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AXIALLY SYMMETRIC VIBRATIONS OF ELASTIC ANNULAR BASES AND A  
PERFECT TWO-LAYER LIQUID IN A RIGID ANNULAR CYLINDRICAL VESSEL 

Yu. М. Кononov,  V. P. Shevchenko,  and  Yu. O. Dzhukha  UDC 533.6.013.42 

We deduce a frequency equation for the natural coupled axially symmetric vibrations of elastic bases  
(in the form of annular plates) and a heavy two-layer incompressible perfect liquid in a rigid annular  
cylindrical vessel.  We consider different limiting cases: the case of degeneration of annular plates  
into membranes, the case of absolutely rigid or circular plates, and the case of absence of the upper  
plate (liquid with free surface).  For a broad range of parameters of the analyzed mechanical system,  
we investigate the frequency spectra and obtain a series of mechanical effects in the problem of hy-
droelasticity. 

Introduction 

The problem of vibration of an incompressible perfect liquid placed in a rigid cylindrical vessel with two 
elastic bases can be regarded as a generalization of the problem of vibration of liquid in a rigid cylindrical vessel 
with an elastic membrane (or a plate) on the free surface.  The intense investigations of the last mentioned prob-
lem were originated more than 35 years ago [6, Sec. 5] and, at present, there are sufficiently many available pub-
lications dealing with problems of this kind (see, e.g., [2, 15]).  The problem of vibration of a perfect liquid in  
a rigid cylindrical vessel with elastic bases was, apparently, first considered from the viewpoint of functional 
analysis in [1, 13 (pp. 167–178)] and later in [5, 7–9, 11, etc.].  A large number of works was devoted to the vi-
bration of liquids with free surface in rigid cylindrical vessels with elastic bottoms (see the surveys in [9–11]).  
The interest in the problem of axially symmetric vibrations of the elastic bottom and liquids in cylindrical ves-
sels is connected with the necessity of taking into account the static deflections of the bottom and longitudinal 
vibrations of the liquid as a whole.  The axially symmetric vibrations of elastic bases and a single-layer perfect 
liquid in a rigid cylindrical vessel were investigated in [11].  In [9], the results obtained in [11] were generalized 
to the case of a coaxial cylindrical vessel.  The axially symmetric vibrations of a two-layer liquid were studied  
in [3, 4, 14] published relatively recently, as applied to the problem of capillary phase separators.  Among the 
works published in English, we should especially mention [15–18]. 

In the present work, we generalize the problem studied in [9] to the case of a two-layer perfect liquid where 
the contours of the plate are fixed.  The aim of the present work is to deduce a frequency equation and analyze 
the frequency spectrum of the mechanical system under consideration.  We consider the case of degeneration  
of the plates into membranes, the case of absolutely rigid plates, the case of circular plates, and also the case of 
liquids with free surfaces.  We performed numerical investigations for wide ranges of the parameters of mechan-
ical systems: elastic characteristics of the plates, densities, depths of filling, as well as for the zero-gravity case.  
The obtained results can be used to determine the natural forms of vibrations and for the analysis of forced vi-
brations in the "solid–liquid–elastic plates" system. 
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1.  Statement of the Problem 

We consider coupled axially symmetric vibrations of elastic bases and a heavy two-layer incompressible 
perfect liquid with densities  ρ1  and  ρ2   that completely fills a straight annular cylindrical vessel with rigid lat-
eral surface of the outer radius  a   and inner radius  aε ,  0 ≤ ε < 1.  The bases of annular cylindrical vessel are 
annular isotropic plates with flexural stiffnesses  Di   subjected to the action of tensile forces  Ti   in the median 
plane,  i = 1,2 .  The subscript  i = 1  corresponds to the upper base and upper liquid with density  ρ1,  whereas 
the subscript  i = 2   corresponds to the lower base and lower liquid with density  ρ2 .  We introduce a cylindrical 
coordinate system  Orθz   so that the plane  Orθ  coincides with the interface of the liquids, and the Oz -axis is 
directed along the axis of the cylinder in the direction opposite to the vector of gravitational acceleration  g .  We 
consider the linear statement of the problem under the assumption that the motion of liquid is potential and the 
joint vibrations of the plates and liquid are not separated. 

