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We consider a nonstationary system of differential-algebraic equations, i.e., the first or-

der ordinary differential equations with variable coefficients and identically singular ma-

trix at the derivative of the unknown vector-valued function. We construct the structural

form for the perturbed system and obtain sufficient conditions for the robust (complete,

differential, R-) controllability of such systems of index 1 and 2. Bibliography: 17 titles.

1 Introduction

We consider the system of differential equations, called differential-algebraic equations

A(t)x′(t) +B(t)x(t) + U(t)u(t) = 0, t ∈ I = [0,+∞), (1.1)

where A(t), B(t), and U(t) are given matrices of size n × n, n × n, and n × l respectively,

detA(t) ≡ 0, x(t) is the unknown n-dimensional function describing the system state, and

u(t) is the l-dimensional control function. An important characteristic of differential-algebraic

equations is the unsolvability index r : 0 � r � n (cf. [1, 2]) measured the complexity of the

inner structure of the system.

The main difficulty in the study of the robust controllability of differential-algebraic equations

is caused by the fact that the inner structure of the system can vary under perturbations of

the input data. The known results on robust controllability are obtained only for differential-

algebraic equations with constant coefficients and regular matrix pencil (cf. [3]–[7]).

In this paper, we study the robust controllability of nonstationary differential-algebraic equa-

tions with unstructured perturbations (in the form of matrix norms) in the matrices at the

unknown function and the control function. The proof of our results is based on reducing

differential-algebraic equations to the structural form with separated “differential” and “alge-

braic” parts. Owing to this approach, we could analyze a large class of systems (cf., for example,

[8]–[12]).

Translated from Problemy Matematicheskogo Analiza 96, 2019, pp. 13-22.

1072-3374/19/2392-0123 c© 2019 Springer Science+Business Media, LLC

123

DOI 10.1007/s10958-019-04297-8



2 Definition and Notation

This section contains auxiliaries concerning construction and properties of the equivalent

form of differential-algebraic equations, which will be used in the proof of the main results of

this paper. With matrix coefficients of the differential-algebraic equations (1.1) we associate the

matrices

Dr,z(t) =

⎛
⎜⎜⎜⎜⎜⎝

C1
1A(t) O . . . O

C1
2A

′(t) + C2
2B(t) C2

2A(t) . . . O

...
...

. . .
...

C1
rA

(r−1)(t) + C2
rB

(r−2)(t) C2
rA

(r−2)(t) + C3
rB

(r−3)(t) . . . Cr
rA(t)

⎞
⎟⎟⎟⎟⎟⎠

,

Dr,y(t) =

⎛
⎜⎜⎜⎜⎝

C0
0A(t) O⎛

⎜⎜⎝
C0
1A

′(t) + C1
1B(t)

...

C0
rA

(r)(t) + C1
rB

(r−1)(t)

⎞
⎟⎟⎠ Dr,z(t)

⎞
⎟⎟⎟⎟⎠

,

Dr,x(t) =
(
B(t) Dr,y(t)

)
,

of size nr×nr, n(r+1)×n(r+1), n(r+1)×n(r+2) respectively. Hereinafter, Cj
i = i!/(j!(i−j)!)

are binomial coefficients and B(t) = column (B(t), B′(t), . . . , B(r)(t)).

We assume that the entries of the matrices A(t), B(t), U(t) are sufficiently many times con-

tinuously differentiable functions on I. Furthermore, we assume that for some r : 0 � r � n the

condition rankDr,z(t) = ρ = const holds for any t ∈ I and for all t the matrix Dr,x(t) contains a

nonsingular minor of order n(r + 1) consisting of ρ columns of the matrix Dr,z(t) and the first

n columns of the matrix Dr,y(t). This minor is said to be resolving.

We assume that we know which columns of the matrix Dr,x(t) enter the resolving minor.

We remove the n − d, d = nr − ρ, columns of the matrix B(t) that do not enter this minor.

