
 
Journal of Mathematical Sciences, Vol. 240, No. 2, July, 2019 

CONTACT PROBLEM FOR A RIGID PUNCH AND AN ELASTIC HALF SPACE  
AS AN INVERSE PROBLEM 

N. I. Obodan,  T. A. Zaitseva,  and  O. D. Fridman  UDC 539.3 

We solve a contact problem of indentation of a punch into an elastic half space with regard for the fric-
tion and in the presence of the zones of adhesion, sliding, and separation.  The applied approach is based 
on the statement of the problem in the form of the inverse problem in which the Coulomb law of friction 
is used as an additional condition in the regions with friction.  In the formulation of the inverse problem, 
we take into account the presence of the zones of adhesion whose sizes are unknown.  The correctness 
of the solution of the inverse problem is analyzed.  The proposed approach, in combination with the pro-
cedure of discretization, enables us to determine the zones of microsliding alternating with the zones of 
adhesion and separation. 

Introduction 

We consider a problem of indentation of a rigid punch into the elastic half space in the presence of friction, 
adhesion, and separation.  For the first time, the problem of indentation of a punch in the presence of friction and 
adhesion was approximately solved by Galin.  Then the analogous solution of the problem was obtained with the 
help of equations from the Fuks class [6].  Significant difficulties were connected with the necessity of determi-
nation of additional constants, which required the introduction of special conditions and restricted the possibili-
ties to solve the problem in the formulated statement.  In the subsequent studies of the problem with one-sided 
connections, the researchers applied certain variational inequalities based of the Signorini problem [3].  The nu-
merical methods used for the investigation of variational inequalities make it possible to guarantee the conver-
gence of the iterative process only with respect to the direct variable in finding of the saddle point of the La-
grangian functional [3, 4, 8].  In order to find the solution, it is necessary to use a modified Lagrangian function-
al, which requires the evaluation of additional constants.  Moreover, the mentioned statement does not enable 
one to solve the problem under the assumption of existence not only of the regions of sliding and separation but 
also the regions of adhesion. 

Both the finite-element method [1, 2, 7, 10] and some other numerical methods [11] were extensively used 
for the solution of problems of this kind.  

In the present work, we propose an approach to the solution of contact problems with regard for the pres-
ence of adhesion, friction, and separation based on the statement of the problem as an inverse problem in which, 
as an additional condition, we use the validity of Coulomb’s law in the regions with friction with regard for the 
presence of the zones of adhesion whose sizes are unknown in the inverse problem. 

1.  Mathematical Model 

The system of equations of the theory of elasticity for a half space    Ω = {x : x = (x1, x2, x3) ∈R3}   with 
piecewise smooth boundary  Γ   formed by the union of disjoint open sets  ΓU ,  Γσ ,  and  Γk ,  has the form 
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 L(U, F) ≡ (λ + µ) grad divU + µ∇∇2U + F = 0 , (1) 

where λ = νE/ (1+ ν)(1− 2ν)( ) , µ = E/(2 + 2ν)  are the Lamé coefficients;  E  is the elasticity modulus;  ν   is 
Poisson’s ratio;  F = {F1, F2, F3}   is the vector of loads,  U = {U1,U2,U3}   is the vector of displacements along 
the axes  x1 ,  x2 ,  and  x3 ,  respectively;  ΓU   and  Γσ   are, respectively, the regions, where the displacements 
and stresses are given;  Γk   is the region occupied by the punch formed by the zones of adhesion, separation, 
and friction with unknown boundaries.  Thus, we get 

 U(x) = U0(x) ,    x ∈ΓU ,      σ ij (U ) n j = fi (x) ,    x ∈Γσ , (2) 

where  n = {n1, n2, n3}   is the unit vector of normal to the boundary  Γσ   and  σij   are stresses,  i, j = 1, 2 . 

