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TO THE CALCULATIONS OF SCATTERING
AMPLITUDES IN DIFFRACTION PROBLEMS FOR
ELONGATED BODIES OF REVOLUTION

M. M. Popov∗ and N. M. Semtchenok∗ UDC 517.9

This paper is a complement to the article “Scattering amplitudes in a neighborhood of limit rays
in short-wave diffraction by elongated bodies of revolution”. It contains discussions of some points
of the article, which worth of more detailed considerations, such as the influence of the integration
limits on the computation result of scattering amplitudes and the estimation of permissible values
of scattering angle intervals as functions of parameters of the problems. Bibliography: 4 titles.

In paper [1] we obtained formulas for scattering amplitudes of the plane wave for smooth
elongated bodies of revolution (axially symmetric case) in the direction of limit rays and used
them to perform calculations. This note represents an addition to the aforementioned paper
and contains a more detailed discussion of items, which, in our opinion, were not examined
properly in that paper. In particular, we added Figs. 1–4.

Let us briefly dwell upon key principles of our approach. The diffraction problems are
considered in the short-wave approximation, where the length of the incident wave is much
smaller than the geometric dimensions of the scatterer. It turns out in this case that the
Green formula for the wave field in the body exterior leads to quickly oscillating integrals,
which obviously perform an essential contribution to the extent of this field only at the critical
(stationary) points of the corresponding phase functions. At that, in the vicinity of the light-
shadow boundary, where the wave field slides along the scatterer boundary, the stationary
points correspond to limit rays, i.e., to such rays that touch the scatterer surface at points
of the light-shadow boundary (equator). This circumstance enables us to obtain formulas for
the scattering amplitudes in the direction of the limit rays in the form of integrals of the wave
field current on the part of the scatterer boundary in a neighborhood of the equator where a
specific boundary layer appears. In this boundary layer a smooth transition of the wave field
from the illuminated to the shadowed part of the body takes place. Thus we arrive at the Fock
problem [2] of finding the wave field current exactly within this boundary layer (the principle
of short-wave approximation locality).

The calculation of the current in the vicinity of the equator is implemented in our papers
by numerical methods. Let us note, first of all, that, from the mathematical point of view,
the problem that appears within the boundary layer constitutes a scattering problem for
Schrödinger type equations, where the incident wave field is defined by its own ray asymptotics
in the illuminated part of the scatterer (see, for example, [3, 4]).

In the case of a strongly convex body of revolution, where the curvature of its surface in the
direction of the incident rays does not vanish at the equator points, we arrive at the bound-
ary layer and the Fock problem, which can be calculated precisely by means of the variable
separation method. This allows us to obtain analytic expressions for scattering amplitudes in
the form of not simple integrals, which contain Airy functions and their derivatives. In what
follows, we intend to examine these integrals with the aim of simplifying them.
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Fig. 1. The dependence of the scattering amplitude on the value of σ1 for the
case of a Fock boundary layer with Dirichlet conditions on the scatterer bound-
ary.
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Fig. 2. The dependence of the scattering amplitude on the value of σ1 for the
case of a Fock boundary layer with Neumann conditions on the scatterer bound-
ary.
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Fig. 3. The dependence of the scattering amplitude on the value of σ1 for the
case of a strongly elongated body with Dirichlet conditions on the scatterer
boundary.
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Fig. 4. The dependence of the scattering amplitude on the value of σ1 for the
case of a strongly elongated body with Neumann conditions on the scatterer
boundary.

733



In the case of a strongly elongated body, the variables in the emerging equations are not
separated, and it only remains for us to apply numerical techniques to get a solution. In
the internal stretched variables σ, ν of the boundary layer, where σ is a dimensionless arc
length, counted from the equator in the direction of rays, and ν represents a dimensionless
external normal to the scatterer surface, the scattering problem is set in the half-plane −∞ <
σ < +∞, ν ≥ 0. As σ → −∞, the field of the incident and the reflected wave is defined by
its ray asymptotics. For ν = 0, we set Neumann and Dirichlet boundary conditions. The
situation concerning the condition as ν → +∞ is more complicated, because neither incident
nor reflected waves decrease, i.e., do not belong to L2(0,∞), to be more precise, but stay
restricted.