The equations of the motion of the analyzed mechanical system take the form [9, 11, 12] 

 k01
∂2W1

∂t 2
+ D1Δ2

2W1 −T1Δ2W1 +ρ1gW1 = ρ1 Q1−
∂Φ1
∂t z=h1

− gh1
⎛

⎝
⎜

⎞

⎠
⎟ , (1) 

 k02
∂2W2

∂t 2
+ D2Δ2

2W2 −T2Δ2W2 −ρ2gW2 = −ρ2 Q 2−
∂Φ2
∂t z=−h2

+ gh2
⎛

⎝
⎜

⎞

⎠
⎟ , (2) 

 ΔΦ1 = 0, ΔΦ2 = 0 . 

We solve Eqs. (1) and (2) with regard for boundary conditions 

 
∂Φ1
∂r r=a,r=aε

=
∂Φ2
∂r r=a,r=aε

= 0 ,  

 
∂Φ1
∂z z=h1

=
∂W1
∂t ,

∂Φ2
∂z z=−h2

=
∂W2
∂t , 

   (3) 

 ρ1 Q1−
∂Φ1
∂t z=0

− gζ
⎛
⎝⎜

⎞
⎠⎟
= ρ2 Q 2−

∂Φ2
∂t z=0

− gζ
⎛
⎝⎜

⎞
⎠⎟

, 

 
∂Φ1
∂z z=0

=
∂Φ2
∂z z=0

= ∂ζ
∂t ,  

 W1 dS
S
∫ = ζdS

S
∫ = W2 dS

S
∫ , (4) 

 Wi γ j
= 0,

∂Wi
∂r γ j

= 0, i, j = 1,2 . (5) 
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Here,  k0i = ρ0iδ0i ;  Wi ,  ρ0i ,  and  δ0i   are the deflection, density, and thickness of i th plate, respectively;  
Φi   is the velocity potential of the i th liquid;  z = ζ(r,t )   is the equation of interface between the liquids (inner 
surface);  Qi   are arbitrary functions of time;   

 Δ2 = ∂2

∂r2
+ 1
r
∂
∂r      and     Δ = Δ2 +

∂2

∂z2
   

are the two- and three-dimensional axially symmetric Laplace operators, respectively, and  S   is an annular  
domain.  Here, for the sake of convenience, we introduce an additional subscript  j   and the notation of the  
contours.  The subscript  j = 1  corresponds to the outer contour  γ1  and  j = 2   corresponds to the inner con-
tour  sγ 2 . 

2.  Procedure of Solution  

In view of the axial symmetry of the function  Φi ,  we represent  Wi   and  ζ   in the form of generalized 
Fourier series in the eigenfunctions  ψn (r)  as follows [9, 11, 12]:  

 
 
Φi (r, z,t ) = a0i (t )+ a1i (t )z + [Ain (t )e

knz + Bin (t )e
−knz ]ψn (r)

n=1

∞

∑ , (6) 

 Wi (r,t ) = Wi0 (t )+ Win (t )ψn (r)
n=1

∞

∑ , (7) 

 ζ(r,t ) = ζ0 (t )+ ζn (t )ψn (r)
n=1

∞

∑ , (8) 

where 

 Wi0 = 2
(1− ε2 )a2

rWi
aε

a

∫ dr, Win = 1
Nn

2 rWi
aε

a

∫ ψn dr ,  

 ζ0 = 2
(1− ε2 )a2

rζdr
aε

a

∫ , ζn = 1
Nn

2 rζ
aε

a

∫ ψn dr, Nn
2 = r

aε

a

∫ ψn
2 dr . 

In the case of axial symmetry, the eigenfunctions  ψn (r) ,  which form, together with an arbitrary constant,  
a complete orthogonal system of functions on the segment  [a, aε]  are given by the formulas   

 ψn (r) = J0 (knr)+  γ nY0 (knr) ,   

where  γ n = − J1(ξn )/Y1(ξn ) ,  J0 ,  J1,  and  Y0 ,  Y1  are Bessel functions of the first and second kind of orders 
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zero and one, vkn = ξn /a are eigenvalues, and ξn  are the roots of the equations   

 J1(ξn )Y1(ξnε)−  J1(ξnε)Y1(ξn ) = 0    

for  ε ≠ 0   and  J1(ξn ) = 0   for  ε = 0 . 
Substituting expressions (6)–(8) in the boundary conditions (3) and using the orthogonality of the func-

tions  ψn (r) , we find  

 
 
A1n =

!W1n − !ζne
−κ1n

2kn sinhκ1n
, B1n =

!W1n − !ζne
κ1n

2kn sinhκ1n
, 

 
 
A2n = −

!W2n − !ζne
κ2n

2kn sinhκ2n
, B2n = −

!W2n − !ζne
−κ2n

2kn sinhκ2n
, κ in = knhi , 

  a11 = a12 = !W10 = !W20 = !ζ0 , ρ1(Q1− !a01 − gζ0 ) = ρ2 (Q 2− !a02 − gζ0 ) . 

