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On monogenic functions defined in different commutative algebras

Vitalii S. Shpakivskyi

Presented by V. Ya. Gutlyanskii

Abstract. The correspondence between a monogenic function in an arbitrary finite-dimensional commu-
tative associative algebra and a finite collection of monogenic functions in a special commutative associative
algebra is established.
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1. Introduction

Probably, P. W. Ketchum [1] was the first who used analytic functions that take their values in
a commutative algebra for the construction of solutions of the three-dimensional Laplace equation.
He showed that every analytic function Φ(ζ) of the variable ζ = xe1 + ye2 + ze3 satisfies the three-
dimensional Laplace equation, if the linearly independent elements e1, e2, e3 of a commutative algebra
satisfy the condition

e21 + e22 + e23 = 0 , (1.1)

since

∆3Φ :=
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
≡ Φ′′(ζ) (e21 + e22 + e23) = 0 , (1.2)

where Φ′′ := (Φ′)′, and Φ′(ζ) is defined by the equality dΦ = Φ′(ζ)dζ.
Generalizing the work by P. W. Ketchum, M. N. Roşculeţ [2,3] used analytic functions with values

in commutative algebras for the study of equations of the form

LNU(x, y, z) :=
∑

α+β+γ=N

Cα,β,γ
∂NU

∂xα ∂yβ ∂zγ
= 0, Cα,β,γ ∈ R. (1.3)

Considering the variable ζ = xe1 + ye2 + ze3 and an analytic function Φ(ζ), we get the following
equality for a mixed derivative:

∂α+β+γΦ

∂xα ∂yβ ∂zγ
= eα1 e

β
2 e

γ
3 Φ

(α+β+γ)(ζ) = eα1 e
β
2 e

γ
3 Φ

(N)(ζ). (1.4)

Substituting (1.4) in Eq. (1.3), we obtain the equality

LNΦ(ζ) = Φ(N)(ζ)
∑

α+β+γ=N

Cα,β,γ e
α
1 e

β
2 e

γ
3 .
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We may conclude that the equality LNΦ(ζ) = 0 holds, if the elements of the algebra e1 = 1, e2, e3
satisfy the characteristic equation

X (1, e2, e3) :=
∑

α+β+γ=N

Cα,β,γ e
β
2 e

γ
3 = 0 . (1.5)

If the left-hand side of Eq. (1.5) is expanded in the basis of the algebra, the characteristic equation
(1.5) is equivalent to the characteristic system of equations generated by Eq. (1.5).

Thus, if condition (1.5) is satisfied, every analytic function Φ with values in any commutative
associative algebra satisfies Eq. (1.3), and, respectively, all real-valued components of the function Φ
are solutions of Eq. (1.3).

In work [4], some partial differential equations with several variables are considered, and a number
of examples of the application of the above-described method are presented.

I. Mel’nichenko [5] proposed to consider the functions Φ twice differentiable by Gâteaux in equalities
(1.2) and (1.4). In this case, he described all bases {e1, e2, e3} of three-dimensional commutative
algebras with 1 over the field C which satisfy equality (1.1), see [6].

For those three-dimensional commutative algebras associated with the three-dimensional Laplace
equation, the constructive description of all monogenic (i.e., continuous and differentiable by Gâteaux)
functions with the help of three corresponding holomorphic functions of a complex variable was given
in works [7–9].

Works [10,11] include the constructive description of monogenic functions (related to the equation
∆3Φ = 0) with values in some n-dimensional commutative algebras with the help of n corresponding
holomorphic functions of a complex variable. Moreover, based on the obtained representations of
monogenic functions, some analogs of a number of classical results of complex analysis were proved.

Eventually, work [14] gave analysis of some monogenic functions (related to Eq. (1.3)) with values
in an arbitrary commutative associative algebra over the field C with the help of holomorphic functions
of a complex variable.

In the present work, we will show that, for the construction of solutions of Eq. (1.3) in the form of
components of monogenic functions with values in finite-dimensional commutative associative algebras,
it is sufficient to restrict ourselves by the study of monogenic functions in algebras of a special form.

2. Algebra Am
n

Let N be the set of natural numbers, and let m,n ∈ N be such that m ≤ n. Let Am
n be any

commutative associative algebra with 1 over the field of complex numbers C. E. Cartan [12, p. 33]
proved that there exists a basis {Ik}nk=1 in the algebra Am

n that satisfies the following multiplication
rules:

1. ∀ r, s ∈ [1,m] ∩ N : IrIs =

{
0 for r ̸= s,

Ir for r = s;

2. ∀ r, s ∈ [m+ 1, n] ∩ N : IrIs =
n∑

k=max{r,s}+1

Υs
r,kIk ;

3. ∀ s ∈ [m+ 1, n] ∩ N ∃! us ∈ [1,m] ∩ N ∀ r ∈ [1,m] ∩ N :

IrIs =

{
0 for r ̸= us ,

Is for r = us .

93



In addition, the structural constants Υs
r,k ∈ C satisfy the conditions of associativity:

(A 1). (IrIs)Ip = Ir(IsIp) ∀ r, s, p ∈ [m+ 1, n] ∩ N;

(A 2). (IuIs)Ip = Iu(IsIp) ∀u ∈ [1,m] ∩ N ∀ s, p ∈ [m+ 1, n] ∩ N.

It is obvious that m first basis vectors {Iu}mu=1 are idempotents and generate a semisimple subalge-
bra S of the algebra Am

n , and the vectors {Ir}nr=m+1 generate a nilpotent subalgebra N of this algebra.
The multiplication rules of the algebra Am

n imply that Am
n is the semidirect sum of an m-dimensional

semisimple subalgebra S and an (n−m)-dimensional nilpotent subalgebra N , i.e.,

Am
n = S ⊕s N.

The unit of the algebra Am
n is the element 1 =

∑m
u=1 Iu.

The algebra Am
n contains m maximum ideals

Iu :=

{
n∑

k=1, k ̸=u

λkIk : λk ∈ C

}
, u = 1, 2, . . . ,m,

whose intersection is the radical

R :=
{ n∑

k=m+1

λkIk : λk ∈ C
}
. (2.1)

Define now m linear functionals fu : Am
n → C by the equalities

fu(Iu) = 1, fu(ω) = 0 ∀ω ∈ Iu, u = 1, 2, . . . ,m. (2.2)

The kernels of the functionals fu are, respectively, the maximum ideals Iu. Therefore, these functionals
are also continuous and multiplicative (see [13]).

