sec. 3
means Sec. 3 from [8]. The list of references in this paper (apart from the reference to the
first part [8], which is added here) coincides with that from [8]. In the present paper, we prove
Theorem 1. In the last third part, we will prove Theorem 2.

In this second part, we use the construction for solving systems of polynomial equations
with finitely many solutions in the projective space described in Sec. 3. Actually, to obtain an
algorithm in the general case, we need only the part of this construction until Remark 6 (in
particular, we will not use the tree T0 introduced in Sec. 3). Of course, many other ideas are
needed to prove Theorem 1 in full generality.

To prove assertion (d) of Theorem 1, we need to use estimates on the lengths of coefficients
of absolutely irreducible factors of parametric polynomials with integer coefficients. Unfortu-
nately, we forgot to give such estimates in the statement of Theorem 1 in [6]. But they are
straightforward. Namely, under the conditions of Theorem 1 in [6], the following assertion
holds.

(c) Assume that k = Q and f ∈ Z[a1, . . . , aν , X1, . . . ,Xn], and let the lengths of integer
coefficients satisfy l(f) ≤ M for a real number M > 0. Then all the polynomials

ψ
(β)
α,1, . . . , ψ

(β)
α,mα,β , λα,0, λα,1, Hj, Fj , fj have integer coefficients with lengths bounded

from above by (M + n+ ν log d′)dO(1) with an absolute constant in O(1).

The proof of this assertion immediately follows from the construction described in [6] (we leave
the details to the reader; perhaps, minor modifications are required in [6] to obtain (c)).

For better understanding, note that in many cases, to obtain a bound on the lengths of
integer coefficients l(Ψ) of a polynomial Ψ, we estimate the logarithm of the sum of the
absolute values of the coefficients of this polynomial. This gives a fortiori a required bound
on l(Ψ).
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For example, assume that we have an N ×N matrix (ψi,j)1≤i,j≤N with

ψi,j ∈ Z[a1, . . . , aν ,X1, . . . ,Xn],

l(ψi,j) < M , and dega1,...,an ψi,j < d′, degX1,...,Xn
ψi,j < d for all i, j. We would like to estimate

the lengths of integer coefficients of the determinant det((ψi,j)1≤i,j≤N ). Then we proceed as
follows. The sum of the absolute values of the integer coefficients of each polynomial ψi,j

is bounded from above by 2Mdn(d′)ν . Hence, the sum of the absolute values of the integer
coefficients of the determinant is bounded from above by N !2MNdnN (d′)νN . Its logarithm is

bounded from above by (M +n log d+ ν log d′)NO(1). Hence, the same upper bound holds for
the lengths of integer coefficients of this determinant.

Also, to prove assertion (d) of Theorem 1, we need a remark on Lemma 2 from Sec. 1.
Namely,

(†) Under the conditions of Lemma 2, assume that char(k) = 0. Then one can choose
matrices Bi ∈ Mr,n(Z) and Cj ∈ Mm,r(Z) such that all entries bi,α,β of the matrices

Bi have lengths bounded from above by nO(1), and all entries cj,α,β of the matrices Cj

have lengths bounded from above by mO(1), with an absolute constant in O(1).

This immediately follows from the proof of this lemma and [9]. More precisely, the construction
in [9] is explicit. By [9], the matrices Dj from the proof of Lemma 2 can be chosen with

integer coefficients of lengths bounded from above by mO(1) with an absolute constant in O(1).

Therefore, all entries cj,α,β of the matrices Cj have lengths bounded from above by mO(1).

Similarly, all entries bi,α,β of the matrices Bi have lengths bounded from above by nO(1).
Note also that we implicitly used these assertions (c) and (†) in [8] to prove assertion (d) for

the weakened (and weakened modified) Theorem 1 with c = 0. We would like to emphasize
again that in this second part we will not need these results for the particular case c = 0.
In [8], we proved them only to demonstrate the strength of the developed techniques.

At the end of this short introduction, we would like to correct the misprints noticed in [8].
1. In the formulation of condition (x) from the introduction, one must everywhere replace

max by maxi.
2. In Sec. 4, in the formulation of property (αn−c), one must replace dw−di−1 by di−1−dw.
3. In Sec. 4, in formula (27), one must replace

˜ha∗,j =
∑

j≤w≤m−1

qj,wfa∗,w

by

˜ha∗,j = fa∗,j−1 +
∑

j≤w≤m−1

qj,wfa∗,w.

These misprints can easily be corrected from the context.
Now we are ready to proceed to the next section of the paper.

5. Several lemmas

In this section, c is an integer such that −1 ≤ c ≤ n − 1. Let q be an integer such that
0 ≤ q ≤ c (so q exists if c ≥ 0). Consider polynomials ha∗,1, . . . , ha∗,n−q ∈ ka∗ [X0, . . . ,Xn]
satisfying condition (αn−q), see Sec. 4, and the following property:

(γ′n−q) Z(ha∗,1, . . . , ha∗,n−q) = V ′′′
a∗,q ∪

⋃

q≤s≤c Va∗,s, where the varieties Va∗,s are defined in the

introduction and V ′′′
a∗,q is some projective algebraic variety such that dimV ′′′

a∗,q = q or

V ′′′
a∗,q = ∅.
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Hence, each irreducible component of the algebraic variety V ′′′
a∗,q is of dimension q.

Let ε be a new variable. Let A1(k) have coordinate ε and Pn(k) × A1(k) have coordinates
((X0 : . . . : Xn), ε). We identify Pn(k) with the subvariety Z(ε) ⊂ Pn(k) × A1(k). Consider
the algebraic variety

Z
(

ha∗,1 − εXd0
0 , . . . , ha∗ ,n−q − εX

dn−q−1

n−q−1

)

. (28)

It is a closed subvariety of Pn(k) × A1(k). Denote by V a∗,q the union of all components E

irreducible over k of the algebraic variety (28) such that E is not contained in any hyperplane
Z(ε − c), c ∈ k. Put V ′′

a∗,q = V a∗,q ∩ Z(ε) ⊂ Pn(k). One can easily prove (cf. [2]) that every

irreducible component of V ′′
a∗,q is of dimension n− q and V ′′

a∗,q ⊃ Va∗,q ∪ V ′′′
a∗,q. Denote by V ′

a∗,q
the union of all components E of V ′′

a∗ irreducible over k such that E ⊂ Z(fa∗,0, . . . , fa∗,m−1).

Thus, V ′′
a∗,q ⊃ V ′

a∗,q ⊃ Va∗,q. Moreover, obviously, the closure of V ′
a∗,q \

(

⋃

q+1≤s≤c V
′
a∗,s

)

with

respect to the Zariski topology in Pn(k) coincides with Va∗,q. Denote by V ′′′′
a∗,q the union of all

components E irreducible over k of the algebraic variety V ′
a∗,q such that E 	⊂ Va∗,q. So, we

have V ′
a∗,q = Va∗,q∪V ′′′′

a∗,q and V ′′
a∗,q = Va∗,q∪V ′′′

a∗,q∪V ′′′′
a∗,q, and each irreducible component of the

algebraic variety V ′′
a∗,q is an irreducible component of only one of the varieties Va∗,q, V

′′′
a∗,q, V

′′′′
a∗,q.

In what follows, s = q. In this section, Y0, . . . , Yn ∈ k[X0, . . . ,Xn] are arbitrary linear
forms in X0, . . . ,Xn linearly independent over k (we do not assume now that necessarily
(Y0, . . . , Ys+1) ∈ Ls+1

s × L′
s).

Let us extend the ground field k to k(ε). Denote by ˜Va∗,s the algebraic variety (28) regarded

as a subvariety in Pn(k(ε)).
Let t1, . . . , ts be elements algebraically independent over k. Let k◦ = k(t1, . . . , ts), k

◦
a∗ =

ka∗(t1, . . . , ts), and k
◦
= k(t1, . . . , ts) be purely transcendental extensions of the fields k, ka∗ ,

and k, respectively.
Let Yi =

∑

0≤j≤n
yi,jXj, 0 ≤ i ≤ n, where yi,j ∈ k. Put

δ(0) = det((yi,j)0≤i,j≤n)). (29)

Then δ(0) 	= 0. For an arbitrary polynomial g ∈ k(ε)[X0, . . . ,Xn], we define polynomials

g(0) ∈ k(ε)[Y0, . . . , Yn] and g◦ ∈ k(ε)[Y0, Ys+1, . . . , Yn]. Namely,

g(0)(Y0, . . . , Yn) = (δ(0))degX0,...,Xn
gg

and

g◦ = g(0)(Y0, t1Y0, . . . , tsY0, Ys+1, . . . , Yn).

Hence, if g is a homogeneous polynomial in X0, . . . ,Xn, then g◦ is a homogeneous polynomial
in Y0, Ys+1, . . . , Yn with coefficients in k(ε)(t1, . . . , ts). If g ∈ k[ε,X0, . . . ,Xn], then, obviously,

g◦ ∈ k
◦
[ε,X0, . . . ,Xn].

Let the projective algebraic variety Pn−s(k◦(ε)) (and also Pn−s(k◦)) have homogeneous
coordinates Y0, Ys+1, . . . , Yn.

Let ϕ1, . . . , ϕm1 ∈ ka∗ [ε,X0, . . . ,Xn] be homogeneous polynomials in X0, . . . ,Xn such that
V a∗,s = Z(ϕ1, . . . , ϕm1). Set

con(V a∗,s) = Z(ϕ1, . . . , ϕm1) ⊂ An+1(k)× A1(k)

where An+1(k) has coordinates X0, . . . ,Xn and A1(k) has coordinate ε. Obviously, the irre-
ducible components of the varieties Va∗,s and con(Va∗,s) are in a natural one-to-one correspon-
dence.
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Set ϕi = ϕi(0,X0, . . . , Xn), 1 ≤ i ≤ m1. Then, obviously, V
′′
a∗,s = Z(ϕ1, . . . , ϕm1

). Put

Ca∗,s = Z(ϕ◦
1, . . . , ϕ

◦
m1

) ⊂ Pn−s(k◦)× A1(k◦),
˜Ca∗,s = Z(ϕ◦

1, . . . , ϕ
◦
m1

) ⊂ Pn−s(k◦(ε)),

C ′′
a∗,s = Ca∗,s ∩ Z(ε) = Z(ϕ◦

1, . . . , ϕ
◦
m1

) ⊂ Pn−s(k◦).

Similarly to con(V a∗,s), we define the varieties

con(Ca∗,s) = Z(ϕ◦
1, . . . , ϕ

◦
m1

) ⊂ An−s+1(k◦)× A1(k◦),

con( ˜Ca∗,s) = Z(ϕ◦
1, . . . , ϕ

◦
m1

) ⊂ An−s+1(k◦(ε)),

con(C ′′
a∗,s) = Z(ϕ◦

1, . . . , ϕ
◦
m1

) ⊂ An−s+1(k◦).

In all these formulas, the affine space An−s+1 has coordinates Y0, Ys+1, . . . , Yn.

Note that ˜Va∗,s=Z(ϕ1, . . . , ϕm1)⊂Pn(k(ε)) and ˜Ca∗,s=Z(h◦a∗,1, . . . , h◦a∗,n−s)⊂Pn−s(k◦(ε)).

Lemma 9. The following assertions hold true.

(a) The intersection ˜Va∗,s ∩ Z(Y0, Y1, . . . , Ys) is empty in Pn(k(ε)).

(b) ˜Ca∗,s is a finite subset in Pn−s(k◦(ε)), and ˜Ca∗,s ∩ Z(Y0) = ∅.

(c) The intersection V ′′
a∗,s ∩ Z(Y0, Y1, . . . , Ys) is empty in Pn(k) if and only if C ′′

a∗,s is a

finite subset in Pn−s(k◦) and C ′′
a∗,s ∩ Z(Y0) = ∅.

Proof. This is straightforward. For example, assertion (a) essentially follows from the fact that
Z(X0,X1, . . . ,Xn−s−1, Y0, . . . , Ys) = ∅ in Pn(k). Assertion (b) is equivalent to (a), and hence
(b) is also true. The lemma is proved. �

Denote by E1 the set of all components of the algebraic variety V a∗,s irreducible over k.

Denote by E5 set of all components of the algebraic variety V ′′
a∗,s irreducible over k.

For any affine algebraic variety W defined over a field K, we will denote by K[W ] the ring of
regular functions on W defined over K, and by K(W ) the total quotient ring of the ring K[W ].

The following assertions (I)–(IV) are straightforward. Their detailed proofs are left to the
reader.

(I) Denote by E2 the set of all components of the algebraic variety ˜Va∗,s defined and ir-

reducible over k(ε). Take S2 to be the multiplicatively closed set k[ε] \ {0}. Then, by the

definition of the algebraic variety V a∗,s, the variety con(˜Va∗,s) is defined over the field k(ε),

and one can identify the ring of regular functions k(ε)[con(˜Va∗,s)] with S−1
2 k[con(V a∗,s)] (it is

the localization of the ring k[con(V a∗,s)] with respect to the multiplicatively closed set S2).