Permuting columns of Dr,x(t), we obtain the matrix

Λr(t) = Dr,x(t) diag

(
Q−1

(
O

Ed

)
, Q−1, . . . , Q−1

)
, (2.1)

where Ed is the identity matrix of order d and Q is the permutation (n× n)-matrix.

The matrix Q−1 is constructed by the following rule. Let i1, i2, . . . , id and id+1, id+2, . . . , in be

the numbers of columns of the matrix B(t) which enter or not the resolving minor respectively.

The matrix Q−1, multiplied from the left by B(t), permutes each (id+k)th column (k = 1, n− d)

of the matrix B(t) to the kth position and each (ij)th column (j = 1, d) to the n − d + jth

position. The matrix Q−1 consists of zeros and n units; moreover, all the entries indexed by

(id+k, k) and (ij , n− d+ j) are units.

Lemma 2.1. We assume that

(1) A(t), B(t), U(t), u(t) ∈ C2r+1(I),

(2) rankDr,z(t) = ρ = const for any t ∈ I,

(3) the matrix Dr,x(t) contains a resolving minor,
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(4) rankDr+1,y(t) = rankDr,y(t) + n for any t ∈ I.

Then there exists an operator on I

R = R0(t) +R1(t)
d

dt
+ . . .+Rr(t)

(
d

dt

)r

(2.2)

that reduces (1.1) to the structural form

x′1(t) + J1(t)x1(t) +H (t)u(t) = 0, (2.3)

x2(t) + J2(t)x1(t) + G (t)u(t) = 0, (2.4)

where

column (x1(t), x2(t)) = Qx(t), u(t) = column (u(t), u′(t), . . . , u(r)(t)),
(

G (t)

H (t)

)
=

(
G0(t) G1(t) . . . Gr(t)

H0(t) H1(t) . . . Hr(t)

)
= (R0(t) R1(t) . . . Rr(t))Pr[U(t)],

Pr[U(t)] =

⎛
⎜⎜⎜⎜⎝

C0
0U(t) O . . . O

C0
1U

′(t) C1
1U(t) . . . O

...
...

. . .
...

C0
rU

(r)(t) C1
rU

(r−1)(t) . . . Cr
rU(t)

⎞
⎟⎟⎟⎟⎠

, (2.5)

(
J2(t) Ed

J1(t) O

)
= (R0(t) R1(t) . . . Rr(t))B(t)Q−1.

Moreover, the operator (2.2) possesses the left inverse, its coefficients Rj(t) (j = 0, r) are con-

tinuous and uniquely found by

(R0(t) R1(t) . . . Rr(t)) = (En O . . . O)Λ�
r (t)(Λr(t)Λ

�
r (t))

−1, (2.6)

whereas all solutions to the system (1.1) are solutions to the system (2.3), (2.4) and the converse

assertion is also true.

Definition 2.1. An n-dimensional vector-valued function x(t) ∈ C1(I) is called a solution

to the system (1.1) if (1.1) becomes an identity on I under substitution of x.

Definition 2.2. The system (2.3), (2.4) is called the equivalent form of the system (1.1).

Using Lemma 2.1, we can obtain an existence and uniqueness criterion for the initial problem

for the system (1.1). For this purpose we introduce the initial conditions

x(t0) = x0, (2.7)

where t0 ∈ I and x0 ∈ Rn is a given vector.

Corollary 2.1. Let all the assumptions of Lemma 2.1 hold. Then the problem (1.1), (2.7)

has a solution if and only if

x2,0 + J2(t0)x1,0 + G (t0)u(t0) = �0, (2.8)

where column (x1,0, x2,0) = Qx0. Moreover, if a solution to the problem (1.1), (2.7) exists, then

it is unique.
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Definition 2.3. The initial data (2.7) satisfying the condition (2.8) are called consistent

with the system (1.1).

The proof of Lemma 2.1 and Corollary 2.1 can be found in [13].

Lemma 2.2. Let W (t) ∈ Rn×n, t ∈ T . If ||W (t)|| < 1 for any t ∈ T , then det (En±W (t)) �=
0 for any t ∈ T.

