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DIFFERENTIAL OPERATORS OF INFINITE ORDER IN
THE SPACE OF FORMAL LAURENT SERIES AND IN THE
RING OF POWER SERIES WITH INTEGER COEFFICIENTS
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We study the Hurwitz product (convolution) in the space of formal Laurent series over

an arbitrary field of zero characteristic. We obtain the convolution equation which is

satisfied by the Euler series. We find the convolution representation for an arbitrary

differential operator of infinite order in the space of formal Laurent series and describe

translation invariant operators in this space. Using the p-adic topology in the ring of

integers, we show that any differential operator of infinite order with integer coefficients

is well defined as an operator from Z[[z]] to Zp[[z]]. Bibliography: 20 titles.

The classical Laplace–Borel transform sends an integer-valued function of exponential type to

a Laurent series with a nontrivial domain of convergence (cf., for example, [1]). In this paper,

we consider formal Laurent series in the space
1

z
F
[[1

z

]]
, where F is an arbitrary field of zero

characteristic regarded as the image of a formal power series under the formal Laplace transform

(cf. Section 1). We note that formal Laurent series were used in the works on function theory

(cf., for example, [2, 3]), vertex operator algebras and conformal field theory [4], combinatorics

[5], and differential equations [6, 7]. The Hurwitz product of Laurent series is widely used in

function theory and combinatorics (cf., for example, [8, 9]). An analog of the Hurwitz product

(convolution) of the Euler series

Eb(z) =
1

z
− 1!b

z2
+

2!b2

z3
− 3!b3

z4
+ . . .

and an arbitrary formal power series with integer coefficients was established in [7] with the help

of the p-adic topology in Z.

In this paper, we obtain the convolution equation satisfied by the Euler series
∞∑
n=0

ann!
zn+1 (cf.

Example 1.1). This equation can be regarded as a counterpart of the functional equation for
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the exponential function or geometric progression. In Section 2, we study differential operators

of infinite order in the space of formal Laurent series
1

z
F
[[1

z

]]
. We prove that such operators

are convolution operators (Theorem 2.1). In Theorem 2.2, for the space
1

z
F
[[1

z

]]
we obtain an

analog of the classical characterization of translation invariant linear operators (cf., for example,

[10]–[14]). We note that all constructions and assertions in Section 2, except for Proposition 2.2

and Theorem 2.2, remain valid in the case where F is an arbitrary commutative ring with unit.

More information about differential operators of infinite order and holomorphic functions can

be found in [15, 16].

In Section 3, we discuss differential operators of infinite order in the ring Z[[z]] of formal

power series with integer coefficients. We note that, in the space F [[z]], where F is a field of

zero characteristic, such operators are not well defined; for example, if

ϕ(z) = 1 + z + z2 + z3 + . . . , g(z) = ez =

∞∑
n=0

1

n!
zn,

then

ϕ

(
d

dz

)
g(z) = ez + ez + ez + ... .

Using the p-adic topology in the ring of integers, we show that any differential operator of infinite

order with integer coefficients is well defined as an operator from Z[[z]] to Zp[[z]], where Zp is

the ring of integer p-adic numbers (cf. Theorem 3.1).

1 Preliminaries

Let F be an arbitrary field of zero characteristic. We denote by
1

z
F
[[1

z

]]
the vector space

of formal Laurent series ∞∑
n=0

cn
zn+1

, cn ∈ F,

and introduce the Krull topology in this space (cf. [17]).

Definition 1.1. For the power series

ϕ(z) =

∞∑
n=0

anz
n ∈ F [[z]]

we denote by L(ϕ) or Φ its formal Laplace transform

L(ϕ)(s) = Φ(s) =
∞∑
n=0

n!an
sn+1

.

We note that L is an isomorphism between the vector spaces F [[z]] and
1

z
F
[[1

z

]]
.

