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A REMARK ON THE ISOMORPHISM BETWEEN
THE BERNOULLI SCHEME AND THE PLANCHEREL
MEASURE

P. E. Naryshkin∗ UDC 519.1

We formulate a theorem of Romik and Śniady that establishes an isomorphism between the Ber-
noulli scheme and the Plancherel measure. Then we derive several combinatorial results as corol-
laries. The first one is related to measurable partitions; the other two are related to the Knuth
equivalence. We also give several examples and one conjecture belonging to A. Vershik. Bibliog-
raphy: 7 titles.

1. Introduction

The RSK algorithm is a well-known correspondence that maps a permutation of length
n to a pair of Young tableaux of size n with the same shape. A. Vershik and S. Kerov [1]
extended the definition of the RSK correspondence to the space An where A is an arbitrary
lineary ordered set. In this case, the insertion tableau (P ) contains elements from A and the
recording tableau (Q) contains the numbers 1, 2, . . . , n. Thus, we consider the map RSK :
An → YTn(A)×YTn where YTn is the set of standard Young tableaux of size n and YTn(A)
is the set of semistandard Young tableaux filled with elements from A. Let us for the moment
“forget” about the first coordinate and consider this transformation as a map from An to YTn.
In this case, as observed by Vershik and Kerov, we can pass to the limit and obtain a map
RSK : AN → YT∞. Here YT∞ is the set of infinite Young tableaux.

Vershik and Kerov [1] proved that for every central ergodic measure μ on YT∞ there is an al-
phabet A and a measure m on A such that the map RSK : (A,m)N → (YT∞, μ) is a homomor-
phism of measure spaces. In particular, if μ is the Plancherel measure, then the corresponding
alphabet A is the interval [0, 1] with the one-dimensional Lebesgue measure m. D. Romik

and P. Śniady, in the recent paper [2], proved that in this case RSK : ([0, 1]N,Leb∞) →
(YT∞,Planch) is an isomorphism of measure spaces, where Leb∞ =

N⊗

i=1
Leb1([0, 1]) and Planch

is the Plancherel measure. Later, Śniady extended this result to a wider class of homomor-
phisms constructed by Vershik and Kerov in [3].

In this paper, we will discuss several corollaries of the theorem of Romik and Śniady sug-
gested by A. Vershik. We will consider only the case where the alphabet A is the interval [0, 1]
with the Lebesgue measure Leb1 and the central measure on YT∞ is the Plancherel measure.

2. The isomorphism theorem

Here we state the result of Romik and Śniady ([2, Theorem 1.4]) in a convenient form.

Theorem 1. The homomorphism defined in [1] from ([0, 1]N,Leb∞) to the space of infinite
Young tableaux equipped with the Plancherel measure is an isomorphism of measure spaces
which maps the left shift to the Schützenberger transformation. This means that almost every
realization of the Bernoulli scheme corresponds to a single infinite Young tableau.

Below we discuss several corollaries of this theorem.
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3. Measurable partitions

3.1. The general case. In this subsection, we discuss the following general problem. Con-
sider the infinite-dimensional cube [0, 1]N with the product measure Leb∞. Assume that for

every n there is a partition (up to a set of zero measure) ξ̃n of the cube [0, 1]n into a finite
collection of measurable sets. Moreover, assume that this sequence of partitions is

(1) increasing, i.e., the projection of every element from ξ̃n onto the first n−1 coordinates

lies in some element from ξ̃n−1,

(2) stationary, i.e., the projection of every element from ξ̃n onto the last n− 1 coordinates

lies in some element from ξ̃n−1.

Fix n, and for every element a ∈ ξ̃n consider the set a × [0, 1]N. The collection of all such
sets forms a partition of [0, 1]n × [0, 1]N = [0, 1]N, which we denote by ξn. Note that the
increasing property implies that elements of ξn are disjoint unions of elements of ξn+1, and the
stationarity implies that the left shift maps ξn to a partition that is a refinement of ξn−1.

Definition 1. We say that such a sequence of partitions converges to the partition into
separate points and write ξn → ε if almost every point x of the cube [0, 1]N is uniquely
determined by the sequence of sets an ∈ ξn containing x.