3. Monogenic functions

Let

e1 = 1, e2 =

n∑
r=1

arIr, e3 =

n∑
r=1

brIr (3.1)

for ar, br ∈ C be a triple of vectors in the algebra Am
n which are linearly independent over the field R.

This means that the equality

α1e1 + α2e2 + α3e3 = 0, α1, α2, α3 ∈ R,

holds iff α1 = α2 = α3 = 0.
Let ζ := xe1 + ye2 + ze3, where x, y, z ∈ R. It is obvious that ξu := fu(ζ) = x + yau + zbu,

u = 1, 2, . . . ,m. In the algebra Am
n , we separate a linear span E3 := {ζ = xe1+ye2+ze3 : x, y, z ∈ R}

generated by the vectors e1, e2, e3.
The following assumption is significant: fu(E3) = C for all u = 1, 2, . . . ,m, where fu(E3) is an

image of the set E3 under the mapping fu. It is obvious that this takes place iff at least one of the
numbers au or bu belongs to C \ R for each fixed u = 1, 2, . . . ,m. Theorem 7.1 in [14] established a
subclass of equations of the form (1.3) for which the condition fu(E3) = C holds for all u = 1, 2, . . . ,m.
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We put the domain Ω of the three-dimensional space R3 in correspondence to the domain Ωζ :=
{ζ = xe1 + ye2 + ze3 : (x, y, z) ∈ Ω} in E3.

The continuous function Φ : Ωζ → Am
n is called monogenic in the domain Ωζ ⊂ E3, if Φ is

differentiable by Gâteaux at every point of this domain. In other words, if, for every ζ ∈ Ωζ , there
exists an element Φ′(ζ) of the algebra Am

n such that the equality

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3

holds, Φ′(ζ) is called the Gâteaux derivative of a function Φ at the point ζ.
Consider the expansion of the function Φ : Ωζ → Am

n in the basis {Ik}nk=1:

Φ(ζ) =

n∑
k=1

Uk(x, y, z) Ik . (3.2)

Let the functions Uk : Ω → C be R-differentiable in the domain Ω. In other words, for any
(x, y, z) ∈ Ω,

Uk(x+∆x, y +∆y, z +∆z)− Uk(x, y, z) =
∂Uk

∂x
∆x+

∂Uk

∂y
∆y +

∂Uk

∂z
∆z+

+ o
(√

(∆x)2 + (∆y)2 + (∆z)2
)
, (∆x)2 + (∆y)2 + (∆z)2 → 0 .

The function Φ is monogenic in the domain Ωζ iff, at every point of the domain Ωζ , the conditions

∂Φ

∂y
=

∂Φ

∂x
e2 ,

∂Φ

∂z
=

∂Φ

∂x
e3 (3.3)

hold.
We note that the expansion of the resolvent takes the form

(te1 − ζ)−1 =

m∑
u=1

1

t− ξu
Iu +

n∑
s=m+1

s−m+1∑
k=2

Qk,s

(t− ξus)
k
Is (3.4)

∀ t ∈ C : t ̸= ξu, u = 1, 2, . . . ,m,

where Qk,s are defined by the recurrence relations

Q2,s := Ts , Qk,s =
s−1∑

r=k+m−2

Qk−1,r Br, s , k = 3, 4, . . . , s−m+ 1,

for

Ts := yas + zbs , Br,s :=
s−1∑

k=m+1

TkΥ
k
r,s , s = m+ 2, . . . , n,

and the natural numbers us are defined by rule 3 of the multiplication table of the algebra Am
n .

Relations (3.4) imply that the points (x, y, z) ∈ R3 corresponding to irreversible elements ζ ∈ Am
n

lie on the straight lines

Lu :

{
x+ yRe au + zRe bu = 0,

y Im au + z Im bu = 0
(3.5)
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in the three-dimensional space R3.
Let the domain Ω ⊂ R3 be convex in the direction of the straight lines Lu, u = 1, 2, . . . ,m. By Du,

we denote the domain of the complex plane C onto which the domain Ωζ is mapped by the functional
fu.

Theorem A [14]. Let the domain Ω ⊂ R3 be convex in the direction of the straight lines Lu and
let fu(E3) = C for all u = 1, 2, . . . ,m. Then every monogenic function Φ : Ωζ → Am

n can be presented
in the form

Φ(ζ) =
m∑

u=1

Iu
1

2πi

∫
Γu

Fu(t)(t− ζ)−1 dt+
n∑

s=m+1

Is
1

2πi

∫
Γus

Gs(t)(t− ζ)−1 dt, (3.6)

where Fu is some holomorphic function in the domain Du, Gs is some holomorphic function in the
domain Dus , and Γq is the closed Jordan rectifiable curve lying in the domain Dq, encloses the pointξq,
and contains no points ξℓ , ℓ = 1, 2, . . . ,m, ℓ ̸= q.

By the conditions of Theorem A, every monogenic function Φ : Ωζ → Am
n can be continued to a

function monogenic in the domain

Πζ := {ζ ∈ E3 : fu(ζ) = Du , u = 1, 2, . . . ,m}. (3.7)

Therefore, we consider monogenic functions Φ defined in domains of the form Πζ .

4. Characteristic equation in different commutative algebras

We say that the system of equations polynomial over the field C Q1 is reduced to a system of
polynomial equations Q2, if the system Q2 follows from the system Q1 by means of the removal of
some number of equations. In turn, the system Q2 is a reduction of the system Q1. We note that
the reduced system Q2 is not unique the given system of polynomial equations Q1. The following
proposition is obvious.

Proposition 4.1. Let the system of polynomial equations Q1 with complex-valued unknowns
t1, t2, . . . , tn have solutions, and let Q2 be its any reduced system with unknowns ti1 , ti2 , . . . , tik , where
i1, i2, . . . , ik, k ≤ n, are pairwise different elements of the set {1, 2, . . . , n}. Then all ti1 , ti2 , . . . , tik
satisfying the system Q1 are solutions of the system Q2.