The proof of Lemma 2.2 can be found in [14].

Here, by the norm we mean an arbitrary matrix norm preserving the unit, i.e., ||E|| = 1,

where E is the identity matrix of a suitable size.

Definition 2.4. Let W (t) ∈ Rm×n. The matrix W+(t) ∈ Rn×m is called the right inverse

of the matrix W (t) on T if W (t)W+(t) = E for any t ∈ T .

3 Controllability Conditions
for Differential-Algebraic Equations

We introduce the notion of controllability for differential-algebraic equations.

Definition 3.1 (cf. [15]). The system (1.1) is completely controllable on a segment T =

[t0, t1] if for any x0, x1 ∈ Rn there is a control u(t) such that the corresponding solution to the

system (1.1) satisfies the conditions x(t0) = x0 and x(t1) = x1.

Definition 3.2 (cf. [12]). The system (1.1) is called differential-controllable on a segment

T if it is completely controllable on any set [τ0, τ1] ⊂ T (τ0 < τ1).

A vector x1 ∈ Rn is called reachable from the initial data vector x0 ∈ Rn at time t1 if there

exists a sufficiently smooth control u(t) such that the corresponding solution to the system (1.1)

satisfies the conditions x(t0) = x0 and x(t1) = x1.

A set M(x0) ⊆ Rn is called the reachable set from the initial data vector x0 ∈ Rn if it

consists of vectors x1 reachable from the point x0 at time t1. The reachable set M is the union

of all reachable sets from all possible consistent initial data vectors [16, 15].

Definition 3.3 (cf. [15]). The system (1.1) is R-controllable (controllable in the reachable

set) on a segment T = [t0, t1] if for any consistent initial data vector x0 and any point x1 of the

reachable set M there is a control u(t) such that the corresponding solution to the system (1.1)

satisfies the conditions x(t0) = x0 and x(t1) = x1.

According to Definition 3.3, any system of the form (1.1) is R-controllable if its equivalent

form does not contain the nondegenerate subsystem (2.3). Otherwise, by the R-controllability of

the differential-algebraic equations (1.1) one can mean the complete controllability of the system

(2.3). Then, under the assumptions of Lemma 1.1, we can introduce an alternative definition of

R-controllability.

Definition 3.4. The system (1.1) is called R-controllable on a segment T for d < n if the

system (2.3) is completely controllable on T .

Lemma 3.1 (cf. [8, 12, 13]). Let all the assumptions of Lemma 2.1 hold on some segment

T ⊂ I. Assume that

(1) rankG (t) = d for any t ∈ T ,
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(2) there exists σ ∈ T such that rankQ(σ) = n− d,

(3) rankQ(t) = n − d for almost all t ∈ T , i.e., for all points t ∈ T , except for points in a

set of zero Lebesgue measure.

Then the system (1.1) is R-controllable on T if (2) holds, completely controllable on T if (1)

and (2) hold, and differentially controllable on T if (1) and (3) hold.

Here, Q(t) is the controllability matrix of the system (2.3) defined by

Q(t) = (Q0(t) Q1(t) . . . Qn−d−1(t)),

Q0(t) = −H (t), Qi(t) = −J1(t)Qi−1(t) +Q′
i−1(t), i = 1, n− d− 1.

4 Robust Controllability Conditions
for Differential-Algebraic Equations

Let the system (1.1) be completely (differentially, R-) controllable on some segment T ⊂ I.

The robust controllability problem is to find conditions under which the perturbed differential-

algebraic equations

A(t)x′(t) + (B(t) + ΔB(t))x(t) + (U(t) + ΔU (t))u(t) = 0 (4.1)

remain completely (differentially, R-) controllable on T . Here, ΔB(t), ΔU (t), t ∈ I, are unknown

real (perturbation) matrices of suitable size that satisfy certain smallness conditions on the

segment T .