Hence, the total quotient ring k(ε)(con(˜Va∗,s)) coincides with k(con(V a∗,s)). Therefore, there

is a natural bijection ι1,2 : E1 → E2, and ˜Va∗,s =
⋃

W∈E2 W .

(II) Denote by E3 the set of all components of the algebraic variety Ca∗,s defined and

irreducible over k
◦
. By Lemma 9(a), one can make the identification

ti = Yi/Y0 ∈ k(con(V a∗,s)), 1 ≤ i ≤ s, (30)

i.e., the functions Yi/Y0, 1 ≤ i ≤ s, from the ring k(con(V a∗,s)) are algebraically independent

over k. Take S3 to be the multiplicatively closed set k[t1, . . . , ts] \ {0}. Then the variety Ca∗,s
is defined over the field k

◦
, and one can identify the ring of regular functions k

◦
[con(Ca∗,s)]

with S−1
3 k[con(V a∗,s)][t1, . . . , ts]. Hence, the total quotient ring k

◦
(con(Ca∗,s)) coincides with

k(con(V a∗,s)). Therefore, there is a natural bijection ι1,3 : E1 → E3, and Ca∗,s =
⋃

W∈E3 W .

(III) Denote by E4 the set of all components of the algebraic variety ˜Ca∗,s defined and

irreducible over k
◦
(ε). Take S4 to be the multiplicatively closed set k[ε, t1, . . . , ts] \ {0}. Then
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the variety ˜Ca∗,s is defined over the field k
◦
(ε), and, taking into account (30), one can identify

the ring of regular functions k
◦
(ε)[con( ˜Ca∗,s)] with S−1

4 k[con(V a∗,s)][t1, . . . , ts]. Hence, the

total quotient ring k
◦
(ε)(con( ˜Ca∗,s)) coincides with k(con(V a∗,s)). Therefore, there is a natural

bijection ι1,4 : E1 → E4, and ˜Ca∗,s =
⋃

W∈E4 W .

(IV) Denote by E6 the set of all components of the algebraic variety C ′′
a∗,s defined and

irreducible over k
◦
. Assume that V ′′

a∗,s ∩ Z(Y0, . . . , Ys) = ∅ in Pn(k) × A1(k). Now, by
Lemma 9(c), one can make the identification

ti = Yi/Y0 ∈ k(con(V ′′
a∗,s)), 1 ≤ i ≤ s. (31)

Take S6 to be the multiplicatively closed set k[t1, . . . , ts] \ {0}. Then the variety C ′′
a∗,s is

defined over the field k
◦
, and one can identify the ring of regular functions k

◦
[con(C ′′

a∗,s)]

with S−1
6 k[con(V ′′

a∗,s)][t1, . . . , ts]. Hence, the total quotient ring k
◦
(con(C ′′

a∗,s)) coincides with

k(con(V a∗,s)). Therefore, there is a natural bijection ι5,6 : E5 → E6, and C ′′
a∗,s =

⋃

W∈E6 W .

Let K ⊃ k be an extension of the ground field linearly disjoint with k(ε) over k. Put
K◦ = K(t1, . . . , ts). Let L ∈ K[X0, . . . ,Xn] be a linear form with coefficients from K. Hence
L◦ ∈ K◦[Y0, Ys+1, . . . , Yn].

Let W ∈ E4. Then the component W is defined and irreducible over the field K◦(ε) by (III).
Therefore, for every W ∈ E4 there is a polynomial ΦW ∈ K[ε, t1, . . . , ts, Y0, Z] irreducible
over K such that the polynomial ΦW (ε, t1, . . . , ts, Y0, L

◦) vanishes on W . It is uniquely de-
fined up to a nonzero factor from K. The polynomial ΦW is homogeneous in Y0, Z, and, by
Lemma 9(b), we have lcZΦW ∈ K[t1, . . . , ts, ε] and degZ ΦW ≥ 1. Let η ∈ W . Then, obviously,
ΦW (ε, t1, . . . , ts, 1, Z) is a minimal polynomial over the field K◦(ε) of the element (L◦/Y0)(η).
Conversely, if ΨW ∈ K[ε, t1, . . . , ts, Z] is a minimal polynomial of the element (L◦/Y0)(η)

over the field K◦(ε), then its homogenization Y
degZ ΨW

0 ΨW (ε, t1, . . . , ts, Z/Y0) coincides with
ΦW up to a factor from K◦(ε). Put Φ∨

W = ΦW (ε, Y1/Y0, . . . , Ys/Y0, Y0, Z). We will write
ΦW = ΦW,L, Φ

∨
W = Φ∨

W,L, ΨW = ΨW,L when the dependence on L is important.

Assume that V ′′
a∗,s ∩ Z(Y0, . . . , Ys) = ∅ in Pn(k). Let W ∈ E6. Then the component W is

defined and irreducible over the fieldK◦ by (IV). Therefore, for every W ∈ E6 there is a polyno-
mial ΦW ∈K[t1, . . . , ts, Y0, Z] irreducible overK such that the polynomial ΦW (t1, . . . , ts, Y0, L

◦)
vanishes on W . It is uniquely defined up to a nonzero factor from K. The polynomial ΦW is
homogeneous in Y0, Z, and, by Lemma 9(c), we have lcZΦW ∈ K[t1, . . . , ts] and degZ ΦW ≥ 1.
Let η ∈ W . Then, obviously, ΦW (t1, . . . , ts, 1, Z) is a minimal polynomial over the field K◦ of
the element (L◦/Y0)(η). Conversely, if ΨW ∈ K[t1, . . . , ts, Z] is a minimal polynomial of the

element (L◦/Y0)(η) over the field K◦, then its homogenization Y
degZ ΨW

0 ΨW (t1, . . . , ts, Z/Y0)
coincides with ΦW up to a factor from K◦. Put Φ∨

W = ΦW (Y1/Y0, . . . , Ys/Y0, Y0, Z). We will
write ΦW = ΦW,L, Φ

∨
W = Φ∨

W,L, ΨW = ΨW,L when the dependence on L is important.

Lemma 10. (a) Let W ∈ E4, η ∈ W , and ι1,4(W
′) = W , see (III). Then, in the above notation,

lcZΦW ∈ K[ε]. Hence, the element (L/Y0)(η) is integral over the ring K(ε)[t1, . . . , ts]. Fu-
rthermore, we have Φ∨

W ∈ K[ε, Y0, . . . , Ys, Z]. The polynomial Φ∨
W is irreducible in the ring

K[ε, Y0, . . . , Ys, Z], and Φ∨
W (ε, Y0, . . . , Ys, L) vanishes on the variety W ′. Besides,

lcZΦ
∨
W ∈ K[ε].

(b) Assume that V ′′
a∗,s∩Z(Y0, . . . , Ys) = ∅ in Pn(k). Let W ∈ E6, η ∈ W , and ι5,6(W

′) = W ,
see (IV). Then, in the above notation, lcZΦW ∈ K. Hence, the element (L/Y0)(η) is integral
over the ring K[t1, . . . , ts]. Furthermore, the polynomial Φ∨

W ∈ K[Y0, . . . , Ys, Z] is irreducible
(in this ring), Φ∨

W (Y0, . . . , Ys, L) vanishes on the variety W ′, and lcZΦ
∨
W ∈ K.
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Proof. (a) Indeed, one can represent Φ∨
W in the form Φ∨

W = Q/Y e
0 whereQ ∈ K[ε, Y0, . . . , Ys, Z]

is an irreducible polynomial, Q 	= λY0 for λ ∈ K, and e is a nonnegative integer. The
polynomial Q(ε, Y0, . . . , Ys, L) vanishes on W ′ by (III). If e ≥ 1 or lcZΦW 	∈ K[ε], then lcZQ 	∈
K[ε]. This contradicts Lemma 9(a) and proves the required claim (a).

The proof of claim (b) is similar to that of claim (a) and is left to the reader. �

Corollary 1. Assume that K = k(t) where t is a transcendental element over the field k
◦
(ε).

Let L = L1 + tL2 where L1, L2 ∈ k[X0, . . . ,Xn] are linear forms.
(a) Under the conditions of Lemma 10(a), one can choose ΦW,L ∈ k[t, ε, t1, . . . , ts, Y0, Z] such

that ΦW,L is irreducible in the last ring and lcZΦW,L ∈ k[ε]. For such a choice of ΦW,L, we have

ΦW,L|t=0 = λΦe
W,L1

where 0 	= λ ∈ k[ε] and e = eW,L1,L2 ≥ 1. Hence, ΦW,L|t=0/lcZ(ΦW,L) =

(ΦW,L1/lcZ(ΦW,L1))
e.

(b) Furthermore, under the conditions of Lemma 10(b), one can choose a polynomial ΦW,L ∈
k[t, t1, . . . , ts, Y0, Z] such that ΦW,L is irreducible in the last ring and lcZΦW,L ∈ k. For such a

choice of ΦW,L, we have ΦW,L|t=0 = λΦe
W,L1

where 0 	= λ ∈ k and e = eW,L1,L2 ≥ 1. Hence,

ΦW,L|t=0/lcZ(ΦW,L) = (ΦW,L1/lcZ(ΦW,L1))
e.

Proof. (a) By Lemma 10(a), the elements (Li/Y0)(η), i = 1, 2, are integral over the ring
k(ε)[t1, . . . , ts]. Hence, the element ((L1+tL2)/Y0)(η) is integral over the ring k(ε)[t, t1, . . . , ts].
Therefore, one can choose ΨW,L ∈ k[ε, t, t1, . . . , ts, Z] such that lcZΨW,L ∈ k[ε]. We take ΦW,L

to be the homogenization of ΨW,L, see above. Then, obviously, lcZΦW,L ∈ k[ε] and ΨW,L is

irreducible in the ring k[ε, t, t1, . . . , ts, Y0, Z].
Each root of the polynomial ΨW,L has the form Z = ((L1 + tL2)/Y0)(η

(1)) where η(1) ∈ W .

Therefore, each root of the polynomial ΨW,L|t=0 has the form Z = (L1/Y0)(η
(1)) where η1 ∈ W .

The polynomial ΨW,L1 is irreducible in the ring k[ε, t1, . . . , ts, Z]. Hence, ΨW,L|t=0 = λΨe
W,L1

where 0 	= λ ∈ k[ε] and e ≥ 1. It remains to take the homogenization of the last equality.
Claim (a) is proved.

The proof of claim (b) is similar to that of claim (a) and is left to the reader. �
Remark 9. In what follows, for W ∈ E4 and L = L(1) + tL(2) (for arbitrary linear forms

L(1), L(2) ∈ k[X0, . . . ,Xn]), using the notation ΦW,L, we will always assume that the polynomial

ΦW,L ∈ k[ε, t, t1, . . . , ts, Y0, Z] is irreducible in this ring.

Assume that V ′′
a∗,s ∩ Z(Y0, . . . , Ys) = ∅ in Pn(k). Then, analogously, for W ∈ E6 and

L = L(1) + tL(2), using the notation ΦW,L, we will always assume that the polynomial ΦW,L ∈
k[t, t1, . . . , ts, Y0, Z] is irreducible in this ring.

Let L1 ∈ k[X0, . . . ,Xn] be a linear form. Let W ∈ E4 and ι1,4(W
′) = W , ι1,3(W

′) = W ′′.
Let ψ1, . . . , ψm2 ∈ k[ε,X0, . . . ,Xn] be polynomials such that W ′ = Z(ψ1, . . . , ψm2). Put ψi =

ψi(0,X0, . . . ,Xn), 1 ≤ i ≤ m2. Hence W = Z(ψ◦
1 , . . . , ψ

◦
m2

) and W ′′∩Z(ε) = Z(ψ
◦
1, . . . , ψ

◦
m2

).
Put

Δ1 = Δk◦
a∗(ε);Y0,Ys+1,...,Yn;ψ◦

1 ,...,ψ
◦
m2

;Y0,L◦
1,
∈ k◦a∗(ε)[U0, U1],

Δ2 = Δk◦
a∗ ;Y0,Ys+1,...,Yn;ψ

◦
1,...,ψ

◦
m2

;Y0,L◦
1,
∈ k◦a∗ [U0, U1],

Δ3 = Δk◦
a∗(ε);Y0,Ys+1,...,Yn;h◦

a∗,1,...,h
◦
a∗,s;Y0,L◦

1
∈ k◦a∗(ε)[U0, U1],

see the notation in Remark 6 from Sec. 3.

Lemma 11. (a)

Δ3(Z,−Y0) =
∏

W∈E4
(ΦW,L1/lcZ(ΦW,L1))

e′W,L1
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for some integers e′W,L1
≥ 1.

