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LEONTOVICH–FOCK PARABOLIC EQUATION METHOD
IN THE NEUMANN DIFFRACTION PROBLEM ON
A PROLATE BODY OF REVOLUTION

A. S. Kirpichnikova∗ and N. Ya. Kirpichnikova† UDC 517.9

This paper continues a series of publications on the shortwave diffraction of the plane wave on
prolate bodies of revolution with axial symmetry in the Neumann problem. The approach, which
is based on the Leontovich–Fock parabolic equation method for the two parameter asymptotic ex-
pansion of the solution, is briefly described. Two correction terms are found for the Fock’s main
integral term of the solution expansion in the boundary layer. This solution can be continuously
transformed into the ray solution in the illuminated zone and decays exponentially in the shadow
zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be
obtained with the help of residue theory for the integrals of the reflected field, because the incident
field does not reach the shadow zone. The obtained residues are necessary for the unique construc-
tion of the creeping waves in the boundary layer of the scatterer in the shadow zone. Bibliography:
16 titles.

We consider a shortwave diffraction of a plane incident wave on the strictly convex, prolate
body of revolution. The geometric characteristics of the scatterer (i.e., radii of curvatures of
the surface of body of revolution) are assumed to be much larger than the incident wavelength.
The incident wave propagates along the axis of revolution. The total wave field U is the sum
of the incident Uinc and reflected Uref waves, U = Uinc + Uref. The field is constructed in
the vicinity of the light-shadow border (i.e., in the penumbra of Fock’s region, [1]), which is
the “seed” zone for fields both in the vicinity of the limit rays and in the shadowed part of
the body. The shortwave field in the illuminated area near the scatterer is described by means
of the ray method. The field U satisfies the Helmholtz equation with Neumann or Dirichlet

boundary conditions. Fock’s boundary layer O(sk
1
3 ) = O(1), O(nk

2
3 ) = O(1) is introduced

in a neighborhood of point s = 0, which belongs to the geometric border (Equator) of the
shadow; here k is the wavenumber, n is the distance along the outer normal on the scatterer,
and s is the arclength of the geodesic. The ray method does not work in the vicinity of the
light-shadow border, i.e., in the Fock’s boundary layer. The total wave field in the Fock’s
zone can be represented as U = eiks(W inc +W ref), where eiks is the oscillating factor of the
wave field along the geodesic; the function W is called the attenuation function. Introducing
dimensionless coordinates σ, ν instead of s and n, and rewriting eikz in the new coordinates
σ, ν, we obtain the first three terms of the expansion W inc in the form

W (σ, ν) = W inc
0 +

W inc
1

k
1
3

+
W inc

2

k
2
3

+O(k−1), k � 1,

here W inc
0 is the main, W inc

1 is the first, and W inc
2 is the second terms of the asymptotic

expansion. The functions W inc
i , i = 0, 1, 2, have the form of integrals of linear combinations

of the Airy function v(t) and its derivative v′(t) with polynomials in the dimensionless normal
coordinate ν in Fock’s region. We apply the Leontovich–Fock parabolic equation method [1,4]
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to the function under investigation

W ref(σ, ν) = W ref
0 +

W ref
1

k
1
3

+
W ref

2

k
2
3

+O(k−1), k � 1.

The functions W ref
i , i = 0, 1, 2 satisfy the system of recurrence equations (1)

L0W
ref
0 = 0, L0W

ref
1 + L1W

ref
0 = 0, (1)

L0W
ref
2 + L1W

ref
1 + L2W

ref
0 = 0, and so on.

The attenuation functions W ref
i , i = 0, 1, 2, are also integrals of the Airy functions w1(t) and

w′
1(t) (in Fock’s definition) and polynomials of ν.
These formulas give a continuous transition from the field in the illuminated area (ray

expansion) to the full shadow, where the solution decays exponentially as σ > 0. Moreover,
the integrals W ref

i , i = 0, 1, 2, can be represented as a sum of residues of the roots of the
denominators of the integrand in the shadow. The latter allows one to generate creeping waves
from the initial data taken from the asymptotic expansion. Owing to the prolate character of
the body, the constructed two-parameters asymptotic expansion in the Fock’s region allows
one to obtain an approximate expressions for the wave field, depending on the large parameters
of the problem. Thus the system of recurrence differential equations (1) keeps its asymptotic
nature, provided that the prolongation parameter is equal to

Λ0 = 2M2−ε
0 , 0 < ε < 2, Λ0 =

ρ0
f(0)

, M0 =

(
kρ0
2

) 1
3

. (2)

Here the prolongation parameter Λ0 equals the ratio of curvature radii along the geodesics
and along the Equator, and M0 is the Fock’s parameter.