We solve this problem by numerical methods in the rectangle −|σ0| ≤ σ ≤ σ1, 0 ≤ ν ≤
ν∗, where the boundaries are subject to tentative selection. We set a Cauchy condition for
σ = σ0 and σ0 is selected based on the fitting condition for the currents, generated by the ray
asymptotics and the grid solution.

As ν = ν∗ we introduce a fictitious boundary, where the complete field vanishes, which gives
rise to a reflected wave, fictitious as well. At that the quantity ν∗ is selected with the aim
to minimize the contribution of this wave to the current on the boundary ν = 0 within the
interval σ0 ≤ σ ≤ σ1 (see [3, 4] for more detail).

Figures 1–4 display the influence of the boundaries of the rectangle σ = σ1 on the scattering
amplitudes depending on the boundary conditions at ν = 0 for Fock boundary layers and with
flattening points on the equator in the case of strongly elongated bodies. The value of the
angle θ on them is plotted on the x-coordinate axis in degrees, the same as in [1]. We use the
same angle interval for all calculations, albeit [1] draws attention to the fact that the definition
of angle smallness depends on the values of the large parameters M0 and M ; see the following
paragraph of this paper. The calculations in Figs. 1–4 were accomplished for the same value
of M0 and M parameters. In the case of Dirichlet conditions, the current of the wave field
decreases more swiftly, in contrary to the Neumann condition, however the plot stability for
the amplitudes is achieved practically at the same values of σ1. It may be noted as well that in
the case of the Neumann condition, the wave field in the shadowed zone proves to be greater
than for the Dirichlet condition.

Let us dwell on the question of the smallness of θ angles for which the formulas for the
scattering amplitudes turn out to be justified; see relations (14) and (17) in [1].

The restrictions on the angles θ are derived from the requirement, natural for the asymptotic
expansion, that in the principal term of the asymptotics, all the summands should be of the
same order and, in particular, both summands under the exponent in relations (14), (17)
from [1], i.e., with the requirement θM0 = O(1) to be fulfilled for the Fock boundary layer, and
for the case of a strongly elongated body θM3 = O(1) as M0 → ∞ and M → ∞, respectively.
This ensues from the fact that the dimensionless extended coordinates σ and ν have order
of O(1). Let us recall that the symbol O(1) allows for the existence of a certain, generally
speaking, undefined constant, which for its part does not depend on the large parameter
anymore. If we set this constant to one, then for the maximal angle θmax, measured obviously
in radians, we arrive at |θmax| = M−1

0 for elongated bodies and |θmax| = M−3 for strongly
elongated ones.

Let us recall that for the calculations in Figs. 1–4 and in [1], we took the angle θ interval
independent of the large parameter of the boundary layer and angles θ were measured in
degrees. Let us give intervals of acceptable rays, associated with θ measured in degrees as
well, for various values of the large parameters M0 and M , which correspond to Figs. 3, 4 and
7, 8 from [1]. In the case of the Fock boundary layer with M0 = 2.2 and M0 = 2.9, we obtain
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|θmax| ≈ 26◦ and |θmax| ≈ 20◦, respectively. Thus, the acceptable values of the angles in Figs. 3
and 4 are described by the inequalities −26◦ ≤ θ ≤ 26◦ and −20◦ ≤ θ ≤ 20◦, respectively.

In the case of a strongly elongated body (consider the boundary layer with flattening points
on the equator) for the values M = 1.8 and M = 3.0 the angle intervals in Figs. 7 and 8 are
described by the inequalities −9.7◦ ≤ θ ≤ 9.7◦ and −2.1◦ ≤ θ ≤ 2.1◦, respectively.

Therefore, the acceptable angles θ depend on the large parameter of the boundary layer
and decrease (get narrower) with its rise, while the maximum of the emanated wave field
approaches the limit ray θ = 0, which represents the geometric boundary of the shadow.

The work was supported by the Russian Foundation for Basic Research, grant 17-01-00529 a.
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