(b) Assume that V ′′
a∗,s ∩ Z(Y0, . . . , Ys) = ∅ in Pn(k) (see also Lemma 9(c)). Then

Δ2(Z,−Y0) =
∏

W1∈E6,
W1⊂W ′′

(ΦW1,L1/lcZ(ΦW1,L1))
eW,W1,L1

for some integers eW,W1,L1 ≥ 1.

(c) Δ1(Z,−Y0) = (ΦW,L1/lcZ(ΦW,L1))
e′′W,L1 for an integer e′′W,L1

≥ 1.

Proof. (a) Let L2 ∈ k[X0, . . . ,Xn] be a linear form such that (L2/Y0)(η1) 	= (L2/Y0)(η2) for

all pairwise distinct η1, η2 ∈ ˜Ca∗,s. Put L = L1 + tL2 and

Δ4 = Δk◦
a∗(ε,t);Y0,Ys+1,...,Yn;h◦

a∗,1,...,h
◦
a∗,s;Y0,L◦ ∈ k◦a∗(ε, t)[U0, U1].

Then, by Lemma 4 and Remark 6, we have Δ4 ∈ k◦a∗(ε)[t, U0, U1] and Δ4|t=0 = Δ3. By
Lemma 4 and since all polynomials ΦW,L, W ∈ E4, are pairwise distinct and irreducible in the

ring k
◦
(ε)[t, Y0, Z], we have

Δ4(Z,−Y0) =
∏

W∈E4
(ΦW,L/lcZ(ΦW,L))

e′W,L

for some integers e′W,L ≥ 1. Now, applying Corollary 1(a), we establish claim (a).

The proofs of claims (b) and (c) are similar to that of claim (a) and are left to the reader. �

Lemma 12. Let V ′′
a∗,s∩Z(Y0, . . ., Ys)=∅ in Pn(k). Let W∈E4 and ι1,4(W

′)=W , ι1,3(W
′)=W ′′,

and let L1, Δ1, Δ2 be as above. Then lcZ(ΦW,L1)|ε=0 	= 0 (recall that lcZ(ΦW,L1) ∈ k[ε]),
Δ1|ε=0 = Δ2, and

(ΦW,L1/(lcZ(ΦW,L1)))|ε=0 =
∏

W1∈E6,
W1⊂W ′′

(ΦW1,L1/(lcZ(ΦW1,L1))
e′W,W1,L1 (32)

for some integers e′W,W1,L1
≥ 1.

Proof. In Sec. 3, we have defined the matrix A = (A′,A′′). Consider the case ν = 0. In the
definition of the matrix A with ν = 0, replace n, k, (X0, . . . ,Xn), (f0, . . . , fm−1), (Y0, . . . , Yn)

by n−s, k
◦
(ε), (Y0, Ys+1, . . . , Yn), (ψ

◦
1 , . . . , ψ

◦
m2

), (Y0, L
◦
1, 0, . . . , 0), respectively. We will denote

the obtained matrix again by A = (A′,A′′). Now, the entries of the matrix A′ belong to
ka∗ [ε, t1, . . . , ts, Y0, Ys+1, . . . , Yn], and the entries of the matrix A′′ are linear forms in U0, U1

with coefficients from the latter ring. Let γ be the number of rows of A.
Let rank(A′|ε=0) = γ′. Then, by Lemma 4(b), we have rank(A|ε=0) = γ and, by Lemma 4(c),

the number of roots in Pn−s(k◦) of the system

ψ
◦
1 = . . . = ψ

◦
m2

= 0 (33)

counting multiplicities is equal to γ − γ′. Let A′
1 be a submatrix of A′ of size γ × γ′ such that

rank(A′
1|ε=0) = γ′. Let A′′

1 be a submatrix of A′′ of size γ× (γ−γ′) such that the γ×γ matrix
(A′

1|ε=0,A′′
1 |ε=0) is of rank γ. SetA1 = (A′

1,A′′
1). Put ΔW = det(A1) ∈ ka∗ [ε, t1, . . . , ts, U0, U1].

This is a homogeneous polynomial in U0, U1.
Then, by Lemma 4(c), the polynomial ΔW |ε=0 coincides with Δ2 up to a nonzero factor

from k◦a∗ . Hence, ΔW 	= 0 and Δ1 divides ΔW .
Note that lcU0(ΔW ) ∈ k[ε, t1, . . . , ts]. We have Y0(η) 	= 0 for every η ∈ W (respectively,

for every η ∈ W ′′ ∩ Z(ε)). Hence, by Lemma 4(c), we have degU0
ΔW = degU0,U1

ΔW =
degU0,U1

ΔW |ε=0 = degU0,U1
Δ2 = degU0

Δ2 = degU0
ΔW |ε=0. Therefore, (lcU0ΔW )|ε=0 	= 0,

the polynomial (ΔW /lcU0ΔW )|ε=0 is defined, and (ΔW /lcU0ΔW )|ε=0 = Δ2.
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Let us show that degU0,U1
ΔW = degU0,U1

Δ1. By Lemma 4(c), it suffices to prove that the

number δ of roots (in Pn−s(k◦(ε)), counting multiplicities) of the system

ψ◦
1 = . . . = ψ◦

m2
= 0 (34)

is equal to the number δ of roots (in Pn−s(k◦), counting multiplicities) of the system (33).
Indeed, δ = degU0,U1

Δ1 and δ = degU0,U1
Δ2 = degU0,U1

ΔW . Note that we have proved that

δ ≤ δ. It remains to prove that δ ≥ δ.
Recall that ψ◦

i ∈ k
◦
[ε, Y0, Ys+1, . . . , Yn]. Put

ψ′
i = ψ◦

i (ε, 1, Ys+1, . . . , Yn), 1 ≤ i ≤ m2.

We identify the ring of regular functions k
◦
[W \Z(Y0)] with k

◦
(ε)[Ys+1, . . . , Yn]/(ψ

′
1, . . . , ψ

′
m2

).
Now, by the well-known definition of the multiplicities,

δ = dimk
◦
(ε) k

◦
[W \ Z(Y0)] = dimk

◦
(ε) k

◦
(ε)[Ys+1, . . . , Yn]/(ψ

′
1, . . . , ψ

′
m2

).

We identify the ring of regular functions k
◦
[W ′′\Z(Y0)] with k̄◦[ε, Ys+1,. . ., Yn]/(ψ

′
1,. . ., ψ

′
m2

).

The element ε is not a zero-divisor in the ring k̄◦[W ′′ \ Z(Y0)] by the definition of the variety
V ′′
a∗,s. We have

δ = dimk
◦ k

◦
[W ′′ \ Z(Y0)]/(ε) = dimk◦ k

◦
[ε, Ys+1, . . . , Yn]/(ψ

′
1, . . . , ψ

′
m2

, ε).

Let z1, . . . , zδ ∈ k
◦
[W ′′ \ Z(Y0)] be functions such that their residues

zi mod (ε) ∈ k
◦
[W ′′ \ Z(Y0)]/(ε)

are linearly independent over k
◦
. We claim that z1, . . . , zδ are linearly independent over k

◦
(ε)

in k
◦
(ε)[Ys+1, . . . , Yn]/(ψ

′
1, . . . , ψ

′
m2

). Assume the contrary. Then there is a linear relation

c1z1 + . . . + cδzδ = 0 where ci ∈ k
◦
[ε] and not all of these coifficients are zeros. Since ε is not a

zero-divisor in k
◦
[W ′′\Z(Y0)], we may assume without loss of generality that ε does not divide

at least one of ci. Now, taking the residues mod(ε), we see that the elements zi mod (ε) are

linearly dependent over the field k
◦
. This is a contradiction. Thus, δ ≥ δ.

Therefore, δ = δ and ΔW/lcU0(ΔW ) = Δ1. Hence, the polynomial Δ1|ε=0 is defined, and
Δ1|ε=0 = Δ2.

Put ΔW (Z,−Y0) = ΔW |U0=Z,U1=−Y0 , i.e., in this notation we regard ΔW as an element of

k
◦
(ε)[U0, U1]. Obviously, lcZ(ΔW (Z,−Y0)) = lcU0ΔW ∈ k[ε, t1, . . . , ts]. By Lemma 11(c), we

have
ΔW (Z,−Y0)/lcZ(ΔW (Z,−Y0)) = (ΦW,L1/lcZ(ΦW,L1))

e′′W,L1 .

Recall that the polynomial ΦW,L1 is irreducible. Hence, ΔW (Z,−Y0) = λW,L1Φ
e′′W,L1
W,L1

where

λW,L1 ∈ k[ε, t1, . . . , ts]. This implies

0 	= lcZ(ΔW (Z,−Y0))|ε=0 = (λW,L1 |ε=0) · (lcZ(ΦW,L1)|ε=0)
e′′W,L1 .

Therefore, lcZ(ΦW,L1)|ε=0 	= 0, the polynomial (ΦW,L1/lcZ(ΦW,L1))|ε=0 is defined, and

Δ2(Z,−Y0) = (ΔW /lcZ(ΔW ))|ε=0 = ((ΦW,L1/lcZ(ΦW,L1))|ε=0)
e′′W,L1 .

Hence, by Lemma 11(b),

((ΦW,L1/lcZ(ΦW,L1))|ε=0)
e′′W,L1 =

∏

W1∈E6,
W1⊂W ′′

(ΦW1,L1/(lcZ(ΦW1,L1))
eW,W1,L1 . (35)

Let us replace the ground field k by k(t) where t is a transcendental element over k, and choose
a linear form L2 ∈ k[X0, . . . ,Xn] such that (L2/Y0)(η1) 	= (L2/Y0)(η2) for all pairwise distinct
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η1, η2 ∈ W ′′ ∩ Z(ε), cf. the proof of Lemma 11. Put L = L1 + tL2. Then (35) holds true
with L in place of L1. All polynomials ΦW1,L, W1 ∈ E6, W1 ⊂ W ′′, are pairwise distinct and

irreducible in the ring k[t, ε, t1, . . . , ts, Y0, Z], see the remark after the proof of Corollary 1. We
have already seen that lcZ(ΦW,L) ∈ k[ε] and lcZ(ΦW1,L) ∈ k. Hence, 1 ≤ e′′W,L/eW,W1,L ∈ Z,

and (32) (see the statement of Lemma 12) is fulfilled for L in place of L1. Now, applying
Corollary 1, we get (32) also for L1. The lemma is proved. �

Corollary 2. The degree of the projective algebraic variety degV ′′
a∗,s satisfies the inequality

degV ′′
a∗,s ≤ d0 · . . . · dn−s−1 = D′

n−s.

Proof. Applying Lemma 7 to the algebraic variety V ′′
a∗,s (in place of V ) with D = degV ′′

a∗,s, we
obtain linear forms Y0, . . . , Ys+1 and a polynomial Φs. There are linear forms

Ys+2, . . . , Yn ∈ k[X0, . . . ,Xn]

such that Y0, . . . , Yn are linearly independent over k. Put L1 = Ys+1. The polynomials Φ◦
s and

∏

W∈E5
Φ∨
ι5,6(W ),L1

coincide up to a nonzero factor from k, see (IV). Now, by Lemma 7(b), we

have

degV ′′
a∗,s = degZ Φ◦

s =
∑

W∈E5
degZ Φ∨

ι5,6(W ),L1
=

∑

W1∈E6
degZ ΦW1,L1 .

By Lemma 12 and the definition of the algebraic variety V ′′
a∗,s, for every W1 ∈ E6 there is

W ∈ E4 such that W1 ⊂ W ′′ (in the notation of Lemma 12) and (32) holds true. Hence, we
have

∑

W1∈E6
degZ ΦW1,L1 ≤

∑

W∈E4
degZ ΦW,L1 ≤

∑

W∈E4
degW = deg ˜Ca∗,s.

But ˜Ca∗,s = Z(h◦a∗,1, . . . , h◦a∗,n−s). Therefore, by Bézout’s theorem, deg ˜Ca∗,s ≤ d0 · . . . ·
dn−s−1 = D′

n−s. The corollary is proved. �

Let the field K ⊃ k be as above and L ∈ K[X0, . . . ,Xn] be an arbitrary linear form. Recall
that K◦ = K(t1, . . . , ts). Put

ΔL = ΔK◦(ε);Y0,Ys+1,...,Yn;h◦
a∗,1,...,h

◦
a∗,s;Y0,L◦ ∈ K(ε)[t1, . . . , ts, U0, U1], (36)

see the notation in Remark 6. So, if L = L1 ∈ k[X0, . . . ,Xn], then ΔL = Δ3, see above. Put

Δ
(3)
L = ΔL(Y1/Y0, . . . , Ys/Y0, Z,−Y0).
Denote by K[ε](ε) the local ring of the prime ideal (ε) ⊂ K[ε], i.e., z ∈ K[ε](ε) if and only

if z ∈ K(ε) and one can represent z in the form z = z1/z2 where z1, z2 ∈ K[ε] and ε does not
divide z2.

Lemma 13. Let Ls+1, . . . , Ln ∈ K[X0, . . . ,Xn] be linear forms such that the linear forms
Y0, . . . , Ys, Ls+1, . . . , Ln are linearly independent over K. Then the following assertions are
equivalent.