Definition 1.2. Let V be a vector space over the field F , and let V
[[
s,

1

s

]]
be the vector

space of all formal Laurent series with coefficients in V . For the series

h(s) =

+∞∑
n=−∞

bns
n ∈ V

[[
s,

1

s

]]
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we introduce its Res (h(s)) = b−1.

In the space
1

z
F
[[1

z

]]
, we introduce the convolution (the Hurwitz product). Let

g(z) =
∞∑
n=0

cn
zn+1

∈ 1

z
F
[[1

z

]]
.

We regard g(z−s) as an element of the space
1

z
F
[[1

z

]]
[[s]], i.e., the space of formal power series

in s with coefficients in
1

z
F
[[1

z

]]
:

g(z − s) =
∞∑
n=0

1

zn+1

cn
(1− s

z )
n+1

=
∞∑
n=0

cn
zn+1

(
1 +

s

z
+

s2

z2
+ · · ·

)n+1

. (1.1)

Definition 1.3. For Laurent series g1, g2 ∈ 1
sF

[[1
s

]]
we consider the product g1(s)g2(z− s)

as an element of 1
zF

[[1
z

]][[
s,

1

s

]]
and, based on Definition 1.2, introduce the convolution

(g1 ∗ g2)(z) = Res (g1(s)g2(z − s)) ∈ 1

z
F
[[1

z

]]
.

The following assertion shows that the convolution well agrees with the Laplace transform.

Proposition 1.1. Let ϕ,ψ ∈ F [[z]]. Then

L(ϕψ) = L(ϕ) ∗ L(ψ). (1.2)

Proof. Let

ϕ(z) =

∞∑
n=0

anz
n, ψ(z) =

∞∑
n=0

bnz
n.

Since
n!

(1− s
z )

n+1
=

∞∑
k=0

(k + 1)(k + 2) · · · (k + n)

zk
sk

in the ring F
[[1

z

]]
[[s]], from (1.1) it follows that

L(ψ)(z − s) =
∞∑
n=0

bn
zn+1

( ∞∑
k=0

(k + 1)(k + 2) · · · (k + n)

zk
sk

)

=
∞∑
k=0

( ∞∑
n=0

(k + 1)(k + 2) · · · (k + n)bn
zn+k+1

)
sk.

We compute L(ϕ) ∗ L(ψ):

Res (L(ϕ)(s) · L(ψ)(z − s)) = Res

( ∞∑
k=0

k!ak
sk+1

·
∞∑
k=0

( ∞∑
n=0

(k + 1)(k + 2) · · · (k + n)bn
zn+k+1

)
sk

)

=
∞∑
k=0

( ∞∑
n=0

(k + n)!akbn
zn+k+1

)
=

∞∑
k=0

⎛
⎝

∞∑
j=k

j!akbj−k

zj+1

⎞
⎠ =

∞∑
j=0

(
j∑

k=0

akbj−k

)
j!

zj+1
= L(ϕψ)(z).

The required assertion is proved.
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Corollary 1.1. The vector space
1

z
F
[[1

z

]]
with the convolution operation understood in the

sense of Definition 1.3 is an associative commutative algebra with unit.

Remark 1.1. Let

f, g ∈ 1

z
F
[[1

z

]]
, f(z) =

∞∑
n=0

an
zn+1

, g(z) =
∞∑
n=0

bn
zn+1

.

Using the definition of convolution, we can show (cf. [6]) that

(f ∗ g)(z) =
∞∑
n=0

(−1)nan
n!

g(n)(z) =

∞∑
n=0

(−1)nbn
n!

f (n)(z).

Remark 1.2. Assume that F = C, f, g ∈ d
1

z
C

[[1
z

]]
, and the series f(z) and g(z) converge

for |z| > r, where r > 0. Thus, f(z) and g(z) are holomorphic in the domain {z ∈ C : |z| > r}.
Using the integral Cauchy formula and Remark 1.1, we can show that

(f ∗ g)(z) = 1

2πi

∮

|s|=R

f(s)g(z − s)ds, |z| > R+ r,

where R > r (cf. also [11]).