For example, the system of equations

1 + a21 + b21 = 0,

1 + a22 + b22 = 0,

a2a3 + b2b3 = 0

(4.1)

is reduced to the system of equations

1 + a22 + b22 = 0,

a2a3 + b2b3 = 0.
(4.2)

Proposition 4.1 means that all values of a2, b2, a3, b3, satisfying system (4.1) are solutions of system
(4.2).

We now prove some auxiliary propositions.
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Lemma 4.1. Let there exist a triple of vectors 1, e2, e3 linearly independent over R in the algebra Am
n .

Let they satisfy the characteristic equation (1.5). Then, for each u ∈ {1, 2, . . . ,m}, the characteristic
system generated by the equation X (Iu, e2Iu, e3Iu) = 0 is a reduction of the characteristic system
generated by Eq. (1.5).

Proof. Let the left-hand side of Eq. (1.5) in the basis of the algebra have the form

X (1, e2, e3) =
∑

α+β+γ=N

Cα,β,γ e
β
2 e

γ
3 =

n∑
k=1

Vk Ik = 0.

Respectively, the characteristic system generated by Eq. (1.5) takes the form

V1 = 0,

. . . . . .

Vn = 0.

(4.3)

Consider now the characteristic system generated by the equation X (Iu, e2Iu, e3Iu) = 0. We have

X (Iu, e2Iu, e3Iu) =
∑

α+β+γ=N

Cα,β,γ Iu (e2Iu)
β (e3Iu)

γ =

= Iu
∑

α+β+γ=N

Cα,β,γ e
β
2 e

γ
3 = Iu

n∑
k=1

Vk Ik = Vu + Iu

n∑
k=m+1

VkIk = 0. (4.4)

According to rule 3 of the multiplication table of the algebra Am
n , the product Iu

n∑
k=m+1

VkIk belongs

to the radical R. Thus, Eq. (4.4) is equivalent to such characteristic system:

Vu = 0,

. . . . . .

Vk = 0 ∀ k ∈ {m+ 1, . . . , n} : IuIk = Ik .

(4.5)

It is obvious that system (4.5) is a reduction of system (4.3).

By Rad e2, we denote a part of the vector e2 from expansion (3.1) that is contained in its radical,

i.e., Rad e2 :=
n∑

r=m+1
arIr . Analogously, Rad e3 :=

n∑
r=m+1

brIr .

Lemma 4.2. Let there exist a triple of vectors 1, e2, e3 linearly independent over R in the algebra
Am
n = S⊕sN . Let they satisfy the characteristic equation (1.5). Then, in the algebra A1

n−m+1 = 1⊕sN
(where the nilpotent subalgebra N is the same as in the algebra Am

n ) for each u ∈ {1, 2, . . . ,m}, there
exists a triple of vectors

ẽ1(u) = 1,

ẽ2(u) := au + IuRad e2 ,

ẽ3(u) := bu + IuRad e3.

(4.6)

The triple is such that the characteristic system generated by the equation X (1, ẽ2(u), ẽ3(u)) = 0 is a
reduction of the characteristic system generated by the equation (1.5).
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Proof. A consequence of equalities (4.6) is the equalities

ẽβ2 (u) = aβu + Iu
β∑

k=1

Ck
β a

β−k
u (Rad e2)

k ,

ẽγ3(u) = bγu + Iu
γ∑

k=1

Ck
γ b

γ−k
u (Rad e3)

k .

(4.7)

In view of formulas (4.7), the characteristic polynomial X (1, ẽ2(u), ẽ3(u)) = 0 takes the form∑
α+β+γ=N

Cα,β,γ ẽ
β
2 (u) ẽ

γ
3(u) =

∑
α+β+γ=N

Cα,β,γ

(
aβu b

γ
u

+Iu b
γ
u

β∑
k=1

Ck
β a

β−k
u (Rad e2)

k + Iu a
β
u

γ∑
k=1

Ck
γ b

γ−k
u (Rad e3)

k

+Iu

β∑
k=1

Ck
β a

β−k
u (Rad e2)

k
γ∑

p=1

Cp
γ b

γ−p
u (Rad e3)

p

)
= 0. (4.8)

We now show that the characteristic systems generated by the equations X (1, ẽ2(u), ẽ3(u)) = 0
and X (Iu, e2Iu, e3Iu) = 0 coincide.

For this purpose, we note that a consequence of expansions (3.1) is the representations

e2 = a1I1 + · · ·+ amIm +Rad e2 , e3 = b1I1 + · · ·+ bmIm +Rad e3

which yield the relations

e2Iu = auIu + IuRad e2 , e3Iu = buIu + IuRad e3 . (4.9)

From (4.9), we get the equalities

eβ2Iu = aβuIu + Iu
β∑

k=1

Ck
β a

β−k
u (Rad e2)

k ,

eγ3Iu = bγuIu + Iu
γ∑

k=1

Ck
γ b

γ−k
u (Rad e3)

k .

(4.10)

With regard for formulas (4.10), the characteristic equation X (Iu, e2Iu, e3Iu) = 0 takes the form

Iu
∑

α+β+γ=N

Cα,β,γ e
β
2 e

γ
3 =

∑
α+β+γ=N

Cα,β,γ

(
aβu b

γ
u Iu

+Iu b
γ
u

β∑
k=1

Ck
β a

β−k
u (Rad e2)

k + Iu a
β
u

γ∑
k=1

Ck
γ b

γ−k
u (Rad e3)

k

+Iu

β∑
k=1

Ck
β a

β−k
u (Rad e2)

k
γ∑

p=1

Cp
γ b

γ−p
u (Rad e3)

p

)
= 0. (4.11)

Equalities (4.8) and (4.11) imply obviously that the characteristic systems generated by the equa-
tions X (1, ẽ2(u), ẽ3(u)) = 0, and X (Iu, e2Iu, e3Iu) = 0 coincide. Now, the proof of the lemma follows
from Lemma 4.1.
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Remark 4.1. We note that the algebra A1
n−m+1 = 1⊕sN with basis {1, Im+1, . . . , In} is a subalgebra

of the algebra Am
n = S ⊕s N . Indeed, any element a of the algebra Am

n = S ⊕s N of the form

a = a0I1 + a0I2 + · · ·+ a0Im + am+1Im+1 + · · ·+ anIn

= a0(I1 + · · ·+ Im) + am+1Im+1 + · · ·+ anIn = a0 + am+1Im+1 + · · ·+ anIn

is a representation of any element of the algebra A1
n−m+1 = 1⊕s N .