1. Statement of the problem and geometry

We follow the statement of the problem from [2, 3], however the solution was constructed
based on a set of completely different methods [1, 4, 5], which allowed one to observe the
influence of both curvature radii of the body of revolution on the wave field.

z

x

1

2 3

4

5

Fig. 1. The figure presents five main areas of irradiation in the plane wave
diffraction on the body of revolution Ω: illuminated region 1, region 2 is a
neighborhood of the point of contact of the limit ray (Fock’s region), region
3 is a penumbra zone in the vicinity of the limit ray, region 4 is the shadow
region, region 5 is the surface layer in the shadow region, where the creeping
waves are formed.

Assume that the surface ∂Ω of the scatterer Ω is generated by rotating a flat strictly convex
curve x = f(z) about the z axis. The cross-section of ∂Ω by the plane z = 0 is called the
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Equator and coincides with the light-shadow border, which appears as a result of the incidence
of the plane wave Uinc = exp(ikz) onto Ω. Here k � 1 is a wavenumber, and k = 2π

λ , where
λ is a wave length (see Fig. 1).

The wave field U satisfies the Helmholtz equation with the Neumann boundary condition
on the surface ∂Ω, i.e.,

(Δ + k2)U = 0,
∂

∂n
U |n=0 = 0, (3)

also U satisfies the limiting absorption principle, which suggests that for small Im k > 0, U → 0
for large distances from the penumbra region. The Dirichlet boundary condition has been con-
sidered in papers [4,5], and we present those results in this paper for convenience of comparing
the Dirichlet and the Neuman wave field.

Together with the Cartesian coordinates {x, y, z} and the polar coordinates r =
√
x2 + y2,

x = r cosϕ, y = r sinϕ, 0 ≤ ϕ ≤ 2π, we introduce new curvilinear coordinates {s, n, ϕ} in the
vicinity of the Equator, where s is the arclength along the geodesics (meridians), measured
from the Equator (i.e., s = 0), so that, s < 0 corresponds to the illuminated area of ∂Ω, while
s > 0 corresponds to the shadowed part of the surface. The relationship between s and z is
clear from the formula

s =

z∫
0

√
1 + (f ′(z))2 dz. (4)

The radius vector of a point M outside Ω in the polar coordinates (r, ϕ, z) has the form

R(M) = r[cosϕex + sinϕey] + zez.

If a point belongs to ∂Ω, then r = f(z), and the unit outward normal to ∂Ω is

n =
∇[r − f(z) = 0]

|∇[r − f(z) = 0]| =
(cosϕex + sinϕey)− f ′

z(z)ez√
1 + (f ′

z)
2

.

The radius vector of a point on the surface ∂Ω is equal to

R(s) = f(z(s))[cosϕ ex + sinϕ ey] + z(s)ez = f(z(s))er + z(s)ez,

where the unit normal vector is er = (cosϕ ex+sinϕ ey). Morevover, the tangent vectors along
the meridians are orthogonal to tangent vectors along parallels on the surface of the scatterer.
In {s, n, ϕ} coordinate system, the radius vector takes the form

R(M) = R(s) + nn = R(s) + n
er − f ′

zez√
1 + (f ′

z)
2
.

In order to find the Lamé coefficients, we use the total differential dR(M):

dR(M) = dR(s) + d(nn) =
∂R(s)

∂z
dz +

∂R(s)

∂ϕ
dϕ+ dnn+ ndn.

Thus,

(dR(M), dR(M)) =

(
1 +

n

ρ(s)

)2

ds2 + dn2 +

(
f +

n√
1 + (f ′

z)
2

)2

dϕ2.