Example 1.1. Let F be an arbitrary field of zero characteristic. For a ∈ F we consider the

exponential eaz as an element of the ring F [[z]]. The family of formal power series {eaz : a ∈ F}
satisfies the functional equation e(a+b)z = eazebz, a, b ∈ F. Now, we consider the family of

geometric progressions {
ϕa(z) =

∞∑
n=0

anzn : a ∈ F
}
.

This family is characterized by the equality (a− b)ϕa(z)ϕb(z) = aϕa(z)− bϕb(z), a, b ∈ F . The

functional equations for formal power series connected with the classical equations were studied

in many works. On the other hand, the series

1

z
ϕa

(1
z

)
=

∞∑
n=0

an

zn+1

is a result of the formal Laplace transform of the exponential eaz (cf. Definition 1.1). Making

the change of variables 1/z � z and applying the formal Laplace transform, we obtain the series

∞∑
n=1

an−1n!

zn+1

which almost coincides with the Euler series

fa(z) =

∞∑
n=0

ann!

zn+1
.

We show that for the family of series {fa(z) : a ∈ F} the following convolution equation holds:

(a− b)(fa ∗ fb) = afa − bfb, a, b ∈ F. (1.3)
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Let

ϕa(z) = (L−1fa)(z) =
∞∑
n=0

anzn.

Then (a− b)ϕa(z)ϕb(z) = aϕa(z)− bϕb(z). Now, the equality (1.3) follows from Theorem 1.1.

2 Differential Operators of Infinite Order in
1

z
F
[[1

z

]]

Assume that

ϕ(z) =
∞∑
n=0

anz
n ∈ F [[z]].

Then the differential operator ϕ
( d

dz

)
of infinite order is well defined in the space

1

z
F
[[1

z

]]
:

ϕ

(
d

dz

)
g(z) =

∞∑
n=0

ang
(n)(z) ∈ 1

z
F
[[1

z

]]
,

where g ∈ 1

z
F
[[1

z

]]
since any power

1

zk
in the expression for ϕ

( d

dz

)
g(z) occurs only finitely

many times. To transform the sum
∞∑
n=0

ang
(n)(z), we need the following assertion which, in a

sense, is similar to the integral Cauchy formula for unbounded domains.

Proposition 2.1. Let g ∈ 1

z
F
[[1

z

]]
. Then

g(n)(z) = −n! Res

(
g(s)

(s− z)n+1

)
, n � 0,

where
1

(s− z)n+1
∈ 1

z
F
[[1

z

]]
[[s]]

and the product under the symbol Res is well defined as an element of the space of formal Laurent

series
1

z
F
[[1

z

]][[
s,

1

s

]]
.

Proof. Let g(z) =
∞∑
n=0

gn
zn+1

. Then for n = 0

Res
( g(s)

z − s

)
= Res

((g0
s

+
g1
s2

+ · · ·
)1
z

(
1 +

s

z
+

s2

z2
+ · · ·

))
=

g0
z

+
g1
z2

+
g2
z3

+ · · · = g(z).

For arbitrary n � 1 this equality is verified in a similar way.

Now, for g(s) =
∞∑
n=0

cn
sn+1

we set

g−(s) =
∞∑
n=0

(−1)ncn
sn+1

. (2.1)

Using Proposition 2.1, we obtain the convolution representation for ϕ
( d

dz

)
.
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Theorem 2.1. Let

ϕ(z) =

∞∑
n=0

anz
n ∈ F [[z]], (z) ∈ 1

z
F
[[1

z

]]
.

Then

ϕ

(
d

dz

)
g = Φ− ∗ g,

where Φ is the Laplace transform of the power series ϕ.

Proof. Since

n!

(z − s)n+1
=

1

zn+1

n!