Equations (1) and (2), as well as the equation of the interface of liquids (inner surface), take the form 

 k01
∂2W1

∂t 2
+ D1Δ2

2W1 −T1Δ2W1 +ρ1gW1  

  
  
= ρ1 Q1 − !a01 − h1(!!ζ0 + g)−

!!W1n coshκ1n − !!ζn
kn sinhκ1n

ψn
n=1

∞

∑⎛
⎝⎜

⎞
⎠⎟

, (9) 

 k02
∂2W2

∂t 2
+ D2Δ2

2W2 −T2Δ2W2 −ρ2gW2  

  
  
= −ρ2 Q2 − !a02 + h2(!!ζ0 + g)+

!!W2n coshκ2n − !!ζn
kn sinhκ2n

ψn
n=1

∞

∑⎛
⎝⎜

⎞
⎠⎟

, (10) 

 
  
!!ζn + σn

2ζn −
1
an

(b1n !!W1n + b2n !!W2n ) = 0 , (11) 

where  σn
2 = gknΔρ/an   is the squared frequency of vibration of the inner surface for the rigid bases;  an =  

ρ1 cothκ1n +ρ2 cothκ2n ,  Δρ = ρ2 −ρ1,  and  bin = ρi /sinhκ in . 

3.  Derivation of the Frequency Equation 

Consider the problem of natural joint vibrations of elastic plates and a liquid.  For this purpose, we set 

   Wi (r,t ) = eiωtwi (r)+Wi
st (r) ,       ρ1(Q1 − !a01) = "Qe

iωt ,      and    ζ0 = weiωt .   
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Here,  Wi
st   is the static deflection of the plates considered in [13].  In this case, by virtue of (11), Eqs. (9) 

and (10) take the form 

 DiΔ2
2wi − TiΔ2wi − [k0iω

2 + (−1)iρig]wi     

  = (−1)i+1 !Q +[ρihiω
2 + (δi1 −1)gΔρ]w + ρiω

2 !winψn ,
n=1

∞

∑ i = 1, 2 , (12) 

where, in view of (4), 

 
 
!w1n =

w1n (coshκ1n − ω
2 !b1n )− ω

2 !b2nw2n
kn sinhκ1n

, 

 
 
!w2n =

w2n (coshκ2n − ω
2 !b2n )− ω

2 !b1nw1n
kn sinhκ2n

, 

  (13) 

 
 

!bin =
bin

an (ω
2 − σn

2 )
, 

 win = 1
Nn

2 r
aε

a

∫ wiψndr , 

 w = 2
a2 (1− ε2 )

rw1
aε

a

∫ dr = 2
a2 (1− ε2 )

rw2
aε

a

∫ dr , (14) 

and  δi1   is the Kronecker delta. 
We seek the solution of each equation in (12) as the sum of the general solution of homogeneous equation 

and a partial solution of the inhomogeneous equation [6, 7, 9–11]: 

 
   
wi = wik

0 Aik
0

k=1

4

∑ +ρiω
2 !win

din
ψn +

n=1

∞

∑ !k0i{(−1)
i+1 !Q + [ρihiω

2 + (δi1 −1)gΔρ]w}, i = 1,2 . (15) 

Here,   
!k0i = −1/(k0iω

2 + (−1)iρig) ;    din = (Dikn
2 +Ti )kn

2 − [k0iω
2 + (−1)iρig],  and  Aik

0 ,  win ,   !Q ,  and  w  are 
unknown constants,  i = 1,2 ,  k = 1,2,3,4 .  