The function ρ(s) is the curvature radius of a meridian at a point s. The square of a linear
distance element, which is equal to

dS2 = h2sds
2 + dn2 + h2ϕdϕ

2,
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defines the Lamé coefficients

hs =1− n
f ′′(z(s))

[1 + (f ′(z(s)))2]3/2
= 1 +

n

ρ(s)
, hn = 1,

hϕ = f(z(s)) +
n√

1 + (f ′(z(s)))2
,

1

ρ(s)
=

−f
′′
(z(s))

[1 + (f ′(z(s)))2]3/2
. (5)

We note that z in formula (4) is taken to be a function of s, i.e., z = z(s) can be obtained as
an inverse of (4). Hence, finding the inverse of (4) we get

z(s) = s− s3

3!ρ20
+

3ρ′0
4!ρ30

s4 +

[−11(ρ′0)2 + 4ρ0ρ
′′
0 + 1

5!ρ40

]
s5 +O(s6).

Here ρ0 = ρ(s)|s=0 is the radius of curvature of the geodesics (meridians) on the light-shadow
border. Multiplying the radius vector in the (s, n, ϕ) coordinate system by ez, we obtain the
expansion of z with respect to s and n :

z = z(s) + n(n, ez) = z(s) + n
−f ′(z(s))√
1 + [f ′(z(s))]2

.

Taking into account the expansion of f(z(s)) with respect to s, we have

z = s+

(
− s3

3!ρ20
+

ns

ρ0

)
+

(
3ρ′0s4

4!ρ30
− ns2ρ′0

2!ρ20

)
+

(
αs5

5!ρ40
− βns3

3!ρ30

)
+O(s6, ns4). (6)

Next from
1

ρ(s)
=

−f
′′
(z(s))

[1 + (f ′(z(s)))2]3/2
and

dz

ds
=

1√
1 + (f ′(z(s)))2

,

we get

f ′
z(0) = 0, f (2)

z = f
′′
zz(0) = − 1

ρ0
, f (3)

z = f
′′′
zzz(0) = − d

ds

1

ρ

∣∣∣∣
s=0

, . . . .

Throughout this text all the expressions that describe the Fock’s region, contain functions of
s, evaluated at s = 0. The coefficients α, β in (6) have the form

α = 4ρ0ρ
′′
0 − 11(ρ′0)

2
+ 1, β = ρ0ρ

′′
0 − 2(ρ′0)

2
+ 1. (7)

We note that we consider an axially symmetric case for the sake of simplicity, similarly to
papers [2, 3], i.e., we are interested in a solution that does not depend on the angle ϕ, which
means that ∂U

∂ϕ = 0. Therefore, the solution in the three-dimensional case can be constructed
in any cross-section over ϕ, say, ϕ = 0.

In the vicinity of the points on ∂Ω that belong to the light-shadow border, i.e., to the
region 2 (see Fig. 1), we introduce scaling factors s and n as in the Leontovich–Fock parabolic-

equation method: sk
1
3 = O(1), nk

2
3 = O(1), k � 1, where O(1) means that the right-hand

sides of the equalities are proportional to constants. These constants are parts of the formulas
for the dimensionless variables σ = O(1) and ν = O(1),

σ =
k1/3s

21/3ρ
2/3
0

=
M 0

ρ0
s, ν =

21/3k2/3n

ρ
1/3
0

=
2M 2

0

ρ0
n. (8)

The width of the penumbra region |s| ≤ ρ0
M0

|σ| is of order O( 1
M0

), here M0 is Fock’s dimen-

sionless parameter (2), M0 � 1.
In the shortwave diffraction of a plane incident wave from a strongly prolongated scatterer,

the field expansion inherits not only the properties of the large Fock’s parameter M0, but also
the properties of the second parameter of body enlongation Λ0 (2), see [4, 5].
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The solution in the surface layer 2 was constructed by the two-scale expansion; the parameter
Λ0 appeared in the system of recurrence equations for the boundary layer in the ratio Λ0

2M2
0

and its positive exponents. The asymptotic nature of the expansion is not broken if Λ0

2M2
0
is of

order O(M−ε
0 ) for 0 < ε < 2. If ε = 2, then Λ0 = 2M 2−ε

0 = O(1) and both curvature radii do
not differ (which is not the case of a prolate body).