Consider two examples.

Example 1. Let Xn be the partition of the interval [0, 1] into 2n intervals of the form

[m/2n, (m+ 1)/2n], m ∈ Z. Set ξ̃n = ⊗n
k=1Xn. We claim that ξn → ε.

Proof. Indeed, let x = (x1, x2, . . .) ∈ [0, 1]N and fix k ∈ N. For every n > k, the element of
the partition ξn that contains x determines the coordinate xk up to an error of 1/2n. Thus,
as n → ∞, all coordinates of x can be recovered. �
Remark 1. It is easy to see that the number of elements in ξ̃n equals 2n

2
.

Example 2. Now consider the partition ξ̃n of the cube into the simplices of the form
{
y ∈ [0, 1]n | yσ(1) ≤ yσ(2) ≤ . . . ≤ yσ(n)

}

indexed by the permutations σ ∈ Sn. Then, again, ξn → ε.

Proof. Again, take x = (x1, x2, . . .) ∈ [0, 1]N and fix k ∈ N. Note that the element of ξn
containing x uniquely determines the order of the numbers x1, x2, . . . , xn. It follows that for
every n > k we know the value |{l ≤ n | xl < xk}|, which is the number of elements among
x1, x2, . . . , xn that are smaller than xk. The law of large numbers says that for almost every x

xk = lim
n→∞

|{l ≤ n | xl < xk}|
n

,

which means that in the limit every coordinate can be determined almost surely. �
Remark 2. In this case, the number of elements in ξ̃n equals n!.

3.2. A corollary of the isomorphism theorem. We can formulate the first corollary in
terms of measurable partitions. Here RSK is a map from [0, 1]n to YTn.

Corollary 1. Consider the partition ξ̃n of the cube [0, 1]n into the sets of the form RSK−1(τ),
where τ is an arbitrary Young tableau of size n. In other words, two points y1, y2 ∈ [0, 1]n are
in the same block of the partition if and only if their recording tableaux coincide. Then ξn → ε.

Proof. Indeed, the infinite Young tableau that is the RSK image of a sequence (x1,x2,. . .) is
exactly the limit of the sequence of the finite tableaux Qn obtained by applying RSK to the
n-tuples (x1, x2, . . . , xn). The claim follows from Theorem 1. �
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Remark 3. The number of elements in the partition ξ̃n is equal to the number of different
Young tableaux of size n. This number an is well studied: for example, it equals the number
of involutions in the symmetric group Sn. Asymptotically, as n → ∞,

an ∼
√
n!e

√
n(8πen)−1/4.

This formula was obtained in [5, p. 583].

The following open question was posed by A. Vershik.

Problem. What is the minimum possible asymptotics for the number of elements in an in-
creasing stationary sequence of partitions that converges to the partition into separate points?

4. The Knuth equivalence

4.1. Dual Knuth partitions. Now consider the classical version of RSK, which is a map
from Sn to YTn × YTn. It is well known that certain transpositions of consecutive numbers
in a permutation, called Knuth transformations, preserve the P-tableau of the permutation
(see, e.g., [4]). It is also well known that if RSK(σ) = (P,Q), then RSK(σ−1) = (Q,P ).
Thus, it is natural to define the dual Knuth transformations as the images of the Knuth
transformations under the map σ 	→ σ−1. One can also give an explicit description of these
transformations similar to the definition of the usual Knuth transformations. Obviously, the
dual transformations preserve the Q-tableau.

A collection of permutations that can be obtained from each other using Knuth transfor-
mations is called a Knuth class and corresponds to a single P-tableau. A dual Knuth class,
corresponding to a single Q-tableau, is defined in a similar way.

Now consider RSK as a map from [0, 1]n to YTn([0, 1])×YTn. The definition of the Knuth
transformations can be extended to this case in an obvious way, and all the points that can be
obtained from a given point constitute a Knuth class, a collection of points in [0, 1]n with the
same P-tableau. However, since on [0, 1]n there is no group structure respected by RSK, we
have no good definition of a dual Knuth transformation. Nevertheless, we can define a dual
Knuth class as the set of points corresponding to a single Q-tableau. The set of dual Knuth
classes can be endowed with the Plancherel measure in a natural way (note that the measure
of a Knuth class coincides with Lebesgue measure of this class regarded as a set in [0, 1]n).