We consider the matrices

R0(t)ΔB(t)Q, R1(t)ΔB(t)Q, R1(t)Δ
′
B(t)Q,

(
R0(t)ΔU (t) +R1(t)Δ

′
U (t) R1(t)ΔU (t)

)
,

where R0(t), R1(t) are the first coefficients of the operator (2.2) reducing (1.1) to the form (2.3),

(2.4) and Q is the permutation matrix in (2.1). Hereinafter, the dependence on the variable t is

assumed, but is not reflected in the notation.

We represent these matrices as follows:

R0ΔBQ =

(
Δ0,3 Δ0,4

Δ0,1 Δ0,2

)
, R1ΔBQ =

(
Δ1,3 Δ1,4

Δ1,1 Δ1,2

)
,

R1Δ
′
BQ =

(
Δ1,3 Δ1,4

Δ1,1 Δ1,2

)
,

(
R0ΔU +R1Δ

′
U R1ΔU

)
=

(
G1

H1

)
,

where the blocks Δ0,1, Δ1,1, Δ1,1 have size (n − d) × (n − d), the blocks Δ0,2, Δ1,2, Δ1,2 have

size (n − d) × d, the blocks Δ0,3, Δ1,3, Δ1,3 have size d × (n − d), the blocks Δ0,4, Δ1,4, Δ1,4

have size d× d, the block G1 has size d× rl, and the block H1 has size (n− d)× rl.

Assume that for all t ∈ T the following estimates hold:

||Δ0,4 +Δ1,4|| < 1,

||Δ1,1 − (Δ0,2 +Δ1,2)(E +Δ0,4 +Δ1,4)
−1Δ1,3|| < 1,

||Δ1,1|| < 1,

||Δ0,4 +Δ1,4 −Δ1,3(E +Δ1,1)
−1(Δ0,2 +Δ1,2)|| < 1.

(4.2)
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Then from Lemma 2.2 it follows that the matrices

P0 = (E +Δ0,4 +Δ1,4)
−1,

P1 = (E +Δ1,1)
−1,

S0 = (P−1
1 − (Δ0,2 +Δ1,2)P0Δ1,3)

−1,

S1 = (P−1
0 −Δ1,3P1(Δ0,2 +Δ1,2))

−1

are invertible on T and the estimate (4.2) can be written as

||P−1
0 − E|| < 1, ||P−1

1 − E|| < 1, ||S−1
0 − E|| < 1, ||S−1

1 − E|| < 1. (4.3)

We consider the perturbed system of differential-algebraic equations (4.1) of index r = 1.

Let all the assumptions of Lemma 2.1 hold for r = 1. Thus, (2.2) is the first order operator

R = R0(t) +R1(t)
d

dt
. (4.4)

Then the equivalent form of the system (4.1) can be written as

x′1 + J1x1 +Δ0,1x1 +Δ0,2x2 +Δ1,1x
′
1 +Δ1,2x

′
2 +Δ1,1x1 +Δ1,2x2 + (H +H1)u = 0, (4.5)

x2 + J2x1 +Δ0,3x1 +Δ0,4x2 +Δ1,3x
′
1 +Δ1,4x

′
2 +Δ1,3x1 +Δ1,4x2 + (G + G1)u = 0. (4.6)

We assume that the matrix blocks Δ1,2 and Δ1,4 vanish on the entire segment T . Then we pass

from (4.5), (4.6) to the equations

x′1 = −P1[(J1 +Δ0,1 +Δ1,1)x1 + (Δ0,2 +Δ1,2)x2 + (H +H1)u],

x2 = −P0[Δ1,3x
′
1 + (J2 +Δ0,3 +Δ1,3)x1 + (G + G1)u],

which imply

x′1 + J̃1x1 + H̃ u = 0, (4.7)

x2 + J̃2x1 + G̃u = 0, (4.8)

where
J̃1 = S0(J1 +Δ0,1 +Δ1,1 − (Δ0,2 +Δ1,2)P0(J2 +Δ0,3 +Δ1,3)),

J̃2 = S1(J2 +Δ0,3 +Δ1,3 −Δ1,3P1(J1 +Δ0,1 +Δ1,1)),

H̃ = S0(H +H1 −Δ0,2P0(G + G1)),

G̃ = S1(G + G1 −Δ1,3P1(H +H1)).