For the plane problem, in the zone of adhesion  Γk
C ,  we find  

 U2 ≤ δ1 ,      σ22 ≤ 0 ,      U2σ22 = 0  

   (3) 
 σ12 < k σ22 ,      ′U1 = 0 ,    k ≥ 0 , 

where  k   is the friction coefficient and  δ1   is the indentation of the punch.  

If  σ12 > k σ22 ,  then the zone of friction  Γk
T   is present.  Thus, the following conditions should be sat-

isfied: 

 k σ22 − σ12 = 0       for    σ22 ≤ 0 ,    U2 = δ1 . (4) 

If  σ22 > 0 ,  then we observe the formation of the zone of separation  Γk
O .  In this case, we get the following 

conditions:  

 σ22 = 0 ,      σ12 = 0       for    U2 > δ1 . (5) 

Note that the values of  ±x1T   and  ±x1O   specifying the boundaries of the sections  Γk
C ,  Γk

T ,  and  Γk
O   are un-

known  ( x1T   and  x1O   are measured from  x1 = 0   and, in addition,  Γk = Γk
C ∪ Γk

T ∪ Γk
O ). 

2.  Statement of the Inverse Problem 

We now represent the solution of problem (1)–(5) in the form of an iterative sum of two states: 

  U
(m)(x) = U 0(x) + !U (m)(x) ,      U (m)(x) ∈HΩ

2 , 
   (6) 
  

!U (m)(x) ∈HΩ
2 ,     m = 1,…,M , 

where the vector function U 0(x)  describes the state corresponding to the complete adhesion (1), (3), while 
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!U (m)(x)   describes the additional state formed due to the presence of the zones of sliding and separation, i.e., 
such that   

 !U (m)(x)
Γk

= !UΓk
(m)    

satisfies conditions (4) or/and (5), and  HΩ
2   is the Sobolev space.  The vector function  !U (m)(x)   is uniquely 

determined from Eqs. (1) and the given boundary conditions   

 
 
!U (m)(x)

Γk
= !UΓk

(m) .   

It is easy to see [5, 9] that the vector function  !U (m) ∈HΩ
2   such that  !U (m)

Γk
= !UΓk

(m)   exists iff 

  !U (m)
Γk ∈HΓk

(3/2) ,      
∂UΓk

(m)

∂n
∈HΓk

(1/2) . 

We now introduce the set of admissible functions 

 
  
Q = !UΓk

(m) ∈CΓ
2 ,  x ∈Γk ,  L(U, F) = 0,  !UΓk

(m) ∈HΓk

(3/2)⎧
⎨
⎪

⎩⎪
, 

  
  

∂ !UΓk
(m)

∂n
∈HΓk

(1/2),  U ≤ !UΓk
(m) ≤U

⎫
⎬
⎪

⎭⎪
, (7) 

where  [U, U ]   is the range of  !UΓk
(m)   and  n   is the normal to the surface. 

We now formulate the problem of determination of the function  !UΓk
(m)   as an inverse problem.  In this 

case, we consider conditions (4) and (5) as additional information and choose the function  !UΓk
(m)   as a quasi-

solution. 
Consider the case where condition (5) is not satisfied.  Then 

 
!UΓk
(m)   is defined on the set  Q   as a solution of 

the problem 

 
 
!UΓk
(m) = arg min J !UΓk

(m)( ) ,      
 
!UΓk
(m) ∈Q , (8) 

where   

 
 

J !UΓk
(m)( ) = σ12

!UΓk
(m)( ) − k σ22

!UΓk
(m)( )( )2 dΓ

Γk

∫ . 
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We now introduce a function 

 

 

µ(m)(x) =
1, σ12

(m) !UΓk
(m)( ) ≥ σ22

(m) !UΓk
(m)( ) , x ∈Γk

T ,

0, σ12
(m) !UΓk

(m)( ) < σ22
(m) !UΓk

(m)( ) , x ∈Γk
C ,

⎧

⎨
⎪

⎩
⎪

 

where  σ12
(m) !UΓk

(m)( ) ,  σ22
(m) !UΓk

(m)( )  is a solution of the direct problem (1) with the boundary conditions   

 !U (m)(x)
Γk

= !UΓk
(m) .   