Substituting (15) in (14), we get two equations for  Aik
0 ,   !Q ,  and   !w: 

 
  

( !w1k
0 A1k

0 − !w2k
0 A2k

0 )
k=1

4

∑ + ( !k01 + !k02 ) !Q + (ρ1h1 !k01 −ρ2h2 !k02 )ω
2 + !k02gΔρ⎡⎣ ⎤⎦w = 0 , (16) 

 
 
!w2k
0 A2k

0

k=1

4

∑ − !k02 !Q + !k2w = 0 , (17) 
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where   
!k2 = !k02 (ρ2h2ω

2 − gΔρ)−1  and  

 
 
!wik
0 = 2

(1− ε2 )a2
rwik

0

aε

a

∫ dr . 

Substituting (15) in (13) and solving the system of two linear equations for  w1n   and  w2n ,  we arrive at the 
final expressions for plate deflections: 

 w1 = w1k
0 + a11nE1k n

0 ψn
n=1

∞

∑⎛
⎝⎜

⎞
⎠⎟
A1k
0⎡

⎣
⎢

k=1

4

∑  

  
 
+ a12nE2k n

0 ψn
n=1

∞

∑⎛
⎝⎜

⎞
⎠⎟
A2k
0 ⎤

⎦
⎥ + !k01( !Q +ρ1h1ω

2w), 

   (18) 

 w2 = a21nE1k n
0 ψn

n=1

∞

∑⎛⎝⎜
⎞
⎠⎟
A1k
0 + w2k

0 + a22nE2k n
0 ψn

n=1

∞

∑⎛
⎝⎜

⎞
⎠⎟
A2k
0⎡

⎣
⎢

⎤

⎦
⎥

k=1

4

∑  

  
  
+ !k02 − !Q + (ρ2h2ω

2 − gΔρ)w⎡⎣ ⎤⎦ . 

Here,   

 
 
a11n = 1

!Δn
ω2b1n (a1nd2n +ω

2b2ncn ), a12n = − 1
!Δn

ω4knb1nb2nd2n ,  

 
 
a21n = − 1

!Δn
ω4knb1nb2nd1n , a22n = 1

!Δn
ω2b2n (a2nd1n +ω

2b1ncn ) ,  

  !an = an (ω
2 − σn

2 ), bn = b1n coshκ2n + b2n coshκ1n , 

   (19) 

  cn = ω2 bn − !an coshκ1n coshκ2n , 

   
!Δn = kn

2 !and1nd2n − ω
2(a1nb1nd2n + a2nb2nd1n +ω

2b1nb2ncn ), 

 
  
ain = kn( !an coshκ in − ω

2bin ), Eikn
0 = 1

Nn
2 rwik

0ψn dr
aε

a

∫ . 

In view of the conditions of fastening of the plates (5), the expressions for deflections of the plates (18), and 
the additional equations (16) and (17), we arrive at the following frequency equation for the natural joint ax-
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isymmetric vibrations of the elastic bases and two-layer liquid: 

 Cqr
q,r=1

10
= 0 , (20) 

where 

 Ci+ j−1,k = Bijk + ai1nE1kn
0 Bjn

∗

n=1

∞

∑ , Ci+ j−1,k+4 = ai2nE2kn
0 Bjn

∗

n=1

∞

∑ , 

  Ci+ j−1,9 = k! 01, Ci+ j−1,10 = k! 01ρ1h1ω
2 , Ci+ j ,k = Cijk ,  

 Ci+ j ,k+4 = 0, Ci+ j ,10 = 0, i = 1, j = 1, k = 1,2,3,4 ,  

 Ci+ j ,k = Bijk + ai1nE1kn
0 Bjn

∗

n=1

∞

∑ , Ci+ j ,k+4 = ai2nE2kn
0 Bjn

∗

n=1

∞

∑ , 

 Ci+ j,9 = k! 01, Ci+ j,10 = k! 01ρ1h1ω
2, Ci+ j+1,k = Cijk , Ci+ j+1,k+4 = 0 ,  

 Ci+ j+1,9 = 0, Ci+ j+1,10 = 0, i = 1, j = 2, k = 1,2,3,4 , 

 Ci+ j+2,k = ai1nE1kn
0 Bjn

∗

n=1

∞

∑ , Ci+ j+2,k+4 = Bijk + ai2nE2kn
0 Bjn

∗

n=1

∞

∑ , 

  Ci+ j+2,9 = − k! 02 , Ci+ j+2,10 = k! 02 (ρ2h2ω
2 − gΔρ) ,  

 Ci+ j+3,k = 0, Ci+ j+3,k+4 = Cijk , Ci+ j+3,9 = 0 , (21) 