(a) V ′′
a∗,s ∩ Z(Y0, . . . , Ys) = ∅ in Pn(k).

(b) For s+ 1 ≤ i ≤ n, we have Δ
(3)
Li

∈ K[ε](ε)[Y0, . . . , Ys, Z] and (lcZΔ
(3)
Li

)|ε=0 	= 0.

Assume that condition (b) is fulfilled. Then, obviously, lcZΔ
(3)
Li

= lcU0ΔLi for s+ 1 ≤ i ≤ n.

Assume additionally that K = k(t) (see above) and Li ∈ k[t][X0, . . . ,Xn]. Then we have

ΔLi ∈ K[ε](ε)[t, t1, . . . , ts, U0, U1], Δ
(3)
Li

∈ K[ε](ε)[t, Y0, . . . , Ys, Z], and lcZΔ
(3)
Li

= lcU0ΔL ∈
K[ε](ε) \ εK[ε](ε) for all i.
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Proof. Assertion (a) implies (b) by Lemma 11(a) and Lemma 12 (with the ground field K in
place of k and Li in place of L1).

Conversely, under the conditions of (b), the polynomial Δ
(3)
Li

(Y1, . . . , Ys, Li) vanishes on Va∗,s

for every i. Put ψ =
∏

s+1≤i≤n
lcZΔ

(3)
Li

∈ K[ε]. Hence ψ(0) 	= 0, and the morphism

V ′′
a∗,s(K)×(A1(K)\Z(ψ)) → Ps(K)×(

A1(K)\Z(ψ)
)

,
(

(X0 : . . . : Xn), ε
) �→ (

(Y0 : . . . : Ys), ε
)

,

is finite dominant. Therefore, the restriction of this morphism V ′′
a∗,s(K)× {0} → Ps(K)× {0}

is also finite dominant. This implies (a).

Let us prove the last assertion of the lemma. For every η ∈ ˜Ca∗,s, the elements (Xi/Y0)(η),

0 ≤ i ≤ n, are integral over the ring k(ε)[t1, . . . , ts]. Hence, the elements (Li/Y0)(η),
s+ 1 ≤ i ≤ n, are integral over k(ε)[t, t1, . . . , ts], cf. the proof of Corollary 1. Therefore,
lcZ(ΦW,Li) ∈ k(ε) for s+ 1 ≤ i ≤ n and W ∈ E4. Now, the required assertion follows from (b)
and Lemma 11(a) (with the ground field K in place of k and Li in place of L1). The lemma
is proved. �
Remark 10. Another independent proof of Lemma 13 can be deduced from Lemma 3.9 in [7,
pp. 186–189]. In [7], the proof of the latter lemma is, in a sense, more direct. It does not use
a result similar to Lemma 12.

6. The main recursion

Lemma 14. It suffices to prove Theorem 1 in the case c ≤ n− 1.

Proof. Indeed, let c, c′ be the integers from the statement of Theorem 1 and c = n. Put
c1 = n − 1, c′1 = min{c′, n − 1}. Assume that Theorem 1 is proved for (c1, c

′
1, A1) in place of

(c, c′, A). Let α(n) 	∈ A1. Let fi,i0,...,in , 0 ≤ i ≤ m − 1, i1, . . . , in ≥ 0, i0 + . . . + in = di, be
the family of all coefficients from k[a1, . . . , aν ] of the polynomials f0, . . . , fm−1. Set Wα(n) =

Z(fi,i0,...,in , ∀ i, i0, . . . , in). Put A = A1 ∪ {α(n)}. Then (4) is a stratification of the set Un.
Since Theorem 1 is proved for (c1, c

′
1), all the objects from (iv)–(xiii) for the stratification (4)

with the initial values of (c, c′) are also obtained, and Theorem 1 with (c, c′) is proved (actually,
if c′ = n and α ∈ A1, then even more objects corresponding to α are constructed). The lemma
is proved. �

In what follows, we will assume that −1 ≤ c ≤ n − 1. Let a∗ ∈ Uc. Let s be an integer,
0 ≤ s ≤ c. The variety Va∗,s is defined in the introduction. We will also use the notation V ′′

a∗,s,

V ′
a∗,s, V

′′′
a∗,s, V

′′′′
a∗,s, and so on introduced in Sec. 5.

Let Wa∗,s = Va∗,s or Wa∗,s = V ′
a∗,s. Put Wα0 = {a∗}. Let (Y0, . . . , Ys+1) ∈ Ls+1

s × L′
s, see

the introduction. Let us replace in conditions (iv)–(xii) from the introduction the field k by
ka∗ , the index α by α0, the varieties Va∗,s, Va∗,s,r by Wa∗,s, Wa∗,s,r. Denote by (iv)′–(xii)′ the
resulting new conditions.

Consider also the following condition.

(xiv)′ The degrees in a1, . . . , aν of all nonzero polynomials Φα0,s,r, Hj, Δj, Φj, λα0,s,r,0,
λα0,s,r,1, Gα0,s,r, Gα0,s,r,i, Gj , Gj,i, Ψα0,s,r,i1,i2 , Ψj,i1,i2 , j ∈ Jα0,s,r, are equal to 0 (i.e.,
these elements do not depend on a1, . . . , aν).

To avoid a confusion, we need new notation for the objects introduced in (iv)′–(xii)′.
If Wa∗,s = Va∗,s, then Φα0,s,r, Δα0,s,r, λα0,s,r,0, λα0,s,r,1, Gα0,s,r, Gα0,s,r,i, Jα0,s,r will be de-

noted by
Φa∗,s,r, Δa∗,s,r, λa∗,s,r,0, λa∗,s,r,1, Ga∗,s,r, Ga∗,s,r,i, Ja∗,s,r, (37)

respectively.
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If Wa∗,s = V ′
a∗,s, then Φα0,s,r, Δα0,s,r, λα0,s,r,0, λα0,s,r,1, Gα0,s,r, Gα0,s,r,i, Jα0,s,r will be de-

noted by

Φ
(1)
a∗,s,r, Δ

(1)
a∗,s,r, λ

(1)
a∗,s,r,0, λ

(1)
a∗,s,r,1, G

(1)
a∗,s,r, G

(1)
a∗,s,r,i, J

(1)
a∗,s,r, (38)

respectively.

We will assume without loss of generality that all sets of indices Ja∗,s,r, J
(1)
a∗,s,r are pairwise

disjoint, i.e.,
∑

s,r
(#Ja∗,s,r +#J

(1)
a∗,s,r) = #(

⋃

s,r
(Ja∗,s,r ∪ J

(1)
a∗,s,r)).

For arbitrary Wa∗,s, the other objects introduced in (iv)′-(xii)′, namely,

Hj, Δj, Φj ,Ξj,a∗, Wj,a∗,ξ, Gj , Gj,i, Ψα0,s,r,i1,i2 , Ψj,i1,i2 ,

will be denoted by

Ha∗,j, Δa∗,j, Φa∗,j,Ξa∗,j, Wa∗,j,ξ, Ga∗,j, Ga∗,j,i, Ψa∗,s,r,i1,i2 , Ψa∗,j,i1,i2 , (39)

respectively.
Using the construction of Sec. 4, we get polynomials ha∗,1, . . . , ha∗ ,n−c satisfying conditions

(αn−c) and (βn−c).
In what follows, we assume that 0 ≤ c ≤ n − 1. We will use a decreasing recursion on q,

where 0 ≤ q ≤ c. The base of the recursion is the case q = c. The last step of this recursion is
the case q = c′a∗ ≤ c with dimV ′′′

a∗,q ≤ c′ − 1. So, if V ′′′
a∗,q 	= ∅, then q = c′a∗ = c′ − 1 ≥ 0. Put

ca∗ = dimVa∗ . Then, obviously, c
′ − 1 ≤ c′a∗ ≤ ca∗ ≤ c.

Assume that at the previous steps with numbers c, . . . , q + 1 of this recursion we have
constructed polynomials ha∗,1, . . . , ha∗,n−q ∈ ka∗ [X0, . . . ,Xn] and qa∗,j,w for 1 ≤ j ≤ n − q,
j ≤ w ≤ m− 1 satisfying conditions (αn−q), see Sec. 4, and (γ′n−q), see Sec. 5.

For the base q = c, polynomials ha∗,1, . . . , ha∗,n−c are already constructed, see above.
Let 0 ≤ q ≤ c−1. Then we assume additionally that at the previous step with number q+1,

the following objects are obtained. Put s = q + 1. An element (Y0, . . . , Ys+1) ∈ Ls+1
s × L′

s is
constructed. We will write (Y0, . . . , Ys+1) = (Ys,0, . . . , Ys,s+1) if the dependence on s of these
linear forms is important. The linear forms Y0, . . . , Ys+1 satisfy the following properties.

For the case Wa∗,s = Va∗,s, conditions (iv)
′–(xii)′ hold true and all the objects (37), (39) are

obtained.
For the case Wa∗,s = V ′

a∗,s, conditions (iv)′, (v)′, (xi)′ hold true and all the polynomials

Φ
(1)
a∗,s,r, Ψ

(1)
a∗,s,r,i1,i2 are obtained (actually, one can satisfy (iv)′–(xii)′ and obtain all the objects

(38), (39) also in this case, but for the variety V ′
a∗,s it suffices to have only all Φ

(1)
a∗,s,r, Ψ

(1)
a∗,s,r,i1,i2

to perform the recursive step).

Assume that 0 ≤ q < c but dimV ′′′
a∗,q+1 > c′ − 1, or q = c. Now we are going to describe the

qth recursive step of our construction.
In what follows, s = q through the whole section. First, we will find the variety V ′′

a∗,s and

some objects related to it. We will enumerate the elements (Y0, . . . , Ys+1) ∈ Ls+1
s ×L′

s. Recall
that the linear forms Y0, . . . , Yn are linearly independent over k, see Sec. 4. Put Ls+1 = Ys+1

and Li = Ys+1 + tYi, s+ 2 ≤ i ≤ n, and let

˜Δa∗,Li =
˜Δk◦

a∗(t,ε);Y0,Ys+1,...,Yn;h◦
a∗,1,...,h

◦
a∗,s;Y0,Li

∈ k◦a∗(t, ε)[U0, U1]

for s+1 ≤ i ≤ n, see Remark 6 in Sec. 3. Note that, in fact, ˜Δa∗,Li ∈ ka∗ [ε, t, t1, . . . , ts, U0, U1].

We find all polynomials ˜Δa∗,Li using the construction from Sec. 3. By Lemma 9, we have
˜Δa∗,Li 	= 0 for s+ 1 ≤ i ≤ n. Further, by Lemma 2,

degU0,U1
˜Δa∗,Li = degU0,U1

˜Δa∗,Ls+1 , s+ 2 ≤ i ≤ n. (40)
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Let us compute, applying [6], the polynomials

δa∗,Li = GCD ε,t,t1,...,ts,U0,U1(lcU0
˜Δa∗,Li ,

˜Δa∗,Li) ∈ ka∗ [ε, t, t1, . . . , ts]

for s+ 1 ≤ i ≤ n. After that, using Lemma 2 from [6] and Noether normalization (see [6] for

more details), we compute the polynomial Δ
(4)
a∗,Li

∈ ka∗ [ε, t, t1, . . . , ts, U0, U1] coinciding with

˜Δa∗,Li/δa∗,Li up to a nonzero factor from ka∗ for s+1 ≤ i ≤ n. Note that Δ
(4)
a∗,Li

/lcU0Δ
(4)
a∗,Li

=

ΔLi in the notation of Sec. 5, see (36). We apply Lemma 11(a) with (k(t), ka∗ (t), Li, ˜Δa∗,Li) in
place of (k, ka∗ , L1,Δ3). Then, by assertion (a) of this modified lemma and Remark 9, we have

lcU0Δ
(4)
a∗,Li

∈ ka∗ [ε]. Now, by Lemma 2, we have Δ
(4)
a∗,Li

|t=0 = λiΔ
(4)
a∗,Ls+1

where λi ∈ ka∗ [ε] for
s+ 2 ≤ i ≤ n.