Then the functional  J   takes the form  

 
 
J (m) !UΓk

(m)( ) = σ12
(m) !UΓk

(m)( ) − kσ22
(m) !UΓk

(m)( )( )2 µ(m)(x) dΓ
Γk

∫ . 

As the solution of the direct problem, we consider a triple  x1T , x1O, U(x)( ) ,  where  x1T   and  x1O   are the 

points of the boundary  Γk   specifying the regions  Γk
T   and  Γk

O   according to conditions (4) and (5): 

  σ12
(m)(x1T )− kσ22

(m)(x1T ) ≥ 0       for     Γk
T , 

  σ22
(m)(x10) > 0 ,       σ12

(m)(x10) = 0       for    Γk
O . 

3.  Analysis of Correctness of the Solution of the Inverse Problem 

The set of admissible functions specified by relation (7) is a compact set in the space  HΓ
3/2 .  Therefore, 

from any sequence  !UΓk
(m){ } ⊂ Q ,  we can choose at least one sequence  !UΓk

(mn ){ } ⊂ !UΓk
(m){ }   convergent in the 

norm of the space  HΓ
3/2   to an element  !UΓk

0 ∈Q . 
The analysis of correctness of the solution of inverse problem is connected with the determination of the 

continuity of the functional  
 
J !UΓk( ),  i.e., with the dependence  σij

!UΓk( ) ,  i, j = 1, 2 . 

If we consider the integral relation for the generalized solution of problem (1), (2) for the m th and 
(m −1) th  states in the presence of the unknown friction force, then we can prove that 

 
 
!U (m) − !U (m−1)

HΩ
2 ≤ γ (δ) ,      γ (δ)→ 0 , 

for 

 
  
!UΓk
(m) − !UΓk

(m−1)
HΩ

3/2 ≤ δ,    δ → 0 . 
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This means that there exists a sequence of solutions such that  !U x, !UΓk
(m)( )→ !U x, !UΓk

0( )   in  HΩ
2 .  Hence,   

 σij
!UΓk
(m), x( )→ σij(UΓk , x)       in    HΩ

2 . 

We now determine the traces of the functions  σij (U(x)) ,  x ∈Ω ,  on the boundary  Γk ⊂ ∂Ω .  It is known 
that, for the function  σij ∈HΩ ,  which has the derivative   

 
∂σij

∂x2
∈HΩδ

2 ,   

where   

 Ωδ = Ωδ (Γk )  = {x ∈Ω , 0 ≤ x2 ≤ δ , (x1, x2 ) ∈Γk} ,   

its trace exists ; it is defined as an element of  HΓ ,  Γk = ∂Ω ,  and is continuous on  x2 ∈[0, δ]   in the norm of 

the space  HΓ .  Hence, the trace of the functions  σij
!UΓk , x( )   exists on  Γk ,  belongs to  HΓk ,  and is contin-

uous on  x2 ∈[0, δ] .  Therefore, we get the convergence of the functional  J (m) : 

 
 

σ12
!UΓk
(m)( ) − kσ22

!UΓk
(m)( )( )2 µ(m)(x)dΓ

Γk

∫ → σ12
!UΓk( ) − kσ22

!UΓk( )( )2 µ(x)dΓ
Γk

∫  

as  m → ∞ .  In addition, the functional    J(
!UΓk )   is finite if  

  
!UΓk
(m)(x) ∈HΓk

3/2 .  If we take into account the fact 

that the set  Q   is compact in   HΓ
3/2 ,   then it follows from the Weierstrass theorem that the problem of minimi-

zation of the functional    J(
!UΓk )   on the set  Q   has at least one solution and any minimizing sequence converg-

es to the set   

 
 
Q∗ = !UΓk

(m){ ∈Q :   J(
!UΓk ) = J∗ ,   J∗ = min J( !UΓk ) ,  

 
!UΓk ∈Q∗ }  

in the norm of the space  
 
HΓk

3/2 . 