 Ci+ j+3,10 = 0, i = 2, j = 1, k = 1,2,3,4 ,  

 Ci+ j+3,k = ai1nE1kn
0 Bjn

∗

n=1

∞

∑ , Ci+ j+3,k+4 = Bijk + ai2nE2kn
0 Bjn

∗

n=1

∞

∑ ,  

  Ci+ j+3,9 = − k! 02 , Ci+ j+3,10 = k! 02 (ρ2h2ω
2 − gΔρ), 

 Ci+ j+4,k = 0, Ci+ j+4,k+4 = Cijk , 

 Ci+ j+4,9 = 0, Ci+ j+4,10 = 0, i = 2, j = 2, k = 1,2,3,4 ,  

  C9,k = !w1k
0 , C9,k+4 = − !w2k

0 , C9,9 = k! 01 + k! 02 , 
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  C9,10 = (ρ1h1k! 01 −ρ2h2 k! 02 )ω
2 + k! 02gΔρ, C10,k = 0, 

  C10,k+4 = !w2k
0 , C10,9 = − k! 02 , C10,10 = k! 2 , k = 1,2,3,4 . 

Here,   

 Bijk = wik
0

γ j
,  Cijk =

dwik
0

dr
γ j

,  Bjn
∗ = Z0

r
a

⎛
⎝⎜

⎞
⎠⎟ γ j

,   

and   

 Zm (x)= Jm (ξnx)+ γ nYm (ξnx) . 

Equation (20) describes joint natural vibrations of elastic annular plates and a two-layer perfect liquid in  
an annular cylinder under the conditions of rigid fastening of the outer and inner contours of the plates.  It can be 
expected that the frequency spectrum consists of four sets of frequencies corresponding to the vibrations of the 
upper and lower elastic bases, liquid column as a whole, and the inner interface of the liquids.  For a single-layer 
liquid, the frequency spectrum contains three sets of frequencies. 

4.  Special Cases of the Frequency Equation for Joint Natural Vibrations of Elastic Bases and a Liquid 

The obtained equation (20) is fairly general and covers numerous special cases that are of independent in-
terest. 

Upper plate degenerates into a membrane.  In this case, it is necessary to delete the second and fourth rows 
and the second and fourth columns in the determinant of Eq. (20) and set  D1 = 0   in relations (19). 

Lower plate degenerates into a membrane.  By analogy with the previous case, it is necessary delete the 
sixth and eights rows and the sixth and eights columns in the determinant of Eq. (20) and set  D2 = 0   in rela-
tions (19).  In this case, Eq. (20) takes the form 

 Cqr
q,r=5,7,9,10

5,7,9,10
= 0 , 

where 

 C5,5 = B211 + a22nE21n
0 B1n

∗

n=1

∞

∑ , C5,7 = B212 + a22nE22n
0 B1n

∗

n=1

∞

∑ ,  

  C5,9 = − k! 02 , C5,10 = k! 02 (ρ2h2ω
2 − gΔρ),  

 C7,5 = B221 + a22nE21n
0 B2n

*

n=1

∞

∑ , C7,7 = B222 + a22nE22n
0 B2n

*

n=1

∞

∑ ,  
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  C7,9 = − k! 02 , C7,10 = k! 02 (ρ2h2ω
2 − gΔρ) ,  

  C9,5 = − !w21
0 , C9,7 = − !w22

0 , C9,9 = k! 01 + k! 02 , 

  C9,10 = (ρ1h1k! 01 −ρ2h2 k! 02 )ω
2 + k! 02gΔρ, C10,5 = !w21

0 , 

  C10,7 = !w22
0 , C10,9 = − k! 02 , C10,10 = k! 2. 

Lower and upper plates degenerate into membranes.  In this case, it is necessary to delete the second, 
fourth, sixth, and eighth rows and the second, fourth, sixth, and eighth columns in the determinant of Eq. (20) 
and set  D1 = D2 = 0   in relations (19).  

The case of presence of free surface on the liquid.  This case is realized if the upper plate is absent.  In this 
case, it is necessary to delete the first, second, third, and fourth rows and the first, second, third, and fourth col-
umns in the determinant of Eq. (20) and set  k01 = 0 ,  T1 = 0 ,  and  D1 = 0  in relations (19). 