Put Δ
(3)
a∗,Li

= Δ
(4)
a∗,Li

(ε, t, Y1/Y0, . . . , Ys/Y0, Z,−Y0), s+ 1 ≤ i ≤ n. If for at least one i with

s + 1 ≤ i ≤ n we have Δ
(3)
a∗,Li

	∈ ka∗ [ε, t, Y0, . . . , Ys, Z] or Δ
(3)
a∗,Li

∈ ka∗ [ε, t, Y0, . . . , Ys, Z] but

lcZΔ
(3)
a∗,Li

	∈ ka∗ [ε] \ (ε), then we proceed to the next element (Y0, . . . , Ys+1) ∈ Ls+1
s × L′

s. By

Corollary 2, Lemma 7 applied to the variety V ′′
a∗,s, and Lemma 13, there is (Y0, . . . , Ys+1) ∈

Ls+1
s × L′

s such that condition (41) stated below is fulfilled.
In what follows, we assume that

Δ
(3)
a∗,Li

∈ ka∗ [ε, t, Y0, . . . , Ys, Z] & lcZΔ
(3)
a∗,Li

∈ ka∗ [ε] \ (ε), s+ 1 ≤ i ≤ n. (41)

Then, by Lemma 13, we have V ′′
a∗,s ∩ Z(Y0, . . . , Ys) = ∅, and the polynomials Δ

(4)
a∗,Li

|ε=0 ∈
ka∗ [t, t1, . . . , ts, U0, U1] are defined. In this case, put Δ

(5)
a∗,Li

= Δ
(4)
a∗,Li

|{ε=0, U0=Z,U1=−Y0} =

Δ(4)(0, t, t1, . . . , ts, Z,−Y0) ∈ ka∗ [t, t1, . . . , ts, Y0, Z]. Note that the condition lcZΔ
(3)
a∗,Li

∈
ka∗ [ε] \ (ε) implies lcZΔ

(3)
a∗,Li

= lcU0Δ
(4)
a∗,Li

and degZ Δ
(3)
a∗,Li

= degU0,U1
Δ

(4)
a∗,Li

. Therefore,

lcZΔ
(5)
a∗,Li

∈ ka∗ and degZ Δ
(5)
a∗,Li

= degU0,U1
Δ

(4)
a∗,Li

.

Lemma 15. Assume that (41) holds true. Then there is a family of integers eη ≥ 1, η ∈ C ′′
a∗,s,

such that

Δ
(5)
a∗,Li

= lcZ(Δ
(5)
a∗,Li

) ·
∏

η∈C′′
a∗,s

(

Z − ((Ys+1 + tYi)/Y0)(η)Y0

)eη
for s+ 2 ≤ i ≤ n (42)

and

Δ
(5)
a∗,Ls+1

= lcZ(Δ
(5)
a∗,Ls+1

) ·
∏

η∈C′′
a∗,s

(

Z − (Ys+1/Y0)(η)Y0

)eη
.

Hence, for s + 2 ≤ i ≤ n the polynomial Δ
(5)
a∗,Li

|t=0 coincides with Δ
(5)
a∗,Ls+1

up to a nonzero

factor from ka∗ .

Proof. Let us+2, . . . , un be algebraically independent elements over the field k. Put K =
k(us+2, . . . , un) and L = Ys+1 +

∑

s+2≤i≤n
uiYi,

˜Δa∗ = ˜ΔK◦(ε);Y0,Ys+1,...,Yn;h◦
a∗,1,...,h

◦
a∗,s;Y0,L ∈ K◦

a∗(t, ε)[U0, U1].

Actually, ˜Δa∗ ∈ ka∗ [ε, t, us+2, . . . , un, t1, . . . , ts, U0, U1]. By Lemma 9(b) and Lemma 4 (with
˜Ca∗,s in place of Va∗), we have lcU0

˜Δa∗ ∈ ka∗ [ε, t, us+2, . . . , un, t1, . . . , ts] and degU0
˜Δa∗ =

degU0,U1
˜Δa∗ . For every W ∈ E4, we choose ΦW,L ∈ k[ε, t, us+2, . . . , un, t1, . . . , ts, Y0, Z] to be

an irreducible polynomial in this ring, see Sec. 5. For every W ∈ E4, we have lcZΦW,L ∈ k[ε], cf.
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the proof of Corollary 1(a) (we leave the details to the reader; actually, the required assertion
follows immediately from Lemma 9(b)).

Let
δa∗ = GCD ε,t,us+2,...,un,t1,...,ts,U0,U1(lcU0

˜Δa∗ , ˜Δa∗).

So, δa∗ ∈ ka∗ [ε, t, us+2, . . . , un, t1, . . . , ts]. Here one can regard ˜Δa∗ as a polynomial in U0, U1

with coefficients from the last ring, and then δa∗ is the greatest common divisor of all these

coefficients. Put Δ
(4)
a∗ = ˜Δa∗/δa∗ . We apply Lemma 11(a) with (K,K,L, ˜Δa∗ ) in place of

(k, ka∗ , L1,Δ3). Then assertion (a) of this modified lemma implies that

(Δ
(4)
a∗ /lcU0Δ

(4)
a∗ )|{U0=Z,U1=−Y0} =

∏

W∈E4
(ΦW,L/lcZΦW,L)

e′W,L (43)

for some integers e′W,L ≥ 1. Hence, by the Gauss lemma, lcU0Δ
(4)
a∗ coincides with

∏

W∈E4
(lcZΦW,L)

e′W,L

up to a nonzero factor from k. Thus, lcU0Δ
(4)
a∗,L ∈ ka∗ [ε]. Recall that (41) holds true. Now, by

Lemma 13(a) and Lemma 9(b), we have lcZΦW,L ∈ k[ε]\(ε). Therefore, lcU0Δ
(4)
a∗ ∈ ka∗ [ε]\(ε).

By Lemma 4(b) with ˜Ca∗,s in place of Va∗ , we have

Δ
(4)
a∗ = lcU0(Δ

(4)
a∗ ) ·

∏

η∈ ˜Ca∗,s

(U0 + (L/Y0)(η)U1)
eη (44)

and
Δ

(4)
a∗,Li

= lcU0(Δ
(4)
a∗,Li

) ·
∏

η∈ ˜Ca∗,s

(U0 + (Li/Y0)(η)U1)
eη , s+ 1 ≤ i ≤ n, (45)

where eη is the multiplicity of the root η ∈ ˜Ca∗,s of the system h◦a∗,1 = . . . = h◦a∗,s = 0.
Put vs+1,j = 0 for s+ 2 ≤ j ≤ n. For s+ 2 ≤ i ≤ n, s+ 2 ≤ j ≤ n, put vi,j = 0 if i 	= j and

vi,j = t if i = j.

Let i be an integer, s + 1 ≤ i ≤ n. Denote Δ
(4)
a∗,Li

= Δ
(4)
a∗ |{uj=vi,j ∀j}, i.e., we substitute

uj = vi,j for all j = s + 2, . . . , n into the polynomial Δ
(4)
a∗ and denote by Δ

(4)
a∗,Li

the obtained
polynomial. This substitution transforms the linear form L into Li. Hence, by (44) and (45),

the polynomials Δ
(4)
a∗,Li

and Δ
(4)
a∗,Li

coincide up to a nonzero factor from the local ring ka∗ [ε](ε)

for s + 1 ≤ i ≤ n. Hence, Δ
(4)
a∗,Li

|{ε=0, U0=Z,U1=−Y0} coincides with Δ
(5)
a∗,Li

up to a nonzero
factor from ka∗ .

Furthermore, put Δ
(5)
a∗ = Δ

(4)
a∗ |{ε=0, U0=Z,U1=−Y0}. Hence lcZΔ

(5)
a∗ = lcU0Δ

(4)
a∗ |{ε=0} ∈ ka∗ .

For every W ∈ E6, choose ΦW,L ∈ k[t, us+2, . . . , un, t1, . . . , ts, Y0, Z]. For every W ∈ E6, we
have lcZΦW,L ∈ k, cf. the proof of Corollary 1(b) (we leave the details to the reader; actually,
the required assertion follows immediately from Lemma 9(c)). By (43) and Lemma 12 (with the

ground field K in place of k), see (32), we have Δ
(5)
a∗ /(lcU0Δ

(5)
a∗ ) =

∏

W∈E6
(ΦW,L/(lcU0ΦW,L))

eW,L

for some integers eW,L ≥ 1.
But, obviously, ΦW,L/(lcU0ΦW,L) =

∏

η∈W
(Z − (L/Y0)(η)) for every W ∈ E6. Therefore,

Δ
(5)
a∗ = lcZ(Δ

(5)
a∗ ) ·

∏

η∈C′′
a∗,s

(Z − (L/Y0)(η)Y0)
eη (46)

for some integers eη ≥ 1.
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Put Δ
(5)
a∗,Li

= Δ
(5)
a∗ |{uj=vi,j ∀j} for s+ 1 ≤ i ≤ n. Then, by (46),

Δ
(5)
a∗,Li

= lcZ(Δ
(5)
a∗ ) ·

∏

η∈C′′
a∗,s

(Z − (Li/Y0)(η)Y0)
eη (47)

for s+ 1 ≤ i ≤ n. On the other hand, obviously,

Δ
(5)
a∗,Li

= Δ
(4)
a∗ |{uj=vi,j ∀j; ε=0, U0=Z,U1=−Y0} = Δ

(4)
a∗,Li

|{ε=0, U0=Z,U1=−Y0},

and, as we have seen, the last polynomial coincides with Δ
(5)
a∗,Li

up to a nonzero factor from
ka∗ for s+ 1 ≤ i ≤ n. The lemma is proved. �

Put Δ
(6)
a∗,Li

= Δ
(5)
a∗,Li

|Y0=1 for s + 1 ≤ i ≤ n. Now, using the construction of [6, Sec. 2],
compute the polynomials

Δa∗,Li,j = SQFj,t,t1,...,ts,Z(Δ
(6)
a∗,Li

) ∈ ka∗ [t, t1, . . . , ts, Z], 1 ≤ j ≤ degZ Δ
(6)
a∗,Li

,

giving the square-free decomposition of the polynomial Δ
(6)
a∗,Li

in the sense of (48), see below.

Actually, Δa∗,Li,j ∈ ka∗ [t, t1, . . . , ts, Z]. The polynomials Δa∗,Li,j are separable (i.e., do not

have multiple factors in k[t, t1, . . . , ts, Z]).
Recall that the integer ρ = ρs is defined in the introduction, see (iv) with s = q. If the

characteristic exponent p is equal to 1, then B0,i = {1, . . . ,degZ Δ
(6)
a∗,Li

}, B1,i = ∅. If p > 1,

then Br,i = {jpr : 1 ≤ j ≤ (degZ Δ
(6)
a∗,Li

)/pr} for every integer r ≥ 0, see [6, Sec. 2]. By

definition, put r(j) = r if and only if j ∈ Br \Br+1.
In this notation, the polynomial

∏

0≤r≤ρ

∏

j∈Br,i\Br+1,i

Δ
j/pr

a∗,Li,j
(tp

r
, tp

r

1 , . . . , tp
r

s , Zpr) = λ′
a∗,iΔ

(6)
a∗,Li

, (48)

where 0 	=λ′
a∗,i∈ka∗ , and the polynomials Δa∗,Li,j(t

pr(j), tp
r(j)

1 , . . . , tp
r(j)

s , Zpr(j)), where 1≤ j ≤
degU0

Δ
(6)
a∗,Li

, are pairwise relatively prime in the ring ka∗ [t, t1, . . . , ts, Z], see [6, Sec. 2]. Hence,

for every j we have 0 ≤ degZ Δa∗,Li,j ≤ (degZ Δ
(6)
a∗,Li

)/j.

Denote by ResZ(Δa∗,Li,j, ∂Δa∗,Li,j/∂Z) the discriminant with respect to Z of the polynomial

Δa∗,Li,j. If for at least one pair (i, j), s + 1 ≤ i ≤ n, 1 ≤ j ≤ degZ Δ
(5)
a∗,Li

, the polynomial

Δa∗,Li,j is not separable with respect to Z (i.e., ResZ(Δa∗,Li,j, ∂Δa∗,Li,j/∂Z) = 0), then we
proceed to the next element (Y0, . . . , Ys+1) ∈ Ls+1

s ×L′
s. By Corollary 2 and Lemma 7 applied

to the variety V ′′
a∗,s, there is (Y0, . . . , Ys+1) ∈ Ls+1

s × L′
s such that condition (49) stated below

is fulfilled.
In what follows, we assume that

ResZ(Δa∗,Li,j, ∂Δa∗,Li,j/∂Z) 	= 0, s+ 1 ≤ i ≤ n, 1 ≤ j ≤ degZ Δ
(6)
a∗,Li

. (49)

Put
ga∗,Li,r =

∏

j∈Br,i\Br+1,i

Δa∗,Li,j ∈ ka∗ [t, t1, . . . , ts, Z], 0 ≤ r ≤ ρ.

Therefore, each polynomial ga∗,Li,r is separable with respect to Z. Again by (48), we have

degZ ga∗,Li,r ≤ degZ(Δ
(6)
a∗,Li

)/pr. Note that
∑

0≤r≤ρ

degZ ga∗,Li,r = #{(Ys+1/Y0 + tYi/Y0)(η) : η ∈ C ′′
a∗,s} (50)

(we leave the details to the reader). So, if i = s+ 1, then one can omit “+tYi/Y0” in (50).
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The following lemma is similar to Lemma 6.

Lemma 16. Let (41) and (49) hold true. In the notation of (42), let eη = prηe′η where rη, e
′
η

are integers, 0 ≤ rη ≤ ρ, e′η ≥ 1, GCD(e′η , p) = 1 for every η ∈ C ′′
a∗,s. Then the following

conditions are equivalent.

