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ON THE CONVERGENCE RATE
OF THE CONTINUOUS NEWTON METHOD

A. Gibali, D. Shoikhet, and N. Tarkhanov UDC 517.9

Abstract. In this paper we study the convergence of the continuous Newton method for solving
nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based
on recent progress in the geometric theory of spiral-like functions. We prove convergence theorems and
illustrate them by numerical simulations.
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Introduction

Consider the classical problem of finding an approximate solution to a nonlinear equation

f(z) = 0

in a domain D in the complex plane C, where f : D → C is a holomorphic function in D. To this end
one uses diverse modifications of the recurrence formula

zn+1 = zn − λn
f(zn)

f ′(zn)
(0.1)

for n = 0, 1, . . . , where z0 is an initial approximation in D and λn > 0. For a suitably chosen sequence
{λn}, formula (0.1) is often called the damped Newton method while for λn ≡ 1 it is called the classical
Newton method, see [7].

We focus on the classical Newton method. The convergence of (0.1) is widely explored and depends
on the specific choice of the initial point z0 ∈ D.

The recurrence formula (0.1) displays immediately the initial boundary value problem⎧⎨
⎩

ż = − f(z)

f ′(z)
, if t > 0,

z(0) = z0,
(0.2)
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for a curve z = z(t) in D starting at z0 and leading to a solution a ∈ D of f(z) = 0. In fact, if λ �= 0,
then for f(a) to vanish it is necessary and sufficient that

−λ
f(a)

f ′(a)
= 0,

which is equivalent to

a− λ
f(a)

f ′(a)
= a.

The standard successive approximations for solving this equation look like

zn+1 = zn − λ
f(zn)

f ′(zn)
for n = 0, 1, . . . . On writing zn = z(n) and passing to a continuous parameter t ∈ [0,∞) we get

z(t+Δt)− z(t)

Δt
= − f(z(t))

f ′(z(t))
with Δt = λ. Taking the limit as Δt → 0 yields (0.2), as desired.

As defined in (0.2), the continuous version of the Newton method was probably first introduced
in [4]. Later this method and its diverse modifications were studied mostly within the framework of
real analysis, see for instance [7, 13]. In [1] and [2] the continuous Newton method is developed in
Hilbert spaces. The recent paper [9] studied the convergence rate of the continuous Newton method
for holomorphic functions in the unit disk of the complex plane. Milano [11] applied and compared
the continuous Newton method and a robust version of this method with known results for the power
flow problem. In [12, Chap. 22] are presented interesting actual problems regarding the continuous
Newton method and semigroups in Banach spaces.

It is worth pointing out that the vector field on the right-hand side of (0.2) just amounts to (minus)
the logarithmic derivative of f. The first integral of (0.2) is

f(z(t)) = f(z0)e
−t

for t ≥ 0, as is easy to check. Hence it follows that f(z(t)) → 0, when t → ∞. Notice that f(z(t))
describes the discrepancy of the approximate solution z(t), provided that z(t) converges to a ∈ D as
t → ∞.

Summarizing we conclude that the study of the continuous version of the Newton method consists
of two main steps. The first of the two is to describe those initial data z0 ∈ D for which the initial
boundary value problem (0.2) has a solution z(t) defined for all t ≥ 0. It is generally seen that the
solution is unique whenever it exists. The second step consists in studying the asymptotic behavior
of the global solution z(t), as t → ∞. This is precisely what the present paper is aimed at.

1. Spiral-like Mappings

Throughout this paper by D is meant a domain in a complex Banach space X endowed with a norm
‖ ·‖. We denote by Hol(D,X) the space of all holomorphic (i.e., Fréchet differentiable) mappings on D
with values in X. For f ∈ Hol(D,X) we denote by f ′(x) the Fréchet derivative of f at a point x ∈ X.
By definition, this is a bounded linear operator in X.

As usual, X∗ stands for the dual space ofX. By the Hahn–Banach theorem, for each x ∈ X there is a
functional lx ∈ X∗ with the property that lx(x) = ‖lx‖ ‖x‖. On normalizing lx one obtains a functional
whose norm is ‖x‖. Write x∗ for any functional l ∈ X∗ satisfying Re l(x) = ‖x‖2 = ‖l‖2, and ∗x for
the set of all functionals l with this property (cf. the Hodge star operator). Such a functional x∗ is
in general not unique. However, if X is a Hilbert space, then the element x∗ is unique and it can be
identified with x, which is due to the Riesz representation theorem.