When ε = 0, the parameter Λ0 compensates Fock’s parameter and the system of recurrence
equations in the boundary layer looses its asymptotic nature and all the equations in the
system get some singularity in their coefficients, see [4, 6].

In this research we have found the wave field near surface ∂Ω in the Fock’s region 2, see
Fig. 1. The solution in the illuminated region 1 was found by the ray method [1, 4, 7]. The
region of the limit ray 3 was investigated in the monography by V. A. Fock [1] and in book [8];
Fridlander-Keller diffracted rays are developed in the shadowed region 4 far from the border.
The asymptotics of the solution in region 2 generates initial data for creeping waves in the
boundary layer 5. Regions 4 and 5 will be considered separately.

2. Incident field in Fock’s region

2.1. Field Uinc expansion with respect to σ and ν. Consider the incident wave Uinc =
exp(ikz), which satisfies (3) with boundary conditions of either Dirichlet, or Neumann type
on the surface of the scatterer ∂Ω. We need an expansion of the incident wave in s and n
coordinates in Fock’s region in order to construct the reflected wave Uref. The incident wave
expansion (8) has the following form in the dimensionless coordinates (σ, ν):

Uinc = eikz = e

[
iks+i(νσ−σ3

3
)
](

1 + i

(
2

kρ0

) 1
3
[
ρ′0
4
(σ4 − 2νσ2)

]

+

(
2

kρ0

) 2
3
[
2iασ5

5!
− iβνσ3

3!
− (ρ′0)

2

2 · 42 (σ
8 − 4νσ6 + 4ν2σ4)

]
+O

(1
k

))
. (9)

Here expression (6) with respect to s, n was rewritten in the new stretched coordinates σ, ν.
One should notice that the terms in the square brackets is of the same order with respect
to the wavenumber k, and the order of each term is k−1/3. The latter implies the following
expression for the attenuation function of the incident wave W inc:

Uinc = eiksW inc = eiks
∑
m=0

W inc
m k−

m
3 = eiksW inc

0

∑
m=0

k−
m
3 P inc

m , (10)

where the P inc
m are polynomials with respect to σ and ν, and the attenuation coefficient W inc

0 =

ei(νσ−σ3/3) is outside of the sum. This paper presents first three terms of expansion (10) for
the incident and reflected waves. We omit cumbersome calculations in order not to overload
the paper.

2.2. Three terms of the expansion W inc with respect to σ, ν. We start by finding three
terms of expansion (10) of the incident field eikz = Uinc = eiksW inc:

W inc = W inc
0 + k−

1
3W inc

1 + k−
2
3W inc

2 + . . .

= W inc
0

[
P inc
0 + k−

1
3P inc

1 + k−
2
3P inc

2 +O(k−1)
]
,

where W inc
0 = ei(νσ−

σ3

3
) is the attenuation function (9). Comparing the obtained result with

(9), it is clear that the amplitude of the incident wave equals one, i.e., P inc
0 = 1. Hence the
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main term of expansion (10) has the form

W inc
0 (σ, ν) = exp

{
i

(
σν − σ3

3

)}
=

1√
π

∞∫
−∞

eiσζv(ζ − ν)dζ, (11)

where v(ζ − ν) is the real-valued Airy function in the form defined by V. A. Fock [1]. The
representation for the first term

W inc
1 (σ, ν) = ei(νσ−

σ3

3
)

[
i

(
2

ρ0

) 1
3 ρ′0
4
(σ4 − 2νσ2)

]

implies that P inc
1 takes the form

P inc
1 (σ, ν) = i

(
2

ρ0

) 1
3 ρ′0
4
(σ4 − 2νσ2).

One of the most important technical moments is that in the Fock’s region, the scaled co-
ordinates σ and ν turn the region where the reflected wave is found, into the half-plane
{−∞ < σ < ∞, ν > 0}. Thus it is convenient to single out the coordinate σ in the Fourier
transform, see (11). Such a transform can be applied owing to the following fundamental
equality (its full mathematical justification can be found in [8]):

(−iσ)m exp

{
i

(
σν − σ3

3

)}
=

1√
π

∞∫
−∞

eiσζ
dm

dζm
v(ζ − ν) dζ. (12)

Airy functions satisfy the Airy equation v′′(t) = tv(t), which can transform relation (12) in
such a way that

(−iσ)m exp

{
i

(
σν − σ3

3

)}
=

1√
π

∞∫
−∞

eiσζ [Pm(ζ, ν)v(ζ − ν) +Qm(ζ, ν)v′(ζ − ν)]dζ, (13)

where Pm and Qm (polynomials with respect to ν with coefficients dependent on ζ) get more
complicated as m grows.