(4.9)

Moreover, u = column (u(t), u′(t)).
We define the right inverses of the matrices G and Q respectively by

G+ = G�
(
GG�

)−1
, Q+ = column (Q�

0 , Q
�
1 , . . . , Q

�
n−d−1)

(
n−d−1∑
i=0

QiQ
�
i

)−1

,

128



and the controllability matrix of the system (4.7):

Q̃ = (Q̃0, Q̃1, . . . Q̃n−d−1), (4.10)

where

Q̃0 = −H̃ , Q̃i = −J̃1Q̃i + Q̃′
i, i = 1, n− d− 1.

We set

ΔQ = Q̃ −Q, ΔG = G̃ − G . (4.11)

Then we can formulate the following result.

Theorem 4.1. We assume that

(1) all the assumptions of Lemma 2.1 hold for r = 1,

(2) Δ1,2(t) = Δ1,4(t) ≡ 0 on T ,

(3) the estimates (4.3) hold for any t ∈ T ,

(4) rankG (t) = d and rankQ(t) = n− d for any t ∈ T .

Then the system of differential-algebraic equations (1.1) is robustly (completely, differentially)

controllable on a segment T ⊂ I if

(a) ||ΔG (t)G
+(t)|| < 1 for any t ∈ T ,

(b) ||ΔQ(t)Q
+(t)|| < 1 for any t ∈ T .

Proof. By the assumptions of Lemma 2.1, the operator transforming (1.1) to the equivalent

form is of the first order. Taking into account assumptions (2) and (3), we see that the equivalent

form of the perturbed equations (4.1) takes the form (4.7), (4.8).

By assumption (4), the matrices G and Q have complete ranks on T . Then it is obvious

that there exist matrices G+ and Q+, which are the right inverses of the matrices G and Q
respectively on the entire segment T .

The matrices G̃ and Q̃ are perturbed counterparts of the matrices G and Q determined by

(4.9) and (4.10). We multiply the matrix G̃ by G+:

G̃ G+ = E +ΔG G
�(GG�)−1 = E +ΔG G

+.

Taking into account Lemma 2.2 and assumption (a), we find

det G̃ G+ = det (E +ΔG G
+) �= 0. (4.12)

Similarly, we multiply the matrix Q̃ by Q+:

Q̃Q+ =

(
n−d−1∑
i=0

QiQ
�
i +

n−d−1∑
i=0

ΔQiQ
�
i

)(
n−d−1∑
i=0

QiQ
�
i

)−1

= E +

n−d−1∑
i=0

ΔQiQ
�
i (QiQ

�
i )

−1 = E +ΔQQ
+,
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where ΔQi = Q̃i −Qi. Taking into account Lemma 2.2 and assumption (b), we get

det Q̃Q+ = det (E +ΔQQ
+) �= 0. (4.13)

The relations (4.12) and (4.13) imply the completeness of row ranks of the matrices G̃ (t) and

Q̃(t) for all t ∈ T . This means that assumptions (1) and (3) of Lemma 3.1 are satisfied.

In this case, the system (4.7), (4.8) and, consequently, the system (4.1) is completely and

differentially controllable on T . This implies the robust (complete, differential) controllability

of the differential-algebraic equations (1.1) on the segment T ⊂ I.

Corollary 4.1. We assume that

1) assumptions (1)–(3) of Theorem 4.1 holds,

2) rankQ(t) = n− d for all t ∈ T .

Then the system (1.1) is robustly R-controllable on a segment T ⊂ I if assumption (b) of

Theorem 4.1 holds.