A mapping f ∈ Hol(D,X) is said to be locally biholomorphic if for each x ∈ D there are neighbor-
hoods U ⊂ D of x and V of f(x), such that f |U is a bijective mapping of U onto V and its inverse is
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holomorphic. It is well known that f ∈ Hol(D,X) is locally biholomorphic on D if and only if, for each
x ∈ D, the Fréchet derivative f ′(x) is a bijective mapping of X. By the inverse mapping theorem of
Banach, the bijectivity of f ′(x) implies readily the boundedness of its inverse. For a finite dimensional
space X, a mapping f ∈ Hol(D,X) is locally biholomorphic if and only if it is locally one-to-one.
However, this fact no longer holds for general infinite dimensional spaces X (see for instance [6]).

A bounded linear operator A in X is called strongly accretive if there is a constant k > 0 with the
property that Re 〈Ax, x∗〉 ≥ k ‖x‖2 for all x ∈ X and x∗ ∈ ∗x. The following assertion characterizes
those bounded linear operators in X which have spectrum in the open right half-plane Reλ > 0.

Lemma 1.1. Suppose A : X → X is a bounded linear operator. The following are equivalent:

(1) The spectrum of the operator A lies in the open right half-plane Reλ > 0.
(2) The linear semigroup exp(−tA) converges to 0 in the operator norm, as t → ∞.
(3) There is an equivalent norm on X, such that A is strongly accretive with respect to the corre-

sponding sesquilinear form.

Proof. The equivalence of (1) and (2) is actually a consequence of the spectral mapping theorem.
However, we will need some addition details.

Denote by χ(A) the lower exponential index of A, that is,

0 < χ(A) := inf
λ∈spA

Reλ = lim
t→∞

log ‖ exp(−tA)‖
−t

, (1.1)

where spA stands for the spectrum of A (see [3]). Then for any λ ∈ (0, χ(A)) there is C > 0 such that

‖ exp(−tA)‖ ≤ C exp(−λ‖A‖)
for all t ≥ 0. On setting

‖x‖1 := sup
t≥0

‖ exp (−t(A− λI)) x‖
we conclude that ‖x‖ ≤ ‖x‖1 ≤ C ‖x‖ for all x ∈ X, which is due to (1.1), and

‖ exp(−tA)x‖1 ≤ exp(−λ‖A‖) ‖x‖1 (1.2)

for t ≥ 0. Hence it follows that
Re 〈Ax, x∗〉1 ≥ λ ‖x‖21

for all x ∈ X. Using the Hille–Yosida exponential formula (see [19]) one proves that the last estimate
implies (1.2) (and so (2)), which completes the proof.

Definition 1.1. Let A be a bounded linear operator in X with spectrum in the open right half-plane
and D a convex domain in X containing the origin. A mapping f ∈ Hol(D,X) is called A -spiral-like
with respect to the origin if exp(−tA)f(x) ∈ f(D) for all x ∈ D and t ≥ 0.

For A = λI with Reλ > 0 we say for short that f is λ -spiral-like. If A = I in the above definition,
then f is called starlike with respect to the origin.

2. General Results for Banach Spaces

Suppose f ∈ Hol(D,X) is a locally biholomorphic mapping of D, such that the origin belongs to
the closure of f(D). When looking for an approximate solution of the nonlinear equation f(x) = 0 in
D, one can exploit similarly to (0.2) a continuous analogue of the classical Newton method{

ẋ+ (f ′(x))−1f(x) = 0, if t > 0,
x(0) = x0,

(2.1)

where x0 ∈ D is an initial approximation. We slightly generalize it by considering{
ẋ+ (f ′(x))−1Af(x) = 0, if t > 0,

x(0) = x0,
(2.2)

where A is a bounded linear operator in X.
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Definition 2.1. The method (2.2) is called well defined on D if for any data x0 ∈ D the initial value
problem has a unique solution x = x(t), such that x(t) ∈ D for all t > 0 and the discrepancy f(x(t))
tends to zero as t → ∞.

The following theorem gives a criterion for the continuous version of the Newton method to be well
defined.