(1− s
z )

n+1
=

1

zn+1

∞∑
k=0

(k + 1)(k + 2) · · · (k + n)

zk
sk ∈ 1

zn+1
F
[[1

z

]]
[[s]],

from (1.1) and Proposition 2.1 it follows that

∞∑
n=0

ang
(n)(z) = −

∞∑
n=0

ann! Res

(
g(s)

(s− z)n+1

)
=

∞∑
n=0

Res

(
(−1)nn!ang(s)

(z − s)n+1

)

= Res

(( ∞∑
n=0

(−1)nn!an
(z − s)n+1

)
g(s)

)
= Res (Φ−(z − s)g(s)) = (Φ− ∗ g)(z).

The theorem is proved.

Example 2.1. Assume that a ∈ F and g ∈ 1

z
F
[[1

z

]]
. Then

g(z) + ag′(z) + a2g′′(z) + a3g′′′(z) + · · · = (Ea ∗ g)(z),

where

ϕ(z) =

∞∑
n=0

anzn, Φ−(z) = Ea(z) =
1

z
− 1!a

z2
+

2!a2

z3
− 3!a3

z4
+ . . . .

Example 2.2. Let V be a vector space over the field F , and let T : V → V be an arbitrary

linear operator. We consider the following implicit linear inhomogeneous differential equation

in the space
1

z
V
[[1

z

]]
:

Tw′(z) + g(z) = w(z), (2.2)

where g ∈ 1

z
V
[[1

z

]]
. Then the Laurent series w(z) =

∞∑
n=0

Tng(n)(z) is well defined and is a

unique solution to Equation (2.2) in
1

z
F
[[1

z

]]
. Thus,

w(z) = ϕ
( d

dz

)
g(z), ϕ(z) =

∞∑
n=0

Tnzn.
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We note that Definition 1.3 and Theorem 2.1 are extended to the operator-vector case. Therefore,

a unique solution to Equation (2.2) can be represented in the form of convolution: w(z) =

(Φ− ∗ g)(z). By the last formula, we can interpret the series

Φ−(z) =
∞∑
n=0

(−1)nn!Tn

zn+1

as the fundamental solution to Equation (2.2). Another approach to the notion of the funda-

mental solution of Equation (2.2) was considered in [18].

We fix an element h of the field F . The shift operator τh is well defined in the space
1

z
F
[[1

z

]]

by substituting −h for s in (1.1):

(τhg)(z) = g(z + h) =

∞∑
n=0

cn
zn+1

(
1− h

z
+

h2

z2
− · · ·

)n+1

.

Proposition 2.2 (Taylor expansion for formal Laurent series). In the space
1

z
F
[[1

z

]]
, for

any element h ∈ F

τh = eh
d
dz .

Proof. Let g(z) =
∞∑
n=0

cn
zn+1

∈ 1

z
F
[[1

z

]]
. For ϕ(z) = ehz from Theorem 2.1 we find

eh
d
dz g = Φ− ∗ g,

where

Φ−(z) =
∞∑
n=0

(−1)nhn

zn+1
=

1

z + h
.

Therefore,

Φ−(z − s) =

∞∑
n=0

sn

(z + h)n+1
∈ 1

z
F
[[1

z

]]
[[s]],

Res (Φ−(z − s)g(s)) = Res

( ∞∑
n=0

sn

(z + h)n+1
·

∞∑
n=0

cn
sn+1

)
=

∞∑
n=o

cn
(z + h)n+1

= g(z + h).

The proposition is proved.

The following assertion is an analog of the classical characterization of translation invariant

operators for the space
1

z
F
[[1

z

]]
.

Theorem 2.2. Let F be a field of zero characteristic, and let

A :
1

z
F
[[1

z

]]
→ 1

z
F
[[1

z

]]

be a continuous linear operator in the Krull topology. Then the following conditions are equivalent:
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(a) A commutes with any shift operator τh, h ∈ F ,

(b) A commutes with the differentiation operator
d

dz
,

(c) A is the convolution operator, i.e., there exists a Laurent series Ψ ∈ 1

z
F
[[1

z

]]
such that

A(g) = Ψ ∗ g,
(d) A = ϕ

( d

dz

)
for some formal power series ϕ ∈ F [[z]].