Either the lower plate or the upper plate is absolutely rigid.  If the upper or lower plate becomes absolutely 
rigid, then  w1 ≡ 0   ( !w1k

0 ≡ 0)  or  w2 ≡ 0   ( !w2k
0 ≡ 0 ).  Passing to the limit in Eq. (20) as  T1 →∞   (a11n → 0 ,  

a12n → 0 ,  w1k
0 = 0)  or as  T2 →∞   (a21n → 0 ,  a22n → 0 ,  w2k

0 = 0 ),  we get the following frequency equa-
tions:  

 — in the first case (as  T1 →∞), 

 Cqr
q,r=5

10
= 0 , 

 — in the second case (as  T2 →∞ ), 

 Cqr
q,r=1,2,3,4,9,10

1,2,3,4,9,10
= 0 . 

The coefficients  Cqr   are given by relations (21). 

Degeneration of the annular cylinder into a circular cylinder (εε == 0).  In this case, the frequency equa-
tion (20) takes the form  

 Cqr q,r=1

6
= 0 , (22) 

where  

 Ci,k = Bik + ai1nE1kn
0 Bn

∗

n=1

∞

∑ , Ci,k+2 = ai2nE2kn
0 Bn

∗

n=1

∞

∑ , 



AXIALLY SYMMETRIC VIBRATIONS OF ELASTIC ANNULAR BASES AND A PERFECT TWO-LAYER LIQUID 107 

  Ci,5 = !k01, Ci,6 = !k01ρ1h1ω
2 , Ci+1,k = Cik ,  

 Ci+1,k+2 = 0, Ci+1,5 = 0, Ci+1,6 = 0, i = 1, k = 1,2 , 

 Ci+1,k = ai1nE1kn
0 Bn

∗

n=1

∞

∑ , Ci+1,k+2 = Bik + ai2nE2kn
0 Bn

∗

n=1

∞

∑ , 

  Ci+1,5 = − !k02 , Ci+1,6 = !k02 (ρ2h2ω
2 − gΔρ), Ci+2,k = 0 ,  

 Ci+2,k+2 = Cik , Ci+2,5 = 0, Ci+2,6 = 0, i = 2, k = 1,2, 

  C5,k = !w1k
0 , C5,k+2 = − !w2k

0 , C5,5 = !k01 + !k02 , 

  C5,6 = (ρ1h1 !k01 −ρ2h2 !k02 )ω
2 + !k02gΔρ, C6,k = 0, C6,k+2 = !w2k

0 , 

  C6,5 = − !k02 , C6,6 = !k2 , k = 1,2 , 

 Bik = wik
0

r=a
, Cik =

dwik
0

dr
r=a

, Bn
∗ = J0 (ξn ) . 

For the nonstratified liquid  (ρ1 = ρ2 ),  this case was investigated in detail in [11].  It is worth noting that 
Eq. (22) differs from Eq. (20) as  ε → 0.  Note that, as  ε → 0 , Eq. (20) describes the vibrations of the analyzed 
mechanical system in the case of immobile (fastened) centers.  This is a new problem of the axially symmetric 
vibrations of liquid and elastic circular plates with fixed centers, which follows from the problem analyzed 
above. 

Suppose that the upper and lower bases are perfectly elastic  (T1 = T2 = 0)  and  k0iω
2 + (−1)iρig > 0 .   

In this case, we get  

 wi1
0 = J0 (µir), wi2

0 = Y0 (µir), wi3
0 = I0 (µir), wi4

0 = K0 (µir), 

 
 
!wi1
0 = 2

J1( !µi )− εJ1(ε !µi )
!µi (1− ε2 )

, !wi2
0 = 2

Y1( !µi )− εY1(ε !µi )
!µi (1− ε2 )

,  

 
 
!wi3
0 = 2

I1( !µi )− εI1(ε !µi )
!µi (1− ε2 )

, !wi4
0 = − 2

K1( !µi )− εK1(ε !µi )
!µi (1− ε2 )

,  

 
 
Ei1n
0 = 2 !µi

J1( !µi )Z0 (1)− εJ1(ε !µi )Z0 (ε)
( !µi

2 − ξn
2 ) !Nn

2 , (23) 

 
 
Ei2n
0 = 2 !µi

Y1( !µi )Z0 (1)− εY1(ε !µi )Z0 (ε)
( !µi

2 − ξn
2 ) !Nn

2 , 
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Ei3n
0 = 2 !µi

I1( !µi )Z0 (1)− εI1(ε !µi )Z0 (ε)
( !µi

2 + ξn
2 ) !Nn

2 , 

 
 