Theorem 2.1. Suppose that f is a biholomorphic mapping on a domain D ⊂ X and A satisfies one
of the equivalent conditions of Lemma 1.1. Then method (2.2) is well defined if and only if f is
A -spiral-like in X.

Proof. Let the method defined by (2.2) is well defined. Given any x0 ∈ D, the initial value prob-
lem (2.2) has a unique solution x = x(t) with values inD and f(x(t)) → 0 as t → ∞. Set y(t) = f(x(t)).
From the differential equation we get

ẏ = f ′(x) ẋ

= −f ′(x)
(
f ′(x)

]−1
Af(x)

= −Ay

for all t > 0. On the other hand, under our assumptions on A, the initial value problem{
ẏ +Ay = 0, if t > 0,

y(0) = y0

has a unique solution y(t) = exp(−tA)y0 for each y0 ∈ f(D). Hence it follows that exp(−tA)y0 =
f(x(t)) ∈ f(D) for all t > 0. Thus, f is A -spiral-like.

Conversely, if f is A -spiral-like, then, for each x0 ∈ D, the trajectory x(t) = f−1(exp(−tA)f(x0))
with t ≥ 0 is well defined and does not go beyond the domain D. A direct calculation shows that
x = x(t) satisfies the initial value problem (2.2). Moreover, f(x(t)) = exp(−tA)f(x0) tends to zero
uniformly with respect to x0 on each ball inside D, as desired.

One can show that, if f is a locally biholomorphic mapping vanishing at a point a ∈ D and A
a linear operator in X satisfying one of the equivalent conditions of Lemma 1.1, then f is actually
biholomorphic provided the method given by (2.2) is well defined. In particular, f is A -spiral-like.

3. A Nevanlinna Type Condition

Denote by D = D the unit disk around the origin in C. In the one-dimensional case X = C a
criterion for a mapping f ∈ Hol(D,C) to be starlike with respect to the origin is given by the familiar
Nevanlinna condition

Re
(
z
f ′(z)
f(z)

)
> 0

for all z ∈ D. However, verifying such a condition might be hard because of its computational com-
plexity. The following sufficient condition simplifies the use of Theorem 2.1.

Theorem 3.1. Let f be a holomorphic function in D vanishing at the origin and satisfying

f ′(z) �= 0,

Re
f(z)f ′′(z)
(f ′(z))2

< 1
(3.1)

for all z ∈ D. Then f is starlike on D.

Proof. It suffices to show that (3.1) implies the Nevanlinna condition, i.e.,

Re g(z) > 0
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for all z ∈ D, where

g(z) :=
1

z

f(z)

f ′(z)
.

To do this we consider the function zg(z) and note that condition (3.1) is equivalent to

Re (zg)′ (z) > 0

for all z ∈ D, for

(zg)′ (z) =
(f ′(z))2 − f(z)f ′′(z)

(f ′(z))2

and our claim is obvious.
Thus, we have to show that Re (g(z) + zg′(z)) > 0 implies Re g(z) > 0. Setting z = reiϕ with

r ∈ [0, 1) and ϕ ∈ [0, 2π), we get

zg′(z) = r
∂

∂r
g

and thus

Re
(
g(z) + zg′(z)

)
= Re g(reiϕ) + Re

(
r
∂

∂r
g
)
> 0. (3.2)

We first show that from (3.2) it follows that Re g(z) ≥ 0 for all z ∈ D. Suppose, contrary to our
claim, that there is z0 = r0e

iϕ0 in D, such that Re g(z0) < 0. From (3.2) we get Re g(0) > 0. Hence,
there is r1 ∈ (0, r0) such that

Re g(r1e
iϕ0) = 0,

Re g(r0e
iϕ0) < 0,

and thus one can find r2 ∈ (r1, r0) with the property that Re g(r2e
iϕ0) < 0 and

Re
( ∂

∂r
g
)
(r2e

iϕ0) < 0

which contradicts (3.2). We thus conclude that Re g(z) ≥ 0 everywhere in D.
If we assume that Re g(z0) = 0 for some z0 ∈ D, then it follows by the maximum principle for holo-

morphic functions that g(z) = ic for all z ∈ D, where c is a real constant. Hence, Re (g(z) + zg′(z)) = 0,
which is impossible.

Example 3.1. Let f be a holomorphic function in D determined by the equation

f(z) = −f ′(z) (z + 2 log(1− z)) .