By using the topological lemma and the fact that any sequence  σ12
!UΓk
(m)( ) − kσ22

!UΓk
(m)( )   converges to  

a certain limit, we conclude that !UΓk
(m) ∈Q  converges to an element !UΓk ∈Q∗  in the norm of the space HΓk

3/2 . 

4.  Procedure of Solution 

To solve the problem of infinite-dimensional optimization (8), we pass to a finite-dimensional problem by 
approximating the vector function  U(x)   by the finite-element method. 

To describe the unknown functions of the direct and inverse problems, we introduce a grid  XS ,  where  

 XS = {x1S , x2S} ,   S = 1,…, N ,  and present the unknown functions  U(x) ,  σ ij (x) ,  µ(x) ,  and  
 
!UΓk
(m)(x)  in the 
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form of vectors whose components are the nodal values of the functions of the problem: 

 
 
!U (m) = !U1S

(m), !U2S
(m){ },      U 0 = U1S

0 ,U1S
0{ } , 

 σ ij
(m) = σ ijS

(m){ } ,      i, j = 1, 2 ,     S = 1,…, N . 

The nodes that belong to the boundary  Γk   are enumerated as follows:   

 j = { j1, j2,…, jp}       for    X j = x1 j, x2 j{ } .   

In this case,  X j ∈Γk ,  and we can form the sets   

 jC = jm1C , jm2
C ,…, jmℓC{ } ,    jO = jk1O , jk2O ,…, jkdO{ } ,    and    jT  = jr1T ,…, jrqT{ } ,    jT ∪ jO ∪ jC = j ,    

that describe the coordinates of the zones of adhesion, friction, and separation,   

 µ = {µ j} ,      j = { j1, jp} ,      and      !UΓk = !U1Γk
j , !U2Γk

j{ } . 

After necessary transformations, problem (1)–(3) is reduced to a system of linear algebraic equations of the 
form 

 
 
KU (m) = R(m) !UΓk

(m)( ), 

where  K   is the stiffness matrix preserved in the process of optimization,   

 U (m)  = 
  
U1

1(m),U2
1(m),…,U1

N (m),U2
N (m){ }⊤    

is the vector of nodal displacements, and  R(m) !UΓk
(m)( )   is the vector of nodal values of the right-hand sides.  

In the discrete form, problem (8) takes the form  

 
 
!UΓk
(m) = arg min Δ(m) !UΓk( )Δ(m)T !UΓk( ),     !UΓk

(m) ∈Q , (9) 

where   

 Δ(m) = D σ12
(m) − k σ22

(m)( ),   

 
D = diag µ j

(m), j = j1,…, j p{ }   is a diagonal matrix and   

  σkℓ
(m) = 

   
σkℓj1
(m) ,σkℓj2

(m) ,…,σkℓj p
(m){ }⊤ ,   k, ℓ = 1, 2 . 
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By using the Newton method, we determine the functions  
 
!UΓk
(m)   from (9) as follows: 

 
 
!U1Γk
(m) = !U1Γk

(m−1) − W !U1Γk
(m−1)( )⎡

⎣
⎤
⎦
−1
⋅G !U1Γk

(m−1)( ), (10) 

where 

 W !U1
(m−1)( )⎡

⎣
⎤
⎦ = [A][AT ] ,      G = [A]Δ(m−1) ,  

 A = ∂Δ i
∂ !UΓk j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ !UΓk =
!UΓk

m−1( )
,    i, j = 1,…, jp . 

The matrix  A   can be calculated as the Frechet matrix, where  m   is the number of step of the iterative 
process.  Conditions (4) and (5) are verified by applying the following algorithm (Fig. 1): 

Step 1.  Set  U2 = δ1 ,  U1 Γk
= 0 ,  σ12 Γσ

= 0 ,  σ22 Γσ
= 0 ,  the friction  coefficient k ,  the accuracy ε ,  

ζ ,  n = 0 ,  and a small quantity  αn . 