Proposition 4.1 and Lemma 4.2 yield the following proposition.

Theorem 4.1. Let, in the algebra Am
n = S ⊕s N, there exist a triple of vectors 1, e2, e3 that are

linearly independent over R and satisfy the characteristic equation (1.5). Then the triple of vectors
(4.6) satisfies the the characteristic equation X (1, ẽ2(u), ẽ3(u)) = 0 in the algebra A1

n−m+1 = 1 ⊕s N
(where the nilpotent subalgebra N is the same as in the algebra Am

n ) for each u ∈ {1, 2, . . . ,m}.

Example 4.1. Over the field C, consider the algebra A2
3 with the multiplication table (see, e.g., [6, p.

32], [8])

· I1 I2 I3

I1 I1 0 0

I2 0 I2 I3

I3 0 I3 0

. (4.12)

It is obvious that the subalgebra generated by the idempotents I1, I2 is a semisimple subalgebra S, and
the subalgebra {αI3 : α ∈ C} is a nilpotent subalgebra N . Then the algebra A1

2 := 1 ⊕s N coincides
with the known biharmonic algebra B (see, e.g., [15]) and has the multiplication table

· 1 I3

1 1 I3
I3 I3 0

. (4.13)

Let the characteristic equation (1.1) be given in the algebra A2
3. As is known (see Theorem 1.8

in [6]), the condition of harmonicity (1.1) of the vectors e1 = 1, e2 = a1I1 + a2I2 + a3I3, e3 =
b1I1 + b2I2 + b3I3 of the algebra A2

3 is equivalent to the system of equations (4.1).

For the algebra A2
3 m = 2. Therefore, we construct two triples of vectors of the form (4.6) in the

algebra B:
ẽ1(1) = 1, ẽ2(1) = a1 + I1(a3I3) = a1 , ẽ3(1) = b1 + I1(b3I3) = b1 (4.14)

and
ẽ1(2) = 1,

ẽ2(2) = a2 + I2(a3I3) = a2 + a3I3 ,

ẽ3(2) = b2 + I2(b3I3) = b2 + b3I3 .

(4.15)

By Theorem 4.1, triples (4.14) and (4.15) are harmonic in the algebra B (i.e., they satisfy condition
(1.1)). Indeed, the harmonicity of triple (4.14) is equivalent to the first equation of system (4.1), and
the harmonicity of triple (4.15) is equivalent to system (4.2).
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Example 4.2. Over the field C, we now consider the algebra A3
5 with the multiplication table

· I1 I2 I3 I4 I5

I1 I1 0 0 0 I5
I2 0 I2 0 0 0

I3 0 0 I3 I4 0

I4 0 0 I4 0 0

I5 I5 0 0 0 0

. (4.16)

We note that the subalgebra generated by the idempotents I1, I2, I3 is a semisimple subalgebra S, and
the subalgebra with the basis {I4, I5} is a nilpotent subalgebra N . Then the algebra A1

3 := 1 ⊕s N
coincides with the known algebra A4 (see, e.g., [6, p. 26]) and has the multiplication table

· 1 I4 I5

1 1 I4 I5
I4 I4 0 0

I5 I5 0 0

. (4.17)

Let the characteristic equation (1.1) be given in the algebra A3
5. The condition of harmonicity

(1.1) of vectors of the form (3.1) of the algebra A3
5 is equivalent to the system of equations

1 + a2u + b2u = 0, u = 1, 2, 3,

a3a4 + b3b4 = 0,

a1a5 + b1b5 = 0.

(4.18)

For the algebra A3
5 m = 3. Therefore, we construct three triples of vectors of the form (4.6) in the

algebra A4:
ẽ1(1) = 1,

ẽ2(1) = a1 + I1(a4I4 + a5I5) = a1 + a5I5 ,

ẽ3(1) = b1 + I1(b4I4 + b5I5) = b1 + b5I5 ,

(4.19)

ẽ1(2) = 1,

ẽ2(2) = a2 + I2(a4I4 + a5I5) = a2 ,

ẽ3(2) = b2 + I2(b4I4 + b5I5) = b2 ,

(4.20)

and
ẽ1(3) = 1,

ẽ2(3) = a3 + I3(a4I4 + a5I5) = a3 + a4I4 ,

ẽ3(3) = b3 + I3(b4I4 + b5I5) = b3 + b4I4 .

(4.21)

By Theorem 4.1, triples (4.19), (4.20), and (4.21) are harmonic in the algebra A4 (i.e., they satisfy
condition (1.1)). Indeed, the harmonicity of triple (4.19) is equivalent to the system of the first and the
fifth equations of system (4.15); the harmonicity of triple (4.20) is equivalent to the second equation of
system (4.15), and the harmonicity of triple (4.21) is equivalent to the system of the third and fourth
equations of system (4.15).
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4.1. Linear independence of vectors 1, ẽ2(u), ẽ3(u)

It is seen from the presented examples that the vectors 1, ẽ2(u), ẽ3(u) for some u ∈ {1, 2, . . . ,m}
can be linearly dependent over the field R. For example, triples (4.14) and (4.20) are always linearly
dependent over the field R.

We now establish the necessary and sufficient conditions of linear independence of the vectors
1, ẽ2(u), ẽ3(u) of the algebra A1

n−m+1 = 1⊕s N over the field R.

Lemma 4.3. Let the vectors (3.1) of the algebra Am
n = S ⊕s N be linearly independent over the field

R, and Let u ∈ {1, 2, . . . ,m} be fixed. Then
1. if the vectors IuRad e2, IuRad e3 ∈ Am

n are linearly independent over the field R, then the
vectors 1, ẽ2(u), ẽ3(u) of the algebra A1

n−m+1 = 1⊕s N are also linearly independent over the field R;
2. but if the vectors IuRad e2 , IuRad e3 ∈ Am

n are linearly dependent over the field R, then the
vectors 1, ẽ2(u), ẽ3(u) of the algebra A1

n−m+1 = 1 ⊕s N are linearly independent over the field R iff
there exists r ∈ {m+ 1, . . . , n} such that IuIr = Ir and at least one of the relations

Im auRe br ̸= Im buRe ar or Im au Im br ̸= Im bu Im ar (4.22)

is satisfied.