Ei4n
0 = − 2 !µi

K1( !µi )Z0 (1)− εK1(ε !µi )Z0 (ε)
( !µi

2 + ξn
2 ) !Nn

2 , 

where   

 µ1
4 = 1

D1
(k01ω

2 −ρ1g),       µ2
4 = 1

D2
(k02ω

2 +ρ2g) ,        
!Nn
2 = Z0

2 (1)− ε2Z0
2 (ε),   

 !µi = aµi ,  and  J p ,  Yp,  I p ,  and  Kp   are Bessel functions of the first and second kinds of real and imaginary 
arguments.  We now introduce dimensionless variables as follows: 

 
 
Ω2 = ω2a

g , !Di =
Di

ρ2ga
4 ,

!Ti =
Ti

ρ2ga
2 , 

 
 
k0i
∗ =

k0i
ρ2a

, !hi =
hi
a , ρ12 =

ρ1
ρ2

. 

The dimensionless quantities take the following form: 

  κ in = ξn !hi , An = ρ12 cothκ1n + cothκ2n , 

 
 
!σn
2 = 1

An
ξn (1−ρ12 ), !b1n = ρ12

1
sinhκ1n

, !b2n = 1
sinhκ2n

 

  
!bn = b1n coshκ2n + b2n coshκ1n , !An = An (Ω

2 − σn
2 ) ,  

  
!d1n = ( !D1ξn

2 + !T1)ξn
2 − (k01

∗ Ω2 −ρ12 ) ,       
!d2n = ( !D2ξn

2 + !T2 )ξn
2 − (k02

∗ Ω2 +1) , 

  !ain = ξn ( !An coshκ in − Ω2 !bin ), !cn = Ω2 !bn − !An coshκ1n coshκ2n ,  

  
!Δn
∗ = ξn

2 !An
!d1n !d2n − Ω2 ( !a1n !b1n !d2n + !a2n !b2n !d1n +Ω2 !b1n !b2n !cn ) , 

   
!k01
∗ = −(k01

∗ Ω2 −ρ12 )
−1, !k02

* = −(k02
∗ Ω2 +1)−1,  

 
 
a11n = 1

!Δn
∗ Ω

2 !b1n ( !a1n !d2n +Ω2 !b2n !cn ), a12n = − 1
!Δn
∗ Ω

4ξn !b1n !b2n !d2n,  

 
 
a21n = − 1

!Δn
∗ Ω

4ξn !b1n !b2n !d1n , a22n = 1
!Δn
∗ Ω

2 !b2n ( !a2n !d1n +Ω2 !b1n !cn ),  
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!k2 = !k02

* (Ω2 !h2 −1+ρ12 )−1 , 

 
 
!µ1
4 =

k01
∗ Ω2 −ρ12
!D1

, !µ2
4 =

k02
∗ Ω2 +1
!D2

. 

If  ε = 0   and  ρ12 = 1,  then expressions (23) can be rewritten as follows [11]:  

 
  
wi1
0 = J0( !µi

r
a), wi2

0 = I0( !µi
r
a), !wi1

0 = 2
!µi

J1( !µi ), !wi2
0 = 2

!µi
I1( !µi ) , 

 
 
Ei1n
0 =

2 !µi J1( !µi )
( !µi

2 − ξn
2 )J0 (ξn )

, Ei2n
0 =

2 !µi I1( !µi )
( !µi

2 + ξn
2 )J0 (ξn )

. 

5.  Numerical Investigations and Conclusions 

In view of the complexity of the analyzed problem, we performed numerical investigations for two most in-
teresting cases:  the absence of the upper base (the presence of free surface of the liquid) and the case of weight-
less  (g = 0 ) homogeneous liquid  (ρ1 = ρ2 ).  Despite a significant number of available publications, these cases 
are studied quite poorly. 

In the absence of the upper base  (k01 = 0,  T1 = 0 ,  and  D1 = 0),  for the absolutely elastic bottom  (T2 = 0 )  
and the introduced dimensionless variables, we find:   

  
!d1n = ρ12 ,       

!d2n = !D2ξn
4 − k02

∗ Ω2 −1,      and    
 
!k
01

∗ = 1
ρ12

.   

The functions  w2k
0   and the expressions   !w2k

0   and  E2kn
0   are given by relations (23). 