Corollary 2. For every k ∈ N and every ε > 0 there is N ∈ N such that for every n > N the
following holds true: there exists a set of dual Knuth classes with Plancherel measure at least
1− ε on which the dispersion of the kth element is less than ε.

Proof. This follows directly from the description of the map inverse to RSK obtained by Romik
and Śniady ( [2, Theorem 1.5]). �

Remark 4. It would be natural to ask whether the kth element actually stabilizes as n goes
to infinity. The answer is negative: numerical simulations show that asymptotically it takes
values from an interval of length 1/2.

4.2. Knuth partitions. Let us return to the language of partitions from Sec. 3.1. Let η̃n be
a partition of the cube [0, 1]n whose all elements are finite. For every set b ∈ η̃n and for every
point y = (yn+1, yn+2, . . .) ∈ [0, 1]N, consider the set a × {y} ∈ [0, 1]N. The collection of all
such sets forms a partition of the cube [0, 1]N, which we denote by ηn. Note that all elements
in ηn are finite. Assume that the sequence of partitions ηn decreases, i.e., every element in
ηn+1 is a disjoint union of elements in ηn.
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Definition 2. Let x ∈ [0, 1]N, and for each n find the set bn(x) ∈ ηn such that x ∈ b(x).
Assume that for almost all x there is no measurable set B(x) ⊂ [0, 1]N such that

∞⋃

n=1

bn(x) ⊂ B(x) and 0 < Leb∞(B(x)) < 1.

In this case, we say that the partition ηn converges to the trivial partition (or that this partition
is ergodic) and write ηn → ν.

Theorem 2. Consider a stationary increasing sequence of partitions ξ̃n and a decreasing

sequence of partitions η̃n. Assume that for every n the partitions ξ̃n and η̃n are the independent
complements of each other.

(1) Assume that ξn → ε. It is not hard to prove that ηn → ν.
(2) The converse is not necessarily true. The first counterexample was constructed in [7],

see also [6, p. 18].

Let us give some examples.

Example 3. Consider the partition ξ̃n from Example 1. Set

x = (x1, x2, . . .) ∼n y = (y1, y2, . . .)

if {
2n(xk − yk) ∈ Z, 1 ≤ k ≤ n,

xk = yk, k > n.

Then the independent complement η̃n to the partition ξ̃n consists exactly of the equivalence
classes induced by the relation ∼n.

Example 4. Consider the partition ξ̃n from Example 2. Then the independent complement
η̃n consists of the orbits of the action of Sn on [0, 1]n. Theorem 2 implies that the action of
the infinite symmetric group S∞ on [0, 1]N is ergodic.

Applying Theorem 2 to Corollary 1 and using the description of partition blocks from
Sec. 4.1, we obtain the following statement.

Corollary 3. The Knuth transformations act ergodically on the kth element of the Bernoulli
scheme ([0, 1],Leb1)

N for every k. This means the following. Take a random infinite sequence
x = (x1, x2, . . . , xn, . . .). Let xn be the finite sequence consisting of the first n elements of x.
Let γn be the empirical distribution of the kth element in the Knuth class of xn. Then γn tends
to the uniform distribution on [0, 1] almost surely.

5. Conclusion

Although Corollaries 2 and 3 are purely combinatorial, it is not known how to prove them
directly. Numerical simulations carried out by the author and others show that the convergence
to the delta-like and uniform distributions is very slow. It would be of interest to find a proof
of these statements that does not use complicated constructions related to the limit form,
Schützenberger transformation, theorem of Romik and Śniady, etc. Some observations on
this topic, several of which were discussed above, can be found in a forthcoming paper by
A. Vershik, to whom the author is grateful for information and guidance.

P. Naryshkin acknowledges partial support from the Russian Science Foundation (grant
17-71-20153).

Translated by the author.
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