In this case we have

Re
(
z
f ′(z)
f(z)

)
= −Re

z

z + 2 log(1− z)

and it is not clear how to see if the Nevanlinna condition holds. On the other hand, since

Re
f(z)f ′′(z)
(f ′(z))2

= Re
(
1−

( f(z)

f ′(z)

)′)
,

one easily verifies that

Re
f(z)f ′′(z)
(f ′(z))2

= Re
(
1− 1 + z

1− z

)
< 1,

and thus the continuous Newton method is well defined.
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4. A Canonical Reduction

To clarify the remark after Theorem 2.1 we first consider a more general version of the continu-
ous Newton method. Namely, let g be a holomorphic mapping of D to X (not necessarily locally
biholomorphic) and let h ∈ Hol(D,X) have invertible total derivative h′(x) at each point x ∈ D.

We study the behavior of the solution x = x(t) (if there is any) to the initial value problem{
ẋ+ (h′(x))−1Ag(x) = 0, if t > 0,

x(0) = x0
(4.1)

for large t, where x0 ∈ D is an initial approximation. If g is locally biholomorphic, one can choose
h = g =: f, thus recovering the continuous Newton method of (2.2). In a sense the converse assertion
holds also true.

Theorem 4.1. Let g and h be holomorphic mappings on D and h′(x) be invertible at each point

x ∈ D. Suppose (4.1) is well defined on D, with g(a) = 0 and A = h′(a) (g′(a))−1 for some a ∈ D.
Then there is a biholomorphic mapping f on D, such that the method (2.1) is well defined on D and
the solutions of (4.1) and (2.1) are the same and converge to a as t → ∞.

Proof. Given any x0 ∈ D, let x = x(t, x0) be the solution of (4.1). We define the mapping f by

f(x0) = lim
t→∞ et (x(t, x0)− a) . (4.2)

First we show that this limit exists for each x0 ∈ D. For simplicity we set a = 0. Consider the
mapping Q ∈ Hol(D,X) given by the formula Q(x) := (h′(x))−1Ag(x). Since Q(0) = 0 and Q′(0) = I,
the Taylor expansion of Q looks like

Q(x) = x+
∞∑

k=k0

Pk(x)

for x in a ball Br ⊂ D of radius r > 0 with center at the origin, where k0 ≥ 2 and Pk are homogenous
polynomials of degree k on X. By the Schwarz lemma,

‖Q(x)− x‖ ≤ M

rk0
‖x‖k0 ,

where M = sup
x∈D

‖Q(x)− x‖ (see for instance [14]).

A simple calculation shows that Re 〈Q(x), x∗〉 > 0 for all x �= 0 satisfying

‖x‖ < min
{(M

rk0

) 1
k0−1

, r
}
= r1.

This means that the ball Br1 is invariant for the solution x(t, ·) of (4.1), i.e., ‖x(t, x0)‖ < r1 for all
t ≥ 0 and x0 ∈ Br1 . Without loss of generality we can assume that r1 = 1. Then it follows from [14,
Corollary 9.1] that

‖x(t, x0)‖ ≤ e−t ‖x0‖
(1− ‖x0‖)2 ,

and thus

‖et (Q(x(t, x0))− x(t, x0)) ‖ ≤ et
M

rk0
‖x(t, x0)‖k0

≤ e(1−k0)t M

rk0
‖x0‖k0

(1− ‖x0‖)2k0
→ 0

since k0 ≥ 2. Setting now y(t, x0) = et x(t, x0), we get

ẏ(t, x0) = et (x(t, x0)−Q(x(t, x0))) → 0
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as t → ∞ for each x0 ∈ B1. Thus the limit (4.2)

lim
t→∞ et x(t, x0) = lim

t→∞ y(t, x0) =: f(x0)

exists for all x0 ∈ B1.
The global convergence for all x0 ∈ D follows now from the fact that one can find a sufficiently large

T > 0 with the property that x(T, x0) ∈ B1. Therefore, using the semigroup property one concludes
that

lim
t→∞ eT+t x(T + t, x0) = eT lim

t→∞ et x(t, x(T, x0))

= eT f(x(T, x0)).

We have actually proved that

e−sf(x0) = f(x(s, x0)) ∈ D

for any s ≥ 0, which means that f is a starlike mapping. Moreover, on differentiating the latter
equality in s ≥ 0 we see that x(s, x0) satisfies (2.1), as desired.