Proof. We now prove the first proposition of the lemma. By condition, the equality

β2 IuRad e2 + β3 IuRad e3 = 0, β2, β3 ∈ R (4.23)

is satisfied iff β2 = β3 = 0.
Consider the linear combination

α1 + α2 ẽ2(u) + α3 ẽ3(u) = (α1 + α2 au + α3 bu)+

+ (α2 IuRad e2 + α3 IuRad e3) = 0, α1, α2, α3 ∈ R. (4.24)

We note that the expression in the second bracket in equality (4.24) takes values in the radical R of
the algebra, and the first bracket is complex-valued. Therefore, condition (4.24) is equivalent to the
system of equations

α1 + α2 au + α3 bu = 0,

α2 IuRad e2 + α3 IuRad e3 = 0.
(4.25)

The second equation of system (4.25) and condition (4.23) yield α2 = α3 = 0. Then, from the first
equation of system (4.25), we get α1 = 0. Hence, the vectors 1, ẽ2(u), ẽ3(u) are linearly independent
over R.

Let u prove the second proposition of the lemma. Consider the equality

β1 + β2 e2 + β3 e3 =
m∑
s=1

Is(β1 + β2 as + β3 bs) +
n∑

k=m+1

Ik(β2 ak + β3 bk) = 0,

which is equivalent to the system of equations

β1 + β2Re as + β3Re bs = 0,

β2 Im as + β3 Im bs = 0, s = 1, 2, . . . ,m,

β2Re ak + β3Re bk = 0,

β2 Im ak + β3 Im bk = 0, k = m+ 1, . . . , n.

(4.26)
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The linear independence of the vectors 1, e2, e3 over R means that there exist at least two equations
of system (4.26), except for the first one, which are not proportional to each other.

Let us write the condition of linear independence of the vectors 1, ẽ2(u), ẽ3(u) over R. To thi end,
we present system (4.25) in the expanded form:

α1 + α2Re au + α3Re bu = 0,

α2 Im au + α3 Im bu = 0,

α2Re ar + α3Re br = 0,

α2 Im ar + α3 Im br = 0

∀ r ∈ {m+ 1, . . . , n} : IuIr = Ir .

(4.27)

By the condition of item 2 of the lemma, the vectors IuRad e2 , IuRad e3 are linearly dependent
over R. This means that all equalities in system (4.27), except for two first ones, are proportional to
one another. It is obvious that, for the linear independence of the vectors 1, ẽ2(u), ẽ3(u) over R to
hold, it is necessary and sufficient that the second equation of system (4.27) be no proportional to at
least one other equation (except for the first one) of system (4.27). This is equivalent to conditions
(4.22).

5. Monogenic functions defined in different commutative algebras

In the algebra Am
n = S ⊕s N, we consider monogenic functions Φ defined in some domain Πζ ⊂ E3

of the form (3.7). Geometrically, the domain Π ⊂ R3 which is congruent to the domain Πζ ⊂ E3 is
the intersection of m infinite cylinders each of them is parallel to some straight line of m ones Lu ,
u = 1, 2, . . . ,m, of the form (3.5). In other words, Π = ∩m

u=1Π(u), where R3 ⊃ Π(u) is an infinite
cylinder parallel to the straight line Lu . We have the same for congruent domains in E3:

Πζ =

m∩
u=1

Πζ(u). (5.1)

Analytically, the cylinder Πζ(u) is determined by the equality

Πζ(u) = {ζu := Iu ζ : ζ ∈ Πζ}.

Consider now a function Φ : Πζ → Am
n monogenic in the domain Πζ . Denote

Φu(ζ) := IuΦ(ζ), u = 1, 2, . . . ,m. (5.2)

Then the validity of the equality

Φ = (I1 + · · ·+ Im)Φ =

m∑
u=1

Φu (5.3)

becomes obvious. In addition, equality (3.6) and the multiplication table of the algebra Am
n imply that,

for each u ∈ {1, 2, . . . ,m}, the function Φu is monogenic in the whole infinite cylinder Πζ(u).
Thus, every function Φ : Πζ → Am

n monogenic in the domain (5.1) can be presented in the form of
sum (5.3), where the function Φu is monogenic in the whole cylinder Πζ(u).

We now consider the monogenic functions Φ̃ in the algebra A1
n−m+1 = 1⊕sN . According to Remark

4.1, the algebra A1
n−m+1 is a subalgebra of the algebra Am

n . Therefore, all cylinders Πζ(u) related to
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equality (5.1) in the algebra A1
n−m+1 coincide with one another. In other words, every monogenic

function in algebras of the form A1
n−m+1 is monogenic in a certain single infinite cylinder.

In the following theorem, we will find the connection between monogenic functions in the algebras
Am
n = S ⊕s N and A1

n−m+1 = 1 ⊕s N . Prior to the formulation of the result, we introduce some
notations.

On vectors of the form (4.6) of the algebra A1
n−m+1, we span a linear space Ẽ3(u) := {ζ̃(u) =

x+ yẽ2(u) + zẽ3(u) : x, y, z ∈ R}. The triple of vectors (4.6) define one straight line L̃(u) of the form
(3.5) which corresponds to the set of irreversible elements ζ̃(u) of the space Ẽ3(u). Let Π̃ζ̃(u)

be some

infinite cylinder in Ẽ3(u) which is parallel to the straight line L̃(u).