Therefore we obtain a formula for the next term of the attenuation function
W inc

1 (σ, ν):

W inc
1 (σ, ν) =

1√
π
iρ′0

(
2

ρ0

) 1
3

∞∫
−∞

eiσζ
[
v′(ζ − ν)

2
+

ζ2 − ν2

4
v(ζ − ν)

]
dζ, (14)

and thus the polynomials take the forms

P inc
1 (ζ, ν) =

ζ2 − ν2

4
, Qinc

1 (ζ, ν) =
1

2
.

The polynomial P inc
2 looks more complicated, since it includes σ8 and ν4, however it can

be explicitely written from (6) in the expansion for exp(ikz). The representation

W inc
2 (σ, ν) = ei(νσ−

σ3

3
)

[(
2

ρ0

) 2
3
(
2ασ5i

5!
− βiνσ3

3!
− (ρ′0)

2

2 · 42 (σ
4 − 2νσ2)2

)]
+ . . .

implies that

P inc
2 (σ, ν) =

(
2

ρ0

) 2
3
(
2ασ5i

5!
− βiνσ3

3!
− (ρ′0)2

2 · 42 (σ
4 − 2νσ2)2

)
.
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The second term W inc
2 (and further terms as well) of the incident field expansion has form

(13) in the Fock’s region. The term for m = 2 (we are interested in it) in expansion (10) has
the form

W inc
2 (σ, ν) =

1√
π

(
2

ρ0

) 2
3

∞∫
−∞

eiσζ
[
P inc
2 v(ζ − ν) +Qinc

2 v′(ζ − ν)
]
dζ,

whereas the polynomials P inc
2 (ζ, ν) and Qinc

2 (ζ, ν) are equal to

P inc
2 (ζ, ν) = −8α

5!
(ζ − ν)− β

3!
ν − ρ′0

2

8
[4ζ + 3(ζ − ν) +

1

4
(ζ − ν)4 + ν(ζ − ν)3 + ν2(ζ − ν)2],

Qinc
2 (ζ, ν) = −2α

5!
(ζ − ν)2 − β

3!
ν(ζ−ν)− ρ′0

2

4

[3
2
(ζ − ν)2 + 3ν(ζ − ν)+ν2

]
,

where, as before, α, β are defined by (7). The formulas presented above for W inc
m (σ, ν), m =

0, 1, 2, give an idea of the analytic structure of the reflected field.

3. The reflected wave in Fock’s region

3.1. Axially symmetric solution. Among the solutions of the Helmholtz equation (3), we
are interested only in the axially symmetric ones (because of the symmetry of the scatterer),
i.e., a solution that satisfies the condition ∂U

∂ϕ = 0. We seek the solution in the form U =

exp(iks)W (s, n), where exp(iks) describes the main oscillations of the field, and W is an
attenuation function (it slowly changes the amplitude, i.e., the relative change in amplitude
is small compared to the wavenumber k). Upon separating the factor eiks, the Helmholtz
equation can be rewritten for the attenuation functions

[(Δ + k2)eiksW ] = eiksg−1 (AW + BW ) = 0,

where g = (4M 4
0)/ρ

2
0, and the operators A and B are equal to

AW = k2(1− h−2
s )W +

(
2ik

∂W

∂s
+

∂2W

∂s2

)
h−2
s +

∂2W

∂n2

−
(
ikW +

∂W

∂s

)
h−2
s

∂ lnhs
∂s

+
∂W

∂n

∂ lnhs
∂n

,

BW =
1

hϕ

[
df

ds

1

hs

(
ikW +

∂W

∂s

)
+

∂hϕ
∂n

∂W

∂n

]
, (15)

AW + BW = g
∑
m=0

k−
m
3 Lm.

We note that the operator A corresponds to the two-dimensional diffraction problem on