5. A Local Continuous Newton Method

In this section, we study the following problem. Let f ∈ Hol(D,X) be a locally biholomorphic
mapping satisfying f(0) = 0. A general question is whether there is a ball Br in D such that the
continuous Newton method is well defined on Br. For example, in the one-dimensional case a well-
known result due to Grunksy says that each univalent function f on the unit disk D is starlike on
Dr with 0 < r ≤ tanh(π/4), see [5]. However, this is no longer true in higher dimensions, and thus
additional conditions are required. In [17, 18] it was shown that a holomorphic mapping on the open
unit ball B := {x ∈ X : ‖x‖ < 1} with f(0) = 0 is starlike if and only if Re 〈(f ′(x))−1f(x), x∗〉 ≥ 0 for
all x∗ ∈ ∗x.

We consider a weaker condition on f, namely

Re 〈(f ′(x))−1f(x), x∗〉 ≥ −m ‖x‖2 (5.1)

for all x∗ ∈ ∗x, where m is a nonnegative constant. We show that the answer to the above question
is affirmative.

Other local problems are described as follows. Let λ be a complex number satisfying Reλ > 0 and
arg λ ∈ (0, π/2). Suppose f : B → X is a locally biholomorphic mapping on B, such that f(0) = 0
and the generalized continuous Newton method with A = λI is well defined. We ask whether the
continuous Newton method is well defined on a possibly smaller ball. Conversely, if the continuous
Newton method is well defined, is there a number r ∈ (0, 1) depending on λ, such that the generalized
continuous Newton method is well defined on the ball Br?

To answer these question, we replace (5.1) by a more general condition. More precisely,

Re 〈eiϕ(f ′(x))−1f(x), x∗〉 ≥ −m ‖x‖2 (5.2)

for all x∗ ∈ ∗x.
Theorem 5.1. Let f be a locally biholomorphic mapping on B satisfying f(0) = 0. Suppose that
condition (5.2) is fulfilled with some m ≥ 0 and −π/2 < ϕ < π/2. Then, for each 0 < r < r0, the
continuous Newton method given by (2.1) is well defined on Br and it converges to the origin, where
r0 = r0(ϕ) ≤ 1 is the unique root of the quadratic equation

(1− r2)− 2r(1− r cosϕ)(m+ cosϕ) = 0 (5.3)

in (0, 1].
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Proof. Denote g(x) := (f ′(x))−1f(x). By assumption,

Re 〈eiϕg(x), x∗〉 ≥ −m ‖x‖2
for all x∗ ∈ ∗x. Write x = zv where z ∈ C and ‖v‖ = ‖v∗‖ = 1. Consider the function h(z) =
〈g(zv), v∗〉. We get

Re 〈eiϕg(zv), (zv)∗〉 = Re eiϕh(z)z ≥ −m |z|2.
From h(0) = 0 it follows that there is a holomorphic function Q on the disk D, such that h(z) =

zQ(z). Then h′(0) = Q(0) = 1 and, by the above,

Re(eiϕ |z|2Q(z)) ≥ −m |z|2
or Re(eiϕ Q(z)) ≥ −m whenever |z| < 1. On applying an inequality of [8] we calculate

Re (Q(z)−Q(0)) = Re
(
e−iϕ((eiϕQ)(z)− (eiϕQ)(0))

)
≥ 2r(1−r cosϕ)

1−r2

(
inf
|ζ|<1

Re (eiϕQ)(ζ)− Re (eiϕQ)(0)
)

≥ 2r(1−r cosϕ)

1−r2
(−m− cosϕ)

for all z ∈ Br and r ∈ (0, 1).
Since ReQ(0) = 1 we get

ReQ(z) ≥ 1 +
2r(1−r cosϕ)

1−r2
(−m− cosϕ) ,

which can be equivalently rewritten as

F (r, ϕ) := (1− r2)− 2r(1− r cosϕ)(m+ cosϕ) ≥ 0.

By assumption, −π/2 < ϕ < π/2, and thus F (0, ϕ) = 1 > 0 and F (1, ϕ) = −2(1− cosϕ)(m+cosϕ) ≤
0. Therefore, the equation F (r, ϕ) = 0 has a unique solution r0 = r0(ϕ) in the interval (0, 1]. It follows
that F (r, ϕ) ≥ 0 for all r ∈ (0, r0]. Thus, f is starlike on the ball Br for each 0 < r ≤ r0, as desired.