Theorem 5.1. Let there exist a triple of linearly independent vectors 1, e2, e3 in the algebra Am
n = S⊕s

N over R. Let they satisfy the characteristic equation (1.5), and let fu(E3) = C for all u = 1, 2, . . . ,m.
In addition, let a function Φ : Πζ → Am

n of the variable ζ = x+ ye2+ ze3 be monogenic in the domain
Πζ ⊂ E3 of the form (5.1). Then, for each u ∈ {1, 2, . . . ,m}, there exists a triple of of vectors (4.6)
in the algebra A1

n−m+1 = 1 ⊕s N (where the nilpotent subalgebra N is the same as in the algebra
Am
n ) satisfying the characteristic equation X (1, ẽ2(u), ẽ3(u)) = 0. Moreover, there exists a function

Φ̃u : Π̃
ζ̃(u)

→ A1
n−m+1 of the variable ζ̃(u) which is monogenic in the cylinder

Π̃
ζ̃(u)

=
{
ζ̃(u) ∈ Ẽ3(u) : fu

(
ζ̃(u)

)
= fu(ζ) , ζ ∈ Πζ(u)

}
and is such that

Φu(ζ) = Iu Φ̃u

(
ζ̃(u)

)
. (5.4)

Proof. The existence of triple (4.6) with the property X (1, ẽ2(u), ẽ3(u)) = 0 was proved in Theorem
4.1. In what follows, let u ∈ {1, 2, . . . ,m} be fixed. We now prove the existence and monogenicity of
the function Φ̃u satisfying equality (5.4) in the domain Π̃

ζ̃(u)
. With this purpose, we prove firstly the

equality

Iu ζ
−1 = Iu ζ̃

−1(u) (5.5)

∀ ζ = x+ ye2 + ze3 ∀ ζ̃(u) = x+ yẽ2(u) + zẽ3(u), x ∈ C, y, z ∈ R.

Equalities (4.10) and (4.6) yield the relations

Iu e2 = Iu ẽ2(u) , Iu e3 = Iu ẽ3(u) .

In turn, they result in the equality

Iu ζ = Iu ζ̃(u). (5.6)

Consider the difference Iu ζ
−1−Iu ζ̃

−1(u). By the Hilbert formula (see, e.g., Theorem 4.8.2 in [13]),
we have

Iu ζ
−1 − Iu ζ̃

−1(u) =
(
Iu ζ − Iu ζ̃(u)

)(
ζ ζ̃(u)

)−1
= 0

due to equality (5.6). Hence, equality (5.5) is proved. Now, formula (5.5) yields the relation

Iu(t− ζ)−1 = Iu
(
t− ζ̃(u)

)−1
(5.7)

∀ t ∈ C : t ̸= ξu = fu(ζ) ∀ ζ ∈ Πζ(u) ∀ ζ̃(u) ∈ Π̃
ζ̃(u)

.
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For a function Φu(ζ) monogenic in the domain Πζ(u), the multiplication table of the algebra Am
n

and formula (3.6) yield the representation

Φu(ζ) = Iu
1

2πi

∫
Γu

(
Fu(t) +

n∑
s=m+1

IsGs(t)
)
(t− ζ)−1 dt, (5.8)

where the functions Fu , Gs are defined in Theorem A.

In view of relation (5.7), we rewrite representation (5.8) in the form

Φu(ζ) = Iu
1

2πi

∫
Γu

(
Fu(t) +

n∑
s=m+1

IsGs(t)
)(

t− ζ̃(u)
)−1

dt. (5.9)

We note that the algebra A1
n−m+1 contains a single maximum ideal I coinciding with radical (2.1)

of this algebra R. Therefore, the unique linear continuous multiplicative functional f : A1
n−m+1 → C

whose kernel is the radical R is defined on this algebra. This means that f
(
ζ̃(u)

)
= x + au y + bu z

for every ζ̃(u) ∈ Ẽ3(u). With regard for the equality fu(ζ) = x+ au y + bu z for any ζ ∈ E3, we have
the equality

f
(
ζ̃(u)

)
= fu(ζ). (5.10)

Equality (5.10) and the condition fu(E3) = C of the theorem yield the relation f
(
ζ̃(u)

)
= C for any

ζ̃(u) ∈ Ẽ3(u).

Thus, we have shown that the conditiona of TheoremA hold for monogenic functions in the algebra
A1
n−m+1. Then formula (3.6) for the function Φ̃u

(
ζ̃(u)

)
monogenic in the domain Π̃

ζ̃(u)
in the algebra

A1
n−m+1 takes the form

Φ̃u

(
ζ̃(u)

)
=

1

2πi

∫
γ

(
F̃ (t) +

n∑
s=m+1

Is G̃s(t)
)(

t− ζ̃(u)
)−1

dt. (5.11)

The required formula (5.4) will be a direct consequence of equalities (5.9) and (5.11), if we show
that it is possible to set γ ≡ Γu, Fu ≡ F̃ and Gs ≡ G̃s for s such that Iu Is = Is . We now show this.

Equality (5.10) implies that the cylinders Πζ(u) ⊂ E3 and Π̃
ζ̃(u)

⊂ Ẽ3(u) are mapped by the

corresponding functionals fu and f into the same domain D of the complex plane C. Thi means that
the functions Fu, F̃ , Gs, and G̃s are holomorphic in the same domain D. Hence, we can set Fu ≡ F̃
and Gs ≡ G̃s in D.

Since the integration curves γ and Γu lie in the domain D, we can take γ ≡ Γu . Moreover, the
curve Γu in equality (5.8) encloses the point fu(ζ) = x+ au y + bu z by Theorem A. Hence, the curve
γ ≡ Γu encloses the spectrum of the point ζ̃(u), the point f

(
ζ̃(u)

)
= x + au y + bu z, due to equality

(5.10). This is what we require. The theorem is proved.

Remark 5.1. Equalities (5.3) and (5.4) yield the representation

Φ(ζ) = I1 Φ̃1

(
ζ̃(1)

)
+ · · ·+ Im Φ̃m

(
ζ̃(m)

)
. (5.12)

Remark 5.2. Theorem 4.1 means that the functions Φ and IuΦ̃u for all u = 1, 2, . . . ,m satisfy the
same differential equation of the form (1.3).
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Remark 5.3. Theorem 5.1 asserts that, for the construction of solutions of the differential equa-
tion (1.3) in the form of components of monogenic functions with values in commutative algebras,
it is sufficient to restrict ourselves to the study of monogenic functions in algebras with the ba-
sis {1, η1, η2, . . . , ηn}, where η1, η2, . . . , ηn are nilpotents. In other words, the number of such n-
dimensional commutative associative algebras with 1 over the field C in which we should study
monogenic functions is equal to the number of (n− 1)-dimensional commutative associative complex
nilpotent algebras.