Proof. We first consider the implication (b) ⇒ (d). We set A
(1
z

)
=

∞∑
n=1

an
zn

. Then

A
( 1

z2

)
= −

(
A

d

dz

)(1
z

)
= − d

dz
A
(1
z

)
=

∞∑
n=1

nan
zn+1

.

In a similar way, we can check that

A
( 1

zk

)
=

∞∑
n=1

Ck−1
n+k−2

an
zn+k−1

for all k � 2. Let g(z) =
∞∑
k=1

ck
zk

. By the continuity of the operator A in the Krull topology,

A(g)(z) =
∞∑
k=1

ck

∞∑
n=1

Ck−1
n+k−2

an
zn+k−1

=
∞∑
n=1

an

∞∑
k=1

(n+ k − 2)!

(k − 1)!(n− 1)!

ck
zn+k−1

=
∞∑
n=0

an+1

n!

∞∑
k=1

(n+ k − 1)!

(k − 1)!

ck
zn+k

=
∞∑
n=0

(−1)nan+1

n!
g(n)(z) = ϕ

( d

dz

)
g(z),

where ϕ(z) =
∞∑
n=0

(−1)nan+1

n!
zn.

The inverse implication (d) ⇒ (b) is obvious. The equivalence (c) ⇔ (d) was proved in

Theorem 2.1. Finally, the equivalence of (a) and (b) follows from Proposition 2.2.

3 Differential Operators of Infinite Order in Z[[z]]

Let p be a prime, and let Zp denote the ring of integer p-adic numbers with the standard

topology and norm || · ||p (cf. [19, Section 3] ). For our goal it is important that the convergence

of the series
∑

an in the ring Zp is equivalent to the convergence of an to zero in Zp. In the

ring Zp[[x]] of formal power series with integer p-adic coefficients, we introduce the topology of

coefficient convergence (cf. [17, Chapter 1] ). The ring Z[[x]] of formal power series with integer

coefficients will be regarded as a subring of Zp[[x]].

Theorem 3.1. We consider the formal power series ϕ(z) =
∞∑
n=0

anz
n with integer coefficients

and g ∈ Z[[x]]. Then the series
∞∑
n=0

ang
(n)(z) converges in the ring Zp[[x]]. Thus, the differential

operator of infinite order ϕ
( d

dz

)
is well defined by a Z-linear mapping from Z[[z]] to Zp[[z]].
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Proof. Let Φ be the Laplace transform of a series ϕ, and let the Laurent series Φ− be given

by 2.1. Then

Φ−(z) =
∞∑
n=0

(−1)nn!an
zn+1

.

Since lim
n→∞n! = 0 in the ring Zp, we have lim

n→∞(−1)nn!an = 0 in Zp. By [20, Lemma 5.4], the

series
∞∑
n=0

ang
(n)(z) converges in the topology of coefficient convergence and ϕ

( d

dz

)
g = Φ− ∗ g,

where the convolution of the formal Laurent series with integer coefficients f(z) =
∞∑
n=0

fn
zn+1

and

the formal power series with integer coefficients g is defined by

(f ∗ g)(z) =
∞∑
n=0

(−1)nfn
n!

g(n)(z)

(cf. [20]). The theorem is proved.

Example 3.1. Assume that ϕ(z) =
∞∑
n=0

zn and g ∈ Z[[x]]. Then

(
ϕ
( d

dz

)
g
)
(z) =

∞∑
n=0

g(n)(z).

If (z) =
∞∑
n=0

zn, then
(
ϕ
(

d
dz

)
g
)
(0) = 0! + 1! + 2! + 3! + 4! + . . . . Since the sum of the series

0! + 1! + 2! + 3! + 4! + . . . in all rings Zp is not integer (cf., for example, [7, Example 2.1] ), we

have ϕ
(

d
dz

)
g /∈ Z[[x]], although ϕ

(
d
dz

)
g ∈ Zp[[z]] for all prime p.
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