For ϕ = 0 the formulation of Theorem 5.1 is especially simple.

Corollary 5.1. Let f be a locally biholomorphic mapping on B vanishing at the origin. Assume that
condition (5.1) holds for some m ≥ 0. Then, for each 0 < r < 1/(1 + 2m), the continuous Newton
method is well defined on Br and it converges to the origin.

Example 5.1. Let f(z) =
z

1− z − k
, where k ∈ [0, 1). In this case we have

(f ′(z))−1f(z) =
1

1− k
z(1− z − k).

Obviously,

Re 〈(f ′(z))−1f(z), z〉 ≥ − k

1− k
|z|2

which means that m = k/(1 − k) in (5.1). Thus, Theorem 5.1 applies, showing that the continuous
Newton method with given f is well defined on Br provided r < r0 = (1− k)/(1 + k). Moreover, this
method converges to the origin and the estimate

‖x(t)‖
1− ‖x(t)‖2 ≤ e−t ‖x0‖

1− ‖x0‖2
holds for all initial data x0 ∈ Br0 .

A computer simulation shows that for x0 away from the ball Br0 the trajectory fails to converge to
the origin, see Figure 1.

Choosing m = 0 in Corollary 5.1 and solving Eq. (5.3) we obtain in the same way
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Corollary 5.2. Let f : B → X be a locally biholomorphic mapping on B satisfying f(0) = 0. Suppose
that the generalized continuous Newton method corresponding to A = λI, where | arg λ| < π/2, is well
defined. Then the continuous Newton method is well defined on the ball Br whenever

r ≤ (
√
2 cos(arg λ− π/4)−1 < 1.

Converse considerations lead us to the following result.

Theorem 5.2. Assume that f : B → X is a locally biholomorphic mapping on the unit ball, such that
f(0) = 0 and the continuous Newton method is well defined. Then, for each ϕ ∈ (−π/2, π/2) and r
satisfying 0 < r ≤ (1 − | sinϕ|)/ cosϕ < 1, the generalized continuous Newton method with A = λI,
where arg λ = ϕ, is well defined on the smaller ball Br.

6. An Example

In this section, we consider an example mentioned in [15]. As usual, D stands for the open unit
disk in the complex plane. Consider the function

f(z) =
z

1− z
;

one verifies easily that

g(z) =
f(z)

f ′(z)
= z(1− z).

Since Re g(z)z ≥ 0 for all z ∈ D, the continuous Newton method is well defined.
In Figure 3 we present several trajectories of the analytic solution along with approximation by

the continuous Newton method. In addition in Fig. 2 we present the difference in norm between two
successive iterations. If now we choose the same g but with A = e−i(π/4), we can see in Fig. 4 that the
generalized continuous Newton method is not well defined. For instance, on taking z0 = (1 + i)/

√
2

we make certain that the solution is no longer invariant with respect to the whole unit disk. On the
other hand, in Fig. 5 we observe that the solution is invariant for a small disc of radius r0 =

√
2− 1.

7. A Convexity Condition

In the one-dimensional case one can show sufficient geometric conditions which guarantee not only
the convergence of the continuous Newton method but also the existence of a unique solution. Con-
vexity is a simple condition under which also the general continuous Newton method given by (4.1)
with A = I and h(x) ≡ x works. It is based on the initial value problem{

ż + f(z) = 0, if t > 0,
z(0) = z0,

(7.1)

where z0 is an initial approximation. Moreover, even if f(0) �= 0, one can point out a restriction on
f(0) which guaranties the existence of null point of f and the convergence of the trajectory of 7.1 to
this point.

Theorem 7.1. Let f be a holomorphic function in the disk D, such that f(0) < 1/2, f ′(0) = 1 and
f(D) is convex. Then,

(1) the equation f(z) = 0 has a unique solution a in D;
(2) Cauchy problem (7.1) has a unique solution in D which converges to a for each z0 ∈ D;
(3) if in addition f(0) = 0 then we can also evaluate the convergence rate, to wit |z(t, z0)| ≤ e−�t|z0|

for all t ≥ 0, where � ∈ (0, 1/2].