Proof. By the assumptions of Lemma 2.1 for r = 1 (assumption (1) of Theorem 4.1),

the systems (1.1) and (2.3), (2.4) are equivalent in the sense of solutions on T . According

to Definition 3.4, by the R-controllability of differential-algebraic equations (1.1) we mean the

complete controllability of the system (2.3). The same is related to the perturbed equations

(4.1) and the equivalent form (4.7), (4.8). Moreover, assumption (2) provides the complete

controllability of the system (2.3), whereas assumptions (2) and (3) of Theorem 4.1 guarantee

that the perturbed equations (4.1) admit the equivalent form (4.7), (4.8). Thus, if assumption (b)

of Theorem 4.1 holds, then the matrix Q̃ has complete rank everywhere on T , and, consequently,

the system (4.7) is completely controllable on this segment (cf., for example, [15]). This means

the robust R-controllability of the differential-algebraic equations (1.1).

We can obtain the robust controllability conditions for differential-algebraic equations of

index r = 2. Let the matrix

Θr−1(t) = (Enr O)Λr(t)

(
O

Enr+d

)

be obtained from Λr(t) (cf. (2.1)) by eliminating the last n rows and first n columns.

Theorem 4.2. We assume that

(1) assumptions (1)–(3) of Lemma 2.1 hold for r = 2,

(2) rankΘ1(t) = n for any t ∈ T ,

(3) assumptions (2)–(4) of Theorem 4.1 hold.

Then the system of differential-algebraic equations (1.1) is robustly (completely, differentially)

controllable on a segment T ⊂ I provided that assumptions (a) and (b) of Theorem 4.1 hold.

Proof. As is shown in [17], in assumptions (1) and (2) for a system of differential-algebraic

equations of index r = 2 the operator transforming (1.1) to the equivalent form (2.3), (2.4) is of

the first order, i.e., this operator has the form (4.4); moreover, these systems have the same set

of solutions. The further arguments repeat the proof of Theorem 4.1.
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Corollary 4.2. Let

(1) assumptions (1) and (2) of Theorem 4.2 hold,

(2) assumptions (2) and (3) of Theorem 4.1 hold,

(3) assumption (2) of Corollary 4.1 holds.

Then the system of differential-algebraic equations (1.1) is robustly R-controllable on a seg-

ment T ⊂ I provided that assumption (b) of Theorem 4.1 holds.

The proof is the same as that of Theorem 4.2 and Corollary 4.1.

5 Example

We consider the system of differential-algebraic equations

⎛
⎜⎝

1 0 0

− cos t 1 0

0 0 0

⎞
⎟⎠x′(t) +

⎛
⎜⎝

− cos t 2 cos t 0

− sin2 t cos t 0

0 −2 sin t −1

⎞
⎟⎠x(t) +

⎛
⎜⎝
0 0

1 0

0 −1

⎞
⎟⎠u(t) = 0, (5.1)

where t ∈ I = [0,+∞) and x(t) : I → R3 is the unknown function. Assume that perturbations

at x(t) and u(t) are given by

ΔB(t) =

⎛
⎜⎝

0 0 0

b1 b2 b3

b4 b5 0

⎞
⎟⎠ , ΔU (t) =

⎛
⎜⎝

0 0

y1 y2

y3 y4

⎞
⎟⎠ , (5.2)

where bi(t) (i = 1, 5), yj(t) (j = 1, 4): I → R. We clarify whether the differential-algebraic

equations (5.1), (5.2) are robustly completely controllable. For this purpose we verify the as-

sumptions of Theorem 4.1.

It is obvious that assumption (1) is satisfied. To verify assumptions (2)–(4), we construct

the matrices

D1,x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos t 2 cos t

− sin2 t cos t

0 −2 sin t

sin t −2 sin t

− sin 2t − sin t

0 −2 cos t

0 | 1 0 0 | 0 0

0 | − cos t 1 0 | 0 0

−1 | 0 0 0 | 0 0

0 | − cos t 2 cos t 0 | 1 0

0 | − sin2 t+ sin t cos t 0 | − cos t 1

0 | 0 −2 sin t −1 | 0 0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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D2,y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 | 0 0 0 | 0 0 0