(a) #{(Ys+1/Y0)(η) : η ∈ C ′′
a∗,s} = #C ′′

a∗,s,
(b)

∑

0≤r≤ρ
degZ ga∗,Li,r =

∑

0≤r≤ρ
degZ ga∗,Ls+1,r for all i,

(c) degZ ga∗,Li,r = degZ ga∗,Ls+1,r for all i, r,

(d) for 0 ≤ r ≤ ρ the polynomial ga∗,Ls+1,r(t
pr

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈C′′
a∗,s, rη=r

(Z − (Ys+1/Y0)(η))
pr

up to a nonzero factor from k, and for s + 2 ≤ i ≤ n and 0 ≤ r ≤ ρ the polynomial

ga∗,Li,r(t
pr , tp

r

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈C′′
a∗,s, rη=r

(Z − (Ys+1/Y0)(η) − t(Yi/Y0)(η))
pr

up to a nonzero factor from k.

Proof. The proof is similar to the proof of Lemma 6 and is left to the reader. �
If assertion (c) of Lemma 16 is not fulfilled, then we proceed to the next element

(Y0, . . . , Ys+1) ∈ Ls+1
s × L′

s.

By Corollary 2 and Lemma 7 applied to the variety V ′′
a∗,s, there is (Y0, . . . , Ys+1) ∈ Ls+1

s × L′
s

such that assertion (c) of Lemma 16 is satisfied.

7. The end of the description of the main recursion

In what follows, we assume that assertion (c) of Lemma 16 holds true. Now, by Lemma 16(d),
for s+ 1 ≤ i ≤ n, 0 ≤ r ≤ ρ we have (in the notation introduced in Sec. 5)

ga∗,Li,r(t
pr , tp

r

1 , . . . , tp
r

s , Zpr)/lcZ(ga∗,Li,r) =
∏

W∈E6,r
Ψpr

W,Li
,

where E6,r ⊂ E6. The subset E6,r does not depend on Li. It depends only on r. We have
W ∈ E6,r if and only if rη = r for every η ∈ W .

Furthermore,
⋃

0≤r≤ρ
E6,r = E6 and E6,r1 ∩ E6,r2 = ∅ for 0 ≤ r1 	= r2 ≤ ρ. Let ι5,6(E5,r) = E6,r,

see Sec. 5. Put

V ′′
a∗,s,r =

⋃

W∈E5,r
W, C ′′

a∗,s,r =
⋃

W∈E6,r
W, 0 ≤ r ≤ ρ.

Denote by V ′
a∗,s,r (respectively, Va∗,s,r, V

′′′
a∗,s,r, V

′′′′
a∗,s,r) the union of all irreducible components

W ∈ E5,r such that W ⊂ V ′
a∗,s (respectively, W ⊂ Va∗,s, W ⊂ V ′′′

a∗,s, W ⊂ V ′′′′
a∗,s).

Denote by C ′
a∗,s (respectively, Ca∗,s, C

′′′
a∗,s, C

′′′′
a∗,s) the union of all irreducible components

ι5,6(W ) where W ∈ E5 and W ⊂ V ′
a∗,s (respectively, W ⊂ V ′

a∗,s, W ⊂ V ′′′
a∗,s, W ⊂ V ′′′′

a∗,s).

Denote by C ′
a∗,s,r (respectively, Ca∗,s,r, C

′′′
a∗,s,r, C

′′′′
a∗,s,r) the union of all irreducible compo-

nents ι5,6(W ) where W ∈ E5,r and W ⊂ V ′
a∗,s (respectively, W ⊂ Va∗,s, W ⊂ V ′′′

a∗,s, W ⊂ V ′′′′
a∗,s).

Thus, C ′′
a∗,s,r (respectively, C ′

a∗,s,r, Ca∗,s,r, C
′′′
a∗,s,r, C

′′′′
a∗,s,r) is the subset of all η from the set

C ′′
a∗,s (respectively, C ′

a∗,s, Ca∗,s, C
′′′
a∗,s, C

′′′′
a∗,s) such that rη = r.
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Note that if n − s ≥ m, then, by property (αn−s) (see Secs. 5 and 4), we have V ′′′
a∗,s = ∅

and, therefore, also V ′′′
a∗,s,r = ∅ for 0 ≤ r ≤ ρ.

Put ga∗,r = ga∗,Ls+1,r ∈ ka∗ [t1, . . . , ts, Z]. Now, by Lemma 16(d), for every r and every i
the polynomial ga∗,Li,r|t=0 = ga∗,Li,r(0, t1, . . . , ts, Z) coincides with ga∗,r up to a nonzero factor
from ka∗ . Let μa∗,r = lcZga∗,r (respectively, μa∗,Li,r = lcZga∗,Li,r, 0 ≤ i ≤ n). Replacing
ga∗,r by ga∗,r

∏

s+2≤j≤n
μa∗,Lj ,r and each ga∗,Li,r by ga∗,Li,rμa∗,r

∏

s+2≤j 
=i≤n

μa∗,Lj ,r, we will assume

without loss of generality that ga∗,Li,r(0, Z) = ga∗,r for s+ 2 ≤ i ≤ n.

If degZ ga∗,r = 0, then put Φa∗,s,r = 1, λa∗,s,r,0 = λa∗,s,r,1 = 1, Ja∗,s,r = ∅, Φ
(1)
a∗,s,r = 1 and

Ψa∗,s,r,i1,i2 = 1, Ψ
(1)
a∗,s,r,i1,i2 = 1 for all i1, i2, see the beginning of the section.

In what follows, we assume that degZ ga∗,r > 0. Consider the separable k-algebra

Λr = k[t1, . . . , ts, Z]/(g
1/pr

a∗ ,r (t
pr

1 , . . . , tp
r

s , Zpr)).

Put θa∗,r = Z mod g
1/pr

a∗,r (t
pr

1 , . . . , tp
r

s , Zpr) ∈ Λr and

θ′a∗,r,i = −
(

∂ga∗ ,Li,r

∂t

)

/

(

∂ga∗,Li,r

∂Z

)

∣

∣

∣

∣

∣t1→tp
r

1 , ..., ts→tp
r

s ,

t→0, Z→θp
r

a∗,r

, s+ 2 ≤ i ≤ n

(this means that we substitute tp
r

i for ti, 1 ≤ i ≤ s, 0 for t, and θp
r

a∗,r for Z).

Denote by k(t1, . . . , ts)[θa∗,r] the localization of Λr with respect to the multiplicatively closed

set k[t1, . . . , ts] \{0}. Denote by k(V ′′
a∗,s,r \Z(Y0)) the total quotient ring of the ring of regular

functions k[V ′′
a∗,s,r \ Z(Y0)] of the algebraic variety V ′′

a∗,s,r \ Z(Y0). Then (cf. Sec. 3) there is a

natural isomorphism of k-algebras

k(V ′′
a∗,s,r \ Z(Y0)) → k(t1, . . . , ts)[θa∗,r]

such that Yi/Y0 �→ ti for 1 ≤ i ≤ s, Ys+1/Y0 �→ θa∗,r, and (Yi/Y0)
pr �→ θ′a∗,r,i for s+2 ≤ i ≤ n.

Consider the separable k-algebra Λ
(1)
r = k[t1, . . . , ts, Z]/(ga∗ ,r). Put θ

(1)
a∗,r=Z mod ga∗,r∈Λ

(1)
r .

For s + 2 ≤ i ≤ n, we have ga∗,Li,r = ga∗,r +
∑

j≥0
ga∗,Li,r,jt

j ∈ k[t, t1, . . . , ts, Z] where

ga∗,Li,r,j ∈ k[t1, . . . , ts, Z]. Set g′a∗,r =
∂
∂Z (ga∗,r). We have

−
(

∂ga∗,Li,r

∂t

)

/

(

∂ga∗,Li,r

∂Z

)

∣

∣

∣

∣

∣

t=0,Z=θ
(1)
a∗,r

= − (

ga∗,Li,r,1/g
′
a∗,r

) |
Z=θ

(1)
a∗,r

∈ Λ(1)
r .

Let δa∗,r be the discriminant of the polynomial ga∗,r with respect to Z. Then one can
write − (

ga∗,Li,r,1/g
′
a∗,r

) |
Z=θ

(1)
a∗,r

= (δa∗,Li,r|Z=θ
(1)
a∗,r

)/δa∗,r, where δa∗,Li,r ∈ ka∗ [t1, . . . , ts, Z],

degZ δa∗,Li,r < degZ ga∗,r, and the coefficients from ka∗ of δa∗,Li,r are polynomials in the coef-
ficients of all fa∗,j, 0 ≤ j ≤ m− 1, cf. the construction of δa∗,i,r in Sec. 3. Therefore,

θ′a∗,r,i =
δa∗,Li,r(t

pr

1 , . . . , tp
r

s , θp
r

a∗,r)

δa∗,r(t
pr

1 , . . . , tp
r

s )

for all r, i.
Also set δa∗,Ls+1,r = Zδa∗,r for 0 ≤ r ≤ ρ.
In what follows, we assume that Yi = Xi for s+ 2 ≤ i ≤ n, cf. Sec. 5. Recall that in Sec. 5,

for any polynomial F ∈ k(ε)[X0, . . . ,Xn] a polynomial F ◦ ∈ k(ε)[t1, . . . , ts, Y0, Ys+1 . . . , Yn]

is defined. Below, we will use this definition with t in place of ε, i.e., with the field k(t) in
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place of k(ε). Now, for any polynomial F ∈ k[t,X0, . . . ,Xn] there is a unique polynomial
G ∈ k[t, t1, . . . , ts, Y0, Ys+1 . . . , Yn] such that

(F pr)◦ = G(tp
r
, tp

r

1 , . . . , tp
r

s , Y pr

0 , Y pr

s+1, . . . , Y
pr

n ).

By definition, put

F� = G(t, t1, . . . , ts, δa∗,r, δa∗ ,Ls+1,r, . . . , δa∗,Ln,r) ∈ k[t, t1, . . . , ts, Z]. (51)

So, by our construction, the polynomial ga∗,r divides h�a∗,i for 1 ≤ i ≤ n − s (we leave the

details to the reader).

Assume that s ≥ n − m + 1 and hence n − s ≤ m − 1. Then the polynomial ˜ha∗,n−s+1

is defined by (27) with j = n − s + 1, see also a correction to this formula at the end of
the introduction to the second part. Let us extend the ground field k to k(t). So, now the

polynomial (˜ha∗,n−s+1)
� is defined according to (51). Put

g
(4)
a∗,r = GCD t,t1,...,ts,Z

(

ga∗,r, (˜ha∗,n−s+1)
�
)

.

Here GCD t,t1,...,ts,Z is an algorithm corresponding to a computation forest, see [6, Sec. 2].

Hence g
(4)
a∗,r ∈ ka∗ [t, t1, . . . , ts, Z], degt1,...,ts,Z g

(4)
a∗,r = D

O(1)
n−s+1, and degt g

(4)
a∗,r is bounded from

above by D
O(1)
n−s+1. Put g

(5)
a∗,r = LCt(g

(4)
a∗,r), i.e., g

(5)
a∗,r is the leading coefficient of the polynomial

g
(4)
a∗,r with respect to t, see [5] for a precise definition of the computation forest LC.... Then,

obviously, g
(5)
a∗,r is the greatest common divisor of the polynomials ga∗,r and f�

a∗,i, 0 ≤ i ≤ m−1,

in the ring ka∗ [t1, . . . , ts, Z].

If s < n−m+1, put g
(5)
a∗,r = ga∗,r. In this case, n−s−1 ≥ m−1 and, therefore, by property

(αn−s) (see Secs. 5 and 4), the polynomial ga∗,r divides f�
a∗,i for 0 ≤ i ≤ m− 1.

Let us return to the case of arbitrary s. Now, by the definitions of V ′
a∗,s and C ′

a∗,s and

Lemma 16(d), the polynomial g
(5)
a∗,r(t

pr

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈C′
a∗,s,r

(Z−(Ys+1/Y0)(η))
pr

up to a nonzero factor from ka∗ . Put e5 = degZ g(5). Set

Φ
(1)
a∗,s,r = Y e5

0 g
(5)
a∗,r(Y1/Y0, . . . , Ys/Y0, Ys+1/Y0).

Then Φ
(1)
a∗,s,r ∈ ka∗ [Y0, . . . , Ys+1] is a homogeneous polynomial in Y0, . . . , Ys+1. Furthermore,

all the assertions of (iv)′ and (v)′ for Wa∗,s = V ′
a∗,s (see the beginning of the section) hold true.

Let s ≤ n − 2. Let Y (i1) ∈ L′
s, 0 ≤ i1 ≤ κ2,s, see the introduction. Let i2 be an integer,

s+ 2 ≤ i2 ≤ n. Consider the resultant

ϕ
(5)
a∗,r,i1,i2 = ResZ1

(

δa∗,rZ − ((Y (i1) + tXi2)
�|Z=Z1), g

(5)
a∗,r(t1, . . . , ts, Z1)

)

.