Step 2.  Form the sets  j ,  define the vector  U (0) ,  and compute  σ12
(0)   and  σ22

(0)   on the set  j . 

Step 3.  Determine  
 
k0 ≈ maxi σ12

j0 / σ22
j0⎡

⎣
⎤
⎦ . 

Step 4.  Determine  Δ j
(m) = σ12 j

(m) − k (n) σ22 j
(m) ,   j = 1,…, p . 

Step 5.  Determine the sets  jO . 

Step 6.  Determine the sets  jT   and µ . 

Step 7.  Form the vector  
 
!UΓk
(m) = U1Γk

(m),…,UpΓk
(m){ }  by using elements of the sets  jT   and  jO . 

Step 8.  Determine the vector  
 
!UΓk
(m)   by the Newton method and verify the condition 

 
!UΓk
(m) − !UΓk

(m−1) ≤ ε . 

Step 9.  If  k (n) − k ≤ ζ ,  then the program is terminated.  Otherwise, go to Step 10. 

Step 10.  Set  n = n +1 . 

Step 11.  Find  k (n) = k (n−1) − αnk (n−1) . 

Step 12.  Go to Step 4. 
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Fig. 1

5.  Analysis of the Results 

With the use of the presented algorithm, we solve the classical problems of indentation (with shift) of a rigid 
punch into the elastic half space with the mechanical characteristics  E = 200  GPa  and  ν = 0.3 .  The loading 
was realized kinematically, as a result of determination of the depth of indentation  δ1 = 4 ⋅10−3  mm  and the 

shift  δ2 = 10−3  mm.  For the finite-element analysis, we applied a COSMOS/M-type package.  
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 (a)  k = 1   (b)  k = 2  

Fig. 2.  Distributions of normal and tangential stresses:  σk2
(1)   — curves 1,  σk2

(2)  — curves 2,  σk2
(3)   — curves 3. 

  

Fig. 3.  Dependences of the size of the zone of adhesion on  k . 

      

Fig. 4.  Distributions of tangential stresses in the case of combined influence. 
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The finite-element partition was realized by the automatic choice of the step of a grid with an aim to attain 
the required relative error  equal to 0.02.  The total number of elements was equal to  1800  and the contact zone 
contained  36  elements.  The size ratio was equal to    ℓ/H = 0.3,  where  H   is the size that characterizes the 
finite-element model of the half space and   ℓ   is the size of the contact zone. 

In Fig. 2, we show the results of the iterative process (6) for  δ1 = 4 ⋅10−3mm.  The process of friction was 
observed on the boundaries of the contact zone. 

We see that the presence of friction decreases the values of tangential stresses and increases the equivalent 
force.  The convergence is attained after three iterations of Newton’s method. 

In Fig. 3, we present the dependence of the size of the zone of adhesion  a   on the friction coefficient.   
It almost coincides with the results obtained in [6] (dashed curve). 

We also studied the case of combined influence for δ1 = 4 ⋅10−3  mm and δ2 = 10−3  mm.  In Fig. 4, we pre-
sent the tangential stresses under the conditions of complete adhesion (solid line) and with regard for friction 
(dashed line).  The normal stresses remain practically invariable. 

CONCLUSIONS 

The contact problem of the theory of elasticity with regard for the friction and separation can be solved as 
an inverse problem in which the role of unknown function is played by the deviation of tangential displacements 
from their values in the case of complete adhesion.  In combination with the procedure of discretization of the 
problem, this approach guarantees a sufficiently high accuracy and does not require significant computational 
costs, unlike the method of successive approximations used for the solution of variational inequalities.  In addi-
tion, the proposed approach makes it possible to determine the zones of microsliding, adhesion, and separation. 
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