− cos t 1 0 | 0 0 0 | 0 0 0

0 0 0 | 0 0 0 | 0 0 0

− cos t 2 cos t 0 | 1 0 0 | 0 0 0

− sin2 t+ sin t cos t 0 | − cos t 1 0 | 0 0 0

0 −2 sin t −1 | 0 0 0 | 0 0 0

sin t −2 sin t 0 | − cos t 2 cos t 0 | 1 0 0

cos t− sin 2t − sin t 0 | 2 sin t− sin2 t cos t 0 | − cos t 1 0

0 −2 cos t 0 | 0 −2 sin t −1 | 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is easy to verify that rankD1,z(t) = ρ = 2 for any t ∈ I. In the matrix D1,x(t), the columns

entering the resolving minor are framed. Thus, the resolving minor includes ρ = 2 columns of

the matrix D1,z(t), the first n = 3 columns of the matrix D1,y(t) and the third column of the

matrix D1,x(t). The condition rankD2,y = rankD1,y + 3 is also valid for all t ∈ I. Thus, all

the assumptions of Lemma 3.1 are satisfied in the case r = 1. From formula (2.6) we define the

operator (2.2)

R = R0(t) =

⎛
⎜⎝

0 0 −1

1 0 0

cos t 1 0

⎞
⎟⎠ .

Then we can write (5.1) in the equivalent form

x′1(t) +

(
− cos t 2 cos t

−1 2 cos2 t+ cos t

)
x1(t) +

(
0 0

1 0

)
u(t) = 0,

(1 1)x2(t) + (0 2 sin t)x1(t) + (0 1)u(t) = 0.

We construct the matrices R0ΔBQ, R1ΔBQ, and R1Δ
′BQ as follows:

R0ΔBQ =

(
Δ0,3 Δ0,4

Δ0,1 Δ0,2

)
=

⎛
⎜⎝

−b4 −b5 0

0 0 0

b1 b2 b3

⎞
⎟⎠ ,

R1ΔBQ =

(
Δ1,3 Δ1,4

Δ1,1 Δ1,2

)
= O,

R1Δ
′
BQ =

(
Δ1,3 Δ1,4

Δ1,1 Δ1,2

)
= O.

It is obvious that assumption (2) of Theorem 4.1 holds since Δ1,2 = Δ1,4 ≡ 0. The estimates

(4.3) also hold because ||O|| < 1.

To verify assumption (4) of Theorem 4.1, we construct the matrices

(
G

H

)
=

⎛
⎜⎝
0 1 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎠ , Q =

(
0 0 0 0 2 cos t 0 0 0

−1 0 0 0 cos t(2 cos t+ 1) 0 0 0

)
.
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It is easy to see that rankG (t) = d = 1 for all t ∈ I and rankQ(t) = n − d = 2 for all t ∈ I,

except for the points t = π/2 + πk, k = 1, 2, 3, . . ..

To verify assumptions (a) and (b), we construct the matrices

ΔG (t) = (−y3 − y4 0 0), G+ = (0, 1, 0, 0)�,

ΔQ =

(
0 0 0 0 2j1h1 2j1h2 0 0

−h1 −h2 0 0 −j2h1 − h′1 −j2h2 − h′2 0 0

)
,

Q+ =

(
−q2 0 0 0 q1 0 0 0

−1 0 0 0 0 0 0 0

)�
,

where h1 = y1+y3b3+1, h2 = b3(y4−1), j1 = − cos t, j2 = cos t(2 cos t+1)+b2+b3(b5−2 sin t),

q1 = − cos t(2 cos t+1)(cos t+3/2), q2 = − cos t− 1/2. Thus, the system (5.1), (5.2) is robustly

completely controllable on any segment T ⊂ I that does not contain the points t = π/2 + πk,

k = 1, 2, 3, . . . provided that
∥∥∥∥∥

(
2j1h1q1 0

h1q2 − q1(j2h1 + h′1) h1

)∥∥∥∥∥ < 1, |y4| < 1.
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