Then ϕ
(5)
a∗,r,i1,i2 ∈ ka∗ [t, t1, . . . , ts, Z], and ϕ

(5)
a∗,r,i1,i2(t

pr , tp
r

1 , . . . , tp
r

s , Zpr) coincides with

δe5a∗,r(t
pr

1 , . . . , tp
r

s )
∏

η∈C′
a∗,s,r

(

Z − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up to a nonzero factor from ka∗ .
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

ψ
(5)
a∗,r,i1,i2 ∈ ka∗ [t, t1, . . . , ts, Z]
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coinciding with ϕ
(5)
a∗,r,i1,i2/δ

e5
a∗,r up to a nonzero factor from ka∗ . Now lcZψ

(5)
a∗,r,i1,i2 ∈ ka∗ , and

ψ
(5)
a∗,r,i1,i2(t

pr , tp
r

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈C′
a∗,s,r

(

Z − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up

to a nonzero factor from ka∗ . Set

Ψ
(1)
a∗,s,r,i1,i2 = Y e5

0 ψ
(5)
a∗,r,i1,i2(t, Y1/Y0, . . . , Ys/Y0, Z/Y0).

Then Ψ
(1)
a∗,s,r,i1,i2 ∈ ka∗ [t, Y0, . . . , Ys, Z] is a homogeneous polynomial in Y0, . . . , Ys, Z. Fur-

thermore, by Lemma 8, all the assertions of (xi)′ for Wa∗,s = V ′
a∗,s (see the beginning of the

section) hold true.
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

g
(6)
a∗,r ∈ ka∗ [t1, . . . , ts, Z]

coinciding with ga∗,r/g
(5)
a∗,r up to a nonzero factor from ka∗ . By the definitions of the alge-

braic varieties V ′′′
a∗,s and C ′′′

a∗,s and Lemma 16(d), the polynomials g
(6)
a∗,r(t

pr

1 , . . . , tp
r

s , Zpr) and
∏

η∈C′′′
a∗,s,r

(Z − (Ys+1/Y0)(η))
pr coincide up to a nonzero factor from ka∗ .

Let s = c. Then put g
(8)
a∗,s,r = 1 for 0 ≤ r ≤ ρs.

Let s < c. We are going to define and construct g
(8)
a∗,s,r in this case. Let s+1 ≤ s1 ≤ c. Recall

that, by the recursive assumption, at step s1 linear forms Ys1,0, . . . , Ys1,s1+1 and polynomials

Φ
(1)
a∗,s1,r1 ∈ ka∗ [Y0,s1 , . . . , Ys1,s1 , Z], 0 ≤ r1 ≤ ρs1 , are obtained. Furthermore, if s1 ≤ n − 2,

then also polynomials Ψ
(1)
a∗,s1,r1,i1,i2 ∈ ka∗ [t, Y0,s1 , . . . , Ys1,s1 , Z], 0 ≤ i1 ≤ κ2,s1 , s1 +2 ≤ i2 ≤ n,

1 ≤ r1 ≤ ρs1 = logpDn−s1 , are obtained. If c < n− 1, put ϕa∗,n−1 = 1. If c = n− 1, put

ϕa∗,n−1 =
∏

0≤r1≤ρn−1

Φ
(1)
a∗,n−1,r1

(Y pr1
n−1,0, . . . , Y

pr1
n−1,n).

If s1 ≤ n− 2, put

Φ
(1)
a∗,s1,r1,i1,i2 = Ψ

(1)
a∗,s1,r1,i1,i2(t

pr1 , Y pr1
s1,0

, . . . , Y pr1
s1,s1 , (Y

(i1) + tXi2)
pr1 )

(recall that here Y (i1) ∈ Ls1,κ2,s1
). By (x)′ (see the recursive assumption at the beginning of

the section), if s1 ≤ n− 2 then

V ′
a∗,s1,r1 = Z(Φ

(1)
a∗,s1,r1,i1,i2 , ∀i1, i2) ∩ Pn(k),

and if c = n− 1 then V ′
a∗,n−1 = Z(ϕa∗ ,n−1).

Let u1, u2 be transcendental elements over the field k(t). Let us extend the ground field k
to k(t). So, now (see (51)), a polynomial ϕ�

a∗,n−1 ∈ ka∗ [t1, . . . , ts, Z] is defined if c = n − 1,

and also all polynomials (Φ
(1)
a∗,s1,r1,i1,i2)

� ∈ ka∗ [t, t1, . . . , ts, Z] are defined if s1 ≤ n − 2. Put

c1 = min{c, n − 2} and

ϕa∗,s,r = ϕ�
a∗,n−1 ·

∏

s+1≤s1≤c1

∏

0≤r1≤ρs1

(

∑

0≤i1≤κ2,s1 ,
s1+2≤i2≤n

ui11 u
i2
2 (Φ

(1)
a∗,s1,r1,i1,i2)

�
)

.

Set

g
(7)
a∗,r = GCD t,u1,u2,t1,...,ts,Z

(

g(5), ϕa∗,s,r

)

.
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Hence g
(7)
a∗,r ∈ ka∗ [t, u1, u2, t1, . . . , ts, Z], and the degrees degt1,...,ts,Z g

(7)
a∗,r and degt,u1,u2

g
(7)
a∗,r are

bounded from above by D
O(1)
n−s+1. Put

g
(8)
a∗,r = LCt(LCu1(LCu2(g

(7)
a∗,r))).

So, for arbitrary s ≤ c, by the definitions of the algebraic varieties V ′′′′
a∗,s and C ′′′′

a∗,s and

Lemma 16(d), the polynomial g
(8)
a∗,r(t

pr

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈C′′′′
a∗,s,r

(Z − (Ys+1/Y0)(η))
pr

up to a nonzero factor from ka∗ (we leave the details to the reader).
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

g
(9)
a∗,r ∈ ka∗ [t1, . . . , ts, Z1]

coinciding with g
(6)
a∗,r/g

(8)
a∗,r up to a nonzero factor from ka∗ . By the definitions of the alge-

braic varieties Va∗,s and Ca∗,s and Lemma 16(d), the polynomials g
(9)
a∗,r(t

pr

1 , . . . , tp
r

s , Zpr) and
∏

η∈Ca∗,s,r
(Z − (Ys+1/Y0)(η))

pr coincide up to a nonzero factor from ka∗ . Put e9 = degZ g
(9)
a∗,r.

Set

Φa∗,s,r = Y e9
0 g

(9)
a∗,r(Y1/Y0, . . . , Ys/Y0, Ys+1/Y0).

Then Φa∗,s,r ∈ ka∗ [Y0, . . . , Ys+1] is a homogeneous polynomial in Y0, . . . , Ys+1. Furthermore,
all the assertions of (iv)′ and (v)′ for Wa∗,s = Va∗,s (see the beginning of the section) hold true.

Now assume that s ≤ n− 2. In this case, let Y (i1) ∈ L′
s, 0 ≤ i1 ≤ κ2,s, see the introduction.

Let i2 be an integer, s+ 2 ≤ i2 ≤ n. Consider the resultant

ϕ
(9)
a∗,r,i1,i2 = ResZ1

(

δa∗,rZ − ((Y (i1) + tXi2)
�|Z=Z1), g

(9)
a∗,r(t1, . . . , ts, Z1)

)

.

Then ϕ
(9)
a∗,r,i1,i2 ∈ ka∗ [t, t1, . . . , ts, Z], and ϕ

(9)
a∗,r,i1,i2(t

pr , tp
r

1 , . . . , tp
r

s , Zpr) coincides with

δe9a∗,r(t
pr

1 , . . . , tp
r

s )
∏

η∈Ca∗,s,r

(

Z − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up to a nonzero factor from ka∗ .
Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

ψ
(9)
a∗,r,i1,i2 ∈ ka∗ [t, t1, . . . , ts, Z]

coinciding with ϕ
(9)
a∗,r,i1,i2/δ

e9
a∗,r up to a nonzero factor from ka∗ . Now lcZψ

(9)
a∗,r,i1,i2 ∈ ka∗ , and

ψ
(9)
a∗,r,i1,i2(t

pr , tp
r

1 , . . . , tp
r

s , Zpr) coincides with
∏

η∈Ca∗,s,r

(

Z − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up

to a nonzero factor from ka∗ . Set

Ψa∗,s,r,i1,i2 = Y e9
0 ψ

(9)
a∗,r,i1,i2(t, Y1/Y0, . . . , Ys/Y0, Z/Y0).

Then Ψa∗,s,r,i1,i2 ∈ ka∗ [t, Y0, . . . , Ys, Z] is a homogeneous polynomial in Y0, . . . , Ys, Z. Fur-
thermore, by Lemma 8, all the assertions of (xi)′ for Wa∗,s = Va∗,s (see the beginning of the
section) hold true.

Now we return to the case of arbitrary s, c with 0 ≤ s ≤ c ≤ n − 1. We apply the
modified version of Theorem 1 from [6] (see Remark 2 from the introduction) and construct
the decomposition of the polynomial Φa∗,s,r into absolutely irreducible factors in the ring
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k[Y0, . . . , Ys+1]. This decomposition can be obtained by a multivalued computation forest, see
the remark at the end of Sec. 2.

So, we get a finite (or empty) family of polynomials Ha∗,j ∈ ka∗ [Z], j ∈ Ja∗,s,r, their

discriminants 0 	= Δa∗,j ∈ k, the set of roots Ξa∗,j of each polynomial Ha∗,j , nonzero elements
λa∗,s,r,0, λa∗,s,r,1 ∈ ka∗ , the polynomials Φa∗,j ∈ ka∗ [Z, Y1, . . . , Ys+1], j ∈ Ja∗,s,r, the irreducible

(over k) componentsWa∗,j,ξ, ξ ∈ Ξa∗,j, j ∈ Ja∗,s,r, of the algebraic variety Va∗,s,r. These objects
satisfy properties (vi)′–(viii)′ for Wa∗,s = Va∗,s (see the beginning of the section), with only one
exception. Namely, applying the construction from [6], we get ϕa∗,j,0 = lcYs+1Φa∗,j ∈ ka∗ [Z]
with degZ ϕa∗,j,0 < degZ Ha∗,j. But in (vi)′ we need ϕa∗,j,0 ∈ ka∗ .

Still, we can satisfy the last condition replacing each polynomial Φa∗,j by a new poly-
nomial. Namely, we proceed as follows. There are polynomials Aj , Bj ∈ ka∗ [Z] such that
degZ Aj<degZ Ha∗,j, degZ Bj < degZ ϕa∗,j,0, and Ajϕa∗,j,0 + BjHa∗,j = ResZ(ϕa∗,j,0,Ha∗,j)
where 0 	= ResZ(ϕa∗,j,0,Ha∗,j) ∈ ka∗ . Let degYs+1

Φa∗,j = e1. Put

˜Φa∗,j = AjΦa∗,j + (ResZ(ϕa∗ ,j,0,Ha∗,j)−Ajϕa∗,j,0)Y
e1
s+1.

Let degZ ˜Φa∗,j = e2, degZ Ha∗,j = e3, and e2,3 = max{e2 − e3 + 1, 0}. Furthermore, using

Lemma 2 from [6], we can write (lcZHa∗,j)
e2,3 ˜Φa∗,j = Qa∗,jHj + Ra∗,j where Qa∗,j, Ra∗,j ∈

ka∗ [Y0, . . . , Ys+1, Z], degZ Ra∗,j < degZ Ha∗,j, and

lcYs+1Ra∗,j = (lcZHa∗,j)
e2,3ResZ(ϕa∗,j,0,Ha∗,j) ∈ ka∗ .

Finally, we replace each Φa∗,j by Ra∗,j. This involves also replacing λa∗,s,r,0, λa∗,s,r,1. Actually,
one can take the new elements λa∗,s,r,0 = lcZΦa∗,s,r, λa∗,s,r,1 =

∏

j∈Js,r
lcZRa∗,j. Now, properties

(vi)′–(viii)′ are fulfilled for Wa∗,s = Va∗,s.

Recall that δ(0) = det((yi,j)0≤i,j≤n)), see (29). Put Ga∗,s,r = (δ(0))p
r
δa∗,r. We are going to

define Ga∗,s,r,i for 0 ≤ i ≤ n. Let us write δ(0)Xi =
∑

0≤j≤n
xi,jYj, 0 ≤ i ≤ n, where xi,j ∈ k.

Put εa∗,Yi,r = δa∗,Li,r for s+ 2 ≤ i ≤ n; εa∗,Ys+1,r = Zδa∗,r, εa∗,Y0,r = δa∗,r, εa∗,Yi,r = tiδa∗,r for

1 ≤ i ≤ s. Finally, put Ga∗,s,r,i =
∑

0≤i≤n
xp

r

i,jεa∗,s,r,j for 0 ≤ i ≤ n.