Proof. (1) Consider the mapping g(z) := f(z) − f(0). Since f(D) is convex, so is g(D), and g′(0) =
f ′ = 1. In addition, it follows from the convexity of g(D) by [10, 16] that

Re g(z)z̄ ≥ 1

2
|z|2.
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For the original function f this reduces to

Re f(z)z̄ ≥ 1

2
|z|2 − |f(0)||z|.

We want to show that the right-hand side of the inequality is greater than 0, that is

1

2
|z|2 − |f(0)||z| > 0. (7.2)

Pick an arbitrary ε in the interval (0, 1) and set r := 1− ε; then

1

2
|z| − |f(0)| = 1

2
(1− ε)− |f(0)|

for all z on the circle |z| = r. Hence, inequality (7.2) is fulfilled on the circle |z| = r if and only if
|f(0)| < (1/2)(1 − ε).

By assumption, |f(0)| < 1/2, and thus there is an ε > 0 with the property that |f(0)| < 1
2 (1 − ε).

On setting r = 1− ε we get
Re f(z)z̄ ≥ ε (7.3)

for all z ∈ D satisfying |z| = r. By the Rouché principle, inequality (7.3) provides the existence and
uniqueness of a null point of f in a disk of radius r around the origin. Since r can be chosen arbitrarily
close to 1, this null point is actually unique in D, which establishes (1).

On the other hand, inequality (7.3) implies that the Cauchy problem of (7.1) is solvable in D. This
proves the item (2).

Now, if f(0) = 0, then g = f , and from the convexity of f(D) it follows by [10, 16] that

Re
f(z)

z
>

1

2
or Re f(z)z̄ >

1

2
|z|2,

as is easy to see. Thus, we get an estimate

|z(t, z0)| ≤ e−�t|z0|
with some � ∈ (0, 1/2] for the convergence rate; see [14]. This establishes (3).

The applicability of Theorem 7.1 is illustrated by our next example, which can be solved immedi-
ately.

Example 7.1. Consider the equation f(z) = 0 for an unknown z ∈ D, where

f(z) =
1

2

(1 + z

1− z
− 1

2

)
.

Since f(0) = 1/4, it follows that |f(0)| < 1/2− ε for all ε ∈ (0, 1/4). In addition, we get

f ′(z) =
1

(1− z)2

whence f ′(0) = 1. All the hypotheses of the above theorem hold, and thus the continuous Newton
method of (7.1) converges. The solution can be found via a simple calculation, and it is a = −1/3 ∈ D.

In Fig. 6 we present several trajectories of the analytic solution along with its approximations by
the Euler method. In Fig. 7 one sees the norm difference between any two successive iterations.

Theorem 7.1 extends directly to holomorphic mappings of the unit ball B around the origin in C
n

into C
n. The proof is actually the same, the only difference being that instead of [10, 16] we use a

recent result of Jerry Muir concerning the accretivity of normalized convex holomorphic mappings
of B. He informed us in a private communication that the following is true and has to be published in
the proceedings of the Cortona 2014 conference. Suppose f : B → C

n is a holomorphic mapping, such
that f(0) = 0, f ′(0) = I and f(B) is convex. Then Re 〈2f(z) − z, z〉 > 0, i.e., Re 〈f(z), z〉 > (1/2)|z|2
for all z ∈ B. Note that the condition 〈f(z), z〉 �= 0 for all z on the boundary of B implies that there
is precisely one null point a of f in B, which is due to the Rouché principle. The stronger condition
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Re 〈f(z), z〉 > 0 for all z ∈ ∂B implies that the trajectories z = z(t, z0) of ż + f(z) = 0 for z0 ∈ B are
repulsed from the boundary ∂B into the ball. However, they need not converge to a as t → ∞ for all
z0 ∈ B unless the mapping f is accretive.

8. Figures

Fig. 1. The trajectory for two different x0. Fig. 2. Difference in norm between two successive
iterations of the continuous Newton method.

Fig. 3. Trajectories of the approximate solution
(blue) starting from different x0. In red are the
exact solutions.

Fig. 4. The trajectory of the solution by
the generalized continuous Newton method with
Ag(z) = e−i(π/4)z(1 − z).
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Fig. 5. The solution is invariant only for a small
disk of radius r0 =

√
2− 1.

Fig. 6. In blue are the trajectories of the approx-
imate solution starting from different z0. In red
are the exact solutions.

Fig. 7. Difference in norm between two successive
iterations.
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