In the absence of gravitation  (g = 0 ),  we introduce different dimensionless variables:  

 
 
Ω2 = 1

D2
ω2ρ2a

5 , D12 =
D1
D2

, !µ1
4 = 1

D12
k01
∗ Ω2 , !µ2

4 = k02
∗ Ω2 . 

If  Ti ≠0   and  k01 = k02 = 0 ,  i.e., in the case of inertialess plates, we obtain  

 wi1
0 = 1, wi2

0 = I0 γ 0i
r
a

⎛
⎝⎜

⎞
⎠⎟ , wi2

0 = ln r
a

⎛
⎝⎜

⎞
⎠⎟ , wi2

0 = K0 γ 0i
r
a

⎛
⎝⎜

⎞
⎠⎟ ,  

   (24) 

 γ 01
2 = 1

D1
T1a

2 , γ 02
2 = 1

D2
T2a

2 . 

As follows from relations (15)–(17) and (24) and the numerical results, for the inertialess plates and also  
in the case where one of the plates is  absolutely  rigid  (Ti →∞ )  and  the  other  plate  is  inertialess,  the  frequency  
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Fig. 1.  Dependences of  Ω31
2   on  k02

∗   for different   !h . 

 

Fig. 2.  Dependences of  Ω31
2   on  ε   for different   !h . 

equation has no real roots.  In addition, the frequency equation has no real roots also for the inertial plates.  
Hence, in the absence of gravitation, there are no axially symmetric vibrations if one of the plates is absolute-
ly rigid. 

Numerical investigations of the frequency equation (20) in the presence of bulk forces were carried out for 
the following values of the dimensionless parameters:  ε = 0.001− 0.9 ,   !h = 0.5 −1.5 ,  k02

∗ = 0 −10 ,   
!D2 = 1,  

 
!T2 = 0 ,  and  ρ12 = 1,  where   

!h = !h1 + !h2 .  In this case, three sets of frequencies are preserved and they corre-
spond to vibrations of the upper base or of the free surface, of the elastic bottom, and of the liquid column.  The 
calculations were performed by taking into account five terms in the series in Eq. (20),   n = 1,2,…,5 ,  in the case 
of the free surface.  We present the dependences of the squared first dimensionless frequency from the third set 
(frequency of vibration of the liquid column as a whole)  Ω31

2   on the mass characteristic of the bottom  
k02
∗ = 0 −10   in Fig. 1 and on  ε = 0.001− 0.9   in Fig. 2. 
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The results of our analytic and numerical investigations enable us to make the following conclusions: 

1.  The frequency spectrum consists of four sets of frequencies corresponding to the vibrations of the upper 
and lower elastic bases, of the liquid column as a whole, and of the interface of liquids.  For a single-layer liq-
uid, the frequency spectrum contains three sets of frequencies.  

2.  In the absence of gravitation, there are no axially symmetric vibrations if one of the plates is absolute-
ly rigid. 

3.  In the presence of free surface of the two-layer liquid, the frequency spectrum consists of four sets of 
frequencies corresponding to vibrations of the free surface, elastic bottom, liquid column, and inner surface.   
In a broad range of the parameters of mechanical system, we observe weak variations of frequencies from the 
first and fourth sets and noticeable changes in the frequencies from the second and third sets; moreover,  

 — the dependence of the squared first frequency from the third set on the dimensionless stiffness is al-
most linear in most cases; 

 — as the depth of filling increases, we observe an insignificant decrease in the frequencies from the first 
and fourth sets and a significant decrease in the frequencies from the second and third sets; 

 — a significant increase in the frequencies from the third set takes place as the depth of filling decreases. 

4.  The series of frequency equations converge fairly rapidly.  As a rule, it is sufficient to take two or three 
terms in series in order to attain the accuracy acceptable for practical calculations.  If the mass characteristics of 
the plates are taken into account, then the period of solution of the frequency equations noticeably increases.  

In our opinion, it is reasonable to devote subsequent investigations in this field to the generalization of the 
analyzed problem for different conditions of fastening of the contours of annular plates, to the determination of 
the natural forms of vibrations, and to the analysis of forced longitudinal vibrations of a cylindrical vessel with 
elastic bases and a two-layer liquid. 

The present paper contains some results of investigations supported by the grant of the State Foundation for 
Fundamental Research within the framework of the Competitive Project F71/80–2016. 
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