Now we are going to construct all polynomials Ga∗,j, Ga∗,j,i for 0 ≤ i ≤ n. Put

ϕa∗,j = Φa∗,j(Z, 1, t1, . . . , ts, Y ).

So, degY ϕa∗,j = e1 and ϕa∗,j,0 = lcY ϕa∗,j ∈ ka∗ . Let degZ ϕa∗,j = e4, degZ Ga∗,Xi,r = e6,i, and
e6,4 = maxi{e6,i − e4 + 1, 0}. Using Lemma 2 from [6], we can write

ϕ
e6,4
a∗,j,0Ga∗,Xi,r(t1, . . . , ts, Y ) = Qa∗,iϕa∗,j +Ra∗,i,

where Qa∗,i, Ra∗,i ∈ ka∗ [Z, t1, . . . , ts, Y ] and degY Ra∗,i < degY ϕa∗,j. Let degZ Ra∗,i = e7,i and
e7,3 = maxi{e7,i − e3 + 1, 0}. Again using Lemma 2 from [6], we can write

(lcZHa∗,j)
e7,3Ra∗,i = Q′

a∗,iϕa∗,j +R′
a∗,i,

where Q′
a∗,i, R

′
a∗,i ∈ ka∗ [Z, t1, . . . , ts, Y ], degY R′

a∗,i < degY ϕa∗,j, degZ R′
a∗,i < degZ Ha∗,j . Put

Ga∗,j = δa∗,rϕ
e6,4
a∗,j(lcZHa∗,j,0)

e7,3 , Ga∗,j,i = R′
a∗,i.

Now properties (x)′ and (ix)′ are fulfilled for Wa∗,s = Va∗,s (note that one should replace
everywhere in (x) (and hence also in (x)′) max by maxi; it is a small correction, see the
introduction to the second part).
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Let s ≤ n− 2 and j ∈ Ja∗,s,r. Now we are going to construct all the polynomials Ψa∗,j,i1,i2 .

Let Y (i1) ∈ L′
s, 0 ≤ i1 ≤ κ2,s, see the introduction. Let i2 be an integer, s + 2 ≤ i2 ≤ n.

Consider the resultant

ϕa∗,j,i1,i2 = ResY

(

δa∗,rZ1 − ((Y (i1) + tXi2)
�|Z=Y ), ϕa∗,r(Z, t1, . . . , ts, Y )

)

.

Then ϕa∗,j,i1,i2 ∈ ka∗ [Z, t, t1, . . . , ts, Z1]. For every ξ ∈ Ξa∗,j, the element

ϕa∗,r,i1,i2(t
pr , tp

r

1 , . . . , tp
r

s , Zpr)|Z=ξ

coincides with

δe1a∗,r(t
pr

1 , . . . , tp
r

s )
∏

η∈ι5,6(Wa∗,j,ξ)

(

Z1 − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up to a nonzero factor from ka∗ . Hence

(ϕa∗,j,i1,i2 |Z=ξ)/δ
e1
a∗ ,r = ϕa∗,j,i1,i2,ξ ∈ k[t, t1, . . . , ts, Z1], ξ ∈ Ξa∗,j. (52)

Let us write
ϕa∗,j,i1,i2/δ

e1
a∗,r =

∑

0≤i<e3

ϕa∗,j,i1,i2,iZ
i

where ϕa∗,j,i1,i2,i ∈ ka∗(t1, . . . , ts)[t, Z1]. Solving the linear system
∑

0≤i<e3

Uiξ
i = ϕa∗,j,i1,i2,ξ, ξ ∈ Ξa∗,j,

with respect to the unknowns U0, . . . , Ue3−1, we deduce that ϕa∗,j,i1,i2,i ∈ ka∗ [t, t1, . . . , ts, Z1].
Therefore, ϕa∗,j,i1,i2/δ

e1
a∗,r ∈ ka∗ [Z, t, t1, . . . , ts, Z1].

Using Lemma 2 from [6] and Noether normalization, we compute the polynomial

ψa∗,j,i1,i2 ∈ ka∗ [Z, t, t1, . . . , ts, Z]

coinciding with ϕa∗,j,i1,i2/δ
e3
a∗,r up to a nonzero factor from ka∗ . Now lcZψa∗,j,i1,i2 ∈ ka∗ , and

ψa∗,j,i1,i2(t
pr , tp

r

1 , . . . , tp
r

s , Zpr)|Z=ξ coincides with

∏

η∈ι5,6(Wa∗,j,ξ)

(

Z − ((Y (i1)/Y0) + t(Xi2/Y0))(η)
)pr

up to a nonzero factor from ka∗ for every ξ ∈ Ξa∗,j. Set

Ψa∗,j,i1,i2 = Y e3
0 ψa∗,j,i1,i2(Z, t, Y1/Y0, . . . , Ys/Y0, Z1/Y0).

Then Ψa∗,j,i1,i2 ∈ ka∗ [Z, t, Y0, . . . , Ys, Z1] is a homogeneous polynomial in Y0, . . . , Ys, Z1. Fur-
thermore, by Lemma 8, all the assertions of (xii)′ for Wa∗,s = Va∗,s (see the beginning of the
section) hold true.

Thus, now properties (iv)′–(xii)′ with s = q are fulfilled for Wa∗,s = Va∗,s. It remains to
construct the polynomial ha∗,n−s+1 and all polynomials qa∗,n−s+1,w, n− s+1 ≤ w ≤ m− 1, if

V ′′′
a∗,s 	= ∅ and s = q > c′ − 1. The variety V ′′′

a∗,s is not empty if and only if degZ g
(6)
a∗,s,r 	= 0 for

some r where 0 ≤ r ≤ ρ. Hence, in this case s ≥ n−m+ 1. Now put

δ
(6)
a∗,r = ResZ

(

g
(6)
a∗,r, (

˜ha∗ ,n−s+1)
�
)

.

So, 0 	= δ
(6)
a∗,r ∈ ka∗ [t, t1, . . . , ts]. Put N1 =

∑

0≤r≤ρ
degt δ

(6)
a∗,r. We enumerate the elements

of IN1 and find t′ ∈ IN1 such that

(

∏

0≤r≤ρ
δ
(6)
a∗,r

)

∣

∣

∣

t=t′
	= 0. Put ta∗,n−s+1= t′ and qa∗,n−s+1,w=
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qn−s+1,w|t=t′ for n−s+1≤w≤m−1; qa∗,n−s+1,n−s = 1 and qa∗,n−s+1,w = 0 for 0 ≤ w ≤ n− s− 1.

Set ha∗,n−s+1 = ˜ha∗,n−s+1|t=t′ , see Sec. 4. Then, obviously, dim(V ′′′
a∗,s ∩Z(ha∗,n−s+1)) = s− 1.

If V ′′′
a∗,s 	= ∅ and s = q > c′ − 1, we proceed to the next, (q − 1)th, recursive step.

If V ′′′
a∗,s = ∅ or s = q = c′ − 1, then the qth step is the final one. We set c′a∗ = s = q. In

this case, we have Va∗,s2 = ∅ and Va∗,s2,r2 = ∅ for 0 ≤ s2 ≤ q − 1, 0 ≤ r2 ≤ ρs2 . We put
Φa∗,s2,r2 = 1, λa∗,s2,r2,0 = λa∗,s2,r2,1 = 1, Ja∗,s2,r2 = ∅, and Ψa∗,s2,r2,i1,i2 = 1 for 0 ≤ s2 ≤ q− 1,
0 ≤ r2 ≤ ρs2 , 0 ≤ i1 ≤ κ2,s2 , s2 + 2 ≤ i2 ≤ n.

Put

Qa∗ =
(

{(Φa∗,s,r, λa∗,s,r,0, λa∗,s,r,1)}∀s,r, {Ga∗ ,s,r,i}∀s,r,i, {Ψa∗,s,r,i1,i2}∀s,r,i1,i2 ,
{(Ha∗,j,Δa∗,j,Φa∗,j)}j∈Ja∗,s,r ,∀s,r, {Ψa∗,j,i1,i2}j∈Ja∗,s,r ,∀i1,i2,∀s,r,
{ha∗ ,i}1≤i≤n−c′

a∗
, {qa∗,i,i1}1≤i≤n−c′

a∗ , 0≤i1≤m−1

)

.

So, Qa∗ is a 7-tuple of some families. Elements of these families are defined above.
Now, similarly to Sec. 3, under condition (g) the described construction defines a multivalued

function (or a binary relation)

F :
⋃

n,d0,...,dm−1

k
γ0+...+γm−1 → K, a∗ �→ Qa∗ ,

which is an algorithm corresponding to a multivalued computation forest

T1 = {T1,n,d0,...,dm−1}∀n,d0,...,dm−1

in the sense of Sec. 2. So, F = F(T1). The values of this function depend on the choice of
linear forms Ys,0, . . . , Ys,s+1 for c′ ≤ s ≤ min{c, n − 1}.

Let v be a vertex of the tree T1,n,d0...dm−1 . Then the quasiprojective algebraic variety

Wv = Z(ψv,1, . . . , ψv,μv,1) \ Z(ψv,μv,1+1, . . . , ψv,μv,2) ⊂ Uc (53)

corresponds to v.
Take Ag = L(T1,n,d0...dm−1) to be the set of leaves of the tree T1,n,d0...dm−1 . Let α ∈ Ag. Then

(see (53) with v = α) all polynomials ψα,j ∈ k[a1, . . . , aν ] have degrees bounded from above by

D
O(1)
n−c′ with an absolute constant in O(1). Note also that each leaf α is of level l(α) = D

O(1)
n−c′ .

We have
⋃

α∈Ag

Wα = Uc, i.e., we get a covering of the set Uc.

Furthermore, the 7-tuple

Qα =
(

{(Φα,s,r, λα,s,r,0, λα,s,r,1)}∀s,r, {Gα,s,r,i}∀s,r,i, {Ψα,s,r,i1,i2}∀s,r,i1,i2 ,
{(Hα,j,Δα,j ,Φα,j)}j∈Jα,s,r ,∀s,r, {Ψα,j,i1,i2}j∈Jα,s,r, ∀i1,i2,∀s,r,

{hα,i}1≤i≤n−c′α , {qα,i,i1}1≤i≤n−c′α, 0≤i1≤m−1

)

corresponds to α. Here, all the objects from the right-hand side are defined in the introduction,
and for them conditions (iv)–(xiii) hold true. Besides, for c′ ≤ s ≤ min{c, n− 1}, linear forms
Ys,0, . . . , Ys,s+1 correspond to α.

Now, for every a∗ ∈ Wα we have Qa∗ = Qα|a1=a∗1 ,...,aν=a∗ν . In particular, c′α = c′a∗ , and we
identify Jα,s,r with Ja∗,s,r and Ξa∗,j with Ξj,a∗ for all j ∈ Jα,s,r and for all s, r. The linear forms
Ys,0, . . . , Ys,s+1 corresponding to α coincide with the ones appearing in the main recursion for
the element a∗ ∈ Wα, see Sec. 6 and the present section.

From the description of the main recursion and the results of [6], it follows immediately that
assertions (b), (c), and (d) of Theorem 1 are fulfilled with Ag in place of A.

615



Moreover, let s be fixed. Put

Qα,s =
(

{(Φα,s,r, λα,r,0, λα,s,r,1)}∀r, {Gα,s,r,i}∀r,i, {Ψα,s,r,i1,i2}∀r,i1,i2 ,

{(Hα,j ,Δα,j ,Φα,j)}j∈Jα,s,r, ∀r, {Ψα,j,i1,i2}j∈Jα,r,∀i1,i2,∀r
)

.

Then, from the description of the main recursion and the results of [6], it follows that all the
objects from the left-hand side of the last equality are computed already at some vertex v of

the tree T1,n,d0,...,dm−1 with level l(v) = D
O(1)
n−s . The leaf α is a descendant of v. Furthermore

(see (53)), all polynomials ψv,j ∈ k[a1, . . . , aν ] have degrees bounded from above by D
O(1)
n−s with

an absolute constant in O(1).
Assume that condition (g) does not necessarily hold. Denote by f the family of coefficients

from k[a1, . . . , aν ] of all the polynomials f0, . . . , fm−1. Then, by Theorem 3 applied to the
tree T1,d0,...,dm−1(f) (see the definition of this tree in Sec. 2), we get an irredundant subtree
T ′
1,d0,...,dm−1

(f) of the tree T1,d0,...,dm−1(f) such that S(T ′
1,d0,...,dm−1

(f) = S(T1,d0,...,dm−1(f). Put

A = L(T ′
1,d0,...,dm−1

(f). Now, all assertions of the modified Theorem 1 hold true. Thus, the

modified Theorem 1 is proved.
Put Γ = A and assume that A is not used in any notation introduced earlier (i.e., we change

the notation). Finally, applying Lemma 3 to the covering Uc =
⋃

γ∈Γ
Wγ , we prove Theorem 1.

Translated by the author.
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