In particular, among two-dimensional commutative associative algebras with 1 over the field C
(only two such algebras exist), it is sufficient to restrict ourselves to the study of monogenic functions
in the biharmonic algebra B. Among three-dimensional commutative associative algebras with 1
over the field C (only four such algebras exist), it is sufficient to restrict ourselves to the study of
monogenic functions in two of them (algebras A3 and A4 in terms of work [6]). Among four-dimensional
commutative associative algebras with 1 over the field C (only 9 such algebras exist, see [16]), it is
sufficient to restrict ourselves to the study of monogenic functions in four of them (algebras Ã3,1,

Ã3,2, Ã3,3, and Ã3,4 from Table 9 in [17], see also Theorem 5.1 in [18]). Among all five-dimensional
commutative associative algebras with 1 over the field C (only 25 such algebras exist, see [16]), it is
sufficient to restrict ourselves to the study of monogenic functions in nine algebras (the multiplication
tables of all those 9 nilpotent four-dimensional algebras are given in Theorem 6.1 in [18]). and Finally,
among all six-dimensional commutative associative algebras with 1 over the field C, it is sufficient
to study the monogenic functions in 25 algebras (these 25 five-dimensional algebras are presented in
Table 1 in [19]). It is also known (see [20]) that, by starting from a dimension equal to 6, the set of
all pairwise nonisomorphic nilpotent commutative algebras over C is infinite.

Remark 5.4. Theorem 5.1 remains valid in the case where we consider the functions Φ : Πζ → Am
n

of the variable ζ :=
k∑

r=1
xrer, 2 ≤ k ≤ 2n, which is monogenic in the domain Πζ ⊂ Ek. In this case,

we should use Theorem 1 from [21] instead of Theorem A.

We now illustrate Theorem 5.1 on the algebras considered in Examples 4.1 and 4.2.

Example 5.1. Let us consider the algebra A2
3 with the multiplication table (4.12). For the algebra

A2
3, the biharmonic algebra B with the multiplication table (4.13) is an algebra of the form 1⊕s N .
According to representation (3.6), every monogenic function Φ with values in the algebra A2

3 can
be presented in the form

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 +
(
(a3y + b3z)F

′
2(ξ2) +G3(ξ2)

)
I3 (5.13)

∀ ζ ∈ Πζ , ξu = x+ auy + buz, u = 1, 2,

where F1 is some holomorphic function in the domain D1 , and F2 and G3 are some holomorphic
functions in the domain D2 . Since m = 2 for A2

3, the domain Πζ is geometrically the intersection of
two infinite cylinders: Πζ = Πζ(1) ∩Πζ(2).

We note that representation (5.13) was earlier obtained in [8]. In addition, function (5.13) satisfies
some differential equation of the form (1.3).

We now present function (5.13) in the form (5.3):

Φ(ζ) = Φ(ζ)I1 +Φ(ζ)I2 =: Φ1(ζ) + Φ2(ζ), (5.14)

where Φ1(ζ) = F1(ξ1)I1 is a monogenic function in the cylinder Πζ(1), and the function

Φ2(ζ) = F2(ξ2)I2 +
(
(a3y + b3z)F

′
2(ξ2) +G3(ξ2)

)
I3
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is monogenic in the cylinder Πζ(2).

Consider the monogenic functions in the algebra B. Representation (3.6) implies that every mono-
genic function Φ̃ with values in the algebra B can be presented in the form

Φ̃(ζ̃) = F̃ (ξ̃) +
(
(a3y + b3z)F̃

′(ξ̃) + G̃(ξ̃)
)
I3 ∀ ζ̃ ∈ Π̃

ζ̃
, ξ̃ = f(ζ̃), (5.15)

where F̃ , G̃ are some holomorphic functions in the domain D. The domain Π̃
ζ̃
is an infinite cylinder.

Equality (5.15) was established in a special case in [15].
Theorem 5.1 asserts the following:
1) in the algebra B, there exists a triple of the vectors 1, ẽ2(1) , ẽ3(1) which satisfies the same

characteristic equation as the triple 1, e2, e3 ∈ A2
3. In this case, the relations ξ1 ≡ ξ̃ and D1 ≡ D hold.

In addition, there exists a function Φ̃ monogenic in B which is such that

I1 Φ̃1

(
ζ̃(1)

)
= Φ1(ζ) . (5.16)

2) in the algebra B, there exists a triple of the vectors 1, ẽ2(2) , ẽ3(2) which satisfies the same
characteristic equation as the triple 1, e2, e3 ∈ A2

3. In this case, the relations ξ2 ≡ ξ̃ and D2 ≡ D hold.

In addition, there exists a monogenic function Φ̃ such that

I2 Φ̃2

(
ζ̃(2)

)
= Φ2(ζ) . (5.17)

The required triples of vectors 1, ẽ2(1) , ẽ3(1), and 1, ẽ2(2) , ẽ3(2) were determined in Example 4.1.
Consider case 1). Indeed, for triple (4.14), we have ζ̃(1) = x + a1y + b1z ≡ ξ1 ≡ ξ̃, D1 ≡ D. Set
F̃ ≡ F1 and G̃ ≡ G3 in D. Then equality (5.15) can be written in the form

Φ̃1(ζ̃(1)) = F1(ξ1) +
(
(a3y + b3z)F

′
1(ξ1) +G3(ξ1)

)
I3 . (5.18)

Multiplying equality (5.18) by I1 , we verify the validity of equality (5.16).
Consider case 2). Indeed, for triple (4.15), we have

ζ̃(2) = x+ yẽ2(2) + zẽ3(2) = x+ a2y + b2z + a3xI3 + b3yI3 .

It is obvious that f(ζ̃(2)) = x + a2y + b2z = ξ2 ≡ ξ̃, D2 ≡ D. Set F̃ ≡ F2 and G̃ ≡ G3 in D. Then
equality (5.15) can be written in the form

Φ̃2(ζ̃(2)) = F2(ξ2) +
(
(a3y + b3z)F

′
1(ξ2) +G3(ξ2)

)
I3 . (5.19)

Multiplying equality (5.19) by I2 , we verify the validity of equality (5.17).
Thus, equality (5.12) is true:

Φ(ζ) = I1 Φ̃1

(
ζ̃(1)

)
+ I2 Φ̃2

(
ζ̃(2)

)
,

where Φ takes values in the algebra A2
3 , and Φ̃1

(
ζ̃(1)

)
andΦ̃2

(
ζ̃(2)

)
take values in B.

Example 5.2. Consider the algebra A3
5 with the multiplication table (4.16). For the algebra A3

5, the
algebra A4 with the multiplication table (4.17) is an algebra of the form 1⊕s N .

According to representation (3.6), every monogenic function Φ with values in the algebra A3
5 can

be given in the form

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + F3(ξ3)I3 +
(
(a4y + b4z)F

′
3(ξ3) +G3(ξ3)

)
I4+
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+
(
(a5y + b5z)F

′
1(ξ1) +G5(ξ1)

)
I5 (5.20)

∀ ζ ∈ Πζ , ξu = x+ auy + buz, u = 1, 2, 3,

where F1 and G5 are some holomorphic functions in the domain D1 , F2 is some holomorphic function
in the domain D2 , and F3 and G3 are some holomorphic functions in the domain D3 . For A3

5

m = 3. Therefore, the domain Πζ is geomerically the intersection of three infinite cylinders: Πζ =
Πζ(1) ∩Πζ(2) ∩Πζ(3).

Function (5.20) can be presented in the form (5.3):

Φ(ζ) = Φ(ζ)I1 +Φ(ζ)I2 +Φ(ζ)I3 =: Φ1(ζ) + Φ2(ζ) + Φ3(ζ), (5.21)

where

Φ1(ζ) = F1(ξ1)I1 +
(
(a5y + b5z)F

′
1(ξ1) +G5(ξ1)

)
I5

is a monogenic function in the cylinder Πζ(1), the function Φ2(ζ) = F2(ξ2)I2 is monogenic in the
cylinder Πζ(2) , and the function

Φ3(ζ) = F3(ξ3)I3 +
(
(a4y + b4z)F

′
3(ξ3) +G3(ξ3)

)
I4

is monogenic in the cylinder Πζ(3).

Consider the monogenic functions in the algebra A4. Representation (3.6) implies that every
monogenic function Φ̃ with values in the algebra A4 can be presented in the form

Φ̃(ζ̃) = F̃ (ξ̃) +
(
(a4y + b4z)F̃

′(ξ̃) + G̃3(ξ̃)
)
I4

+
(
(a5y + b5z)F̃

′(ξ̃) + G̃5(ξ̃)
)
I5 ∀ ζ̃ ∈ Π̃

ζ̃
, ξ̃ = f(ζ̃), (5.22)

where F̃ , G̃3 , G̃5 are some holomorphic functions in the domain D ⊂ C. The domain Π̃
ζ̃
is an infinite

cylinder.

For triple (4.19) of the algebra A4, we have

ζ̃(1) = x+ yẽ2(1) + zẽ3(1) = x+ a1y + b1z + a5xI5 + b5yI5 .

It is obvious that f(ζ̃(1)) = x + a1y + b1z = ξ1 ≡ ξ̃, D1 ≡ D. We set F̃ ≡ F1, G̃3 ≡ G3, G̃5 ≡ G5 in
D. Then equality (5.22) can be written in the form

Φ̃1(ζ̃(1)) = F1(ξ1) +
(
(a4y + b4z)F

′
1(ξ1) +G3(ξ1)

)
I4

+
(
(a5y + b5z)F

′
1(ξ1) +G5(ξ1)

)
I5 . (5.23)

Multiplying equality (5.23) by I1 , we verify the validity of the equality

I1 Φ̃1

(
ζ̃(1)

)
= Φ1(ζ) .

For triple (4.20) of the algebra A4, we have

ζ̃(2) = x+ yẽ2(2) + zẽ3(2) = x+ a2y + b2z.
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It is obvious that f(ζ̃(2)) = ζ̃(2) = x + a2y + b2z = ξ2 ≡ ξ̃, D2 ≡ D. Set F̃ ≡ F2, G̃3 ≡ G3, and
G̃5 ≡ G5 in D. Then equality (5.22) takes the form

Φ̃2(ζ̃(2)) = F2(ξ2) +
(
(a4y + b4z)F

′
2(ξ2) +G3(ξ2)

)
I4+

+
(
(a5y + b5z)F

′
2(ξ2) +G5(ξ2)

)
I5 . (5.24)

Multiplying equality (5.24) by I2 , we verify the validity of the equality

I2 Φ̃2

(
ζ̃(2)

)
= Φ2(ζ) .

Eventually, for triple (4.21), we get

ζ̃(3) = x+ yẽ2(3) + zẽ3(3) = x+ a3y + b3z + a4xI4 + b4yI4 .

It is obvious that f(ζ̃(3)) = x+ a3y + b3z = ξ3 ≡ ξ̃, D3 ≡ D. Set F̃ ≡ F3, G̃3 ≡ G3, and G̃5 ≡ G5 in
D. Then equality (5.22) can be rewritten in the form

Φ̃3(ζ̃(3)) = F3(ξ3) +
(
(a4y + b4z)F

′
3(ξ3) +G3(ξ3)

)
I4

+
(
(a5y + b5z)F

′
3(ξ3) +G5(ξ3)

)
I5 . (5.25)

Multiplying equality (5.25) by I3 , we verify the validity of the equality

I3 Φ̃3

(
ζ̃(3)

)
= Φ3(ζ) .

Thus, equality (5.12) is true:

Φ(ζ) = I1 Φ̃1

(
ζ̃(1)

)
+ I2 Φ̃2

(
ζ̃(2)

)
+ I3 Φ̃3

(
ζ̃(3)

)
,

where Φ takes values in the algebra A3
5 , and Φ̃1

(
ζ̃(1)

)
, Φ̃2

(
ζ̃(2)

)
, and Φ̃3

(
ζ̃(3)

)
take values in A4.
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3. M. N. Roşculeţ, “Algebre infinite, comutative, asociate la sisteme de ecuaţii cu derivate parţiale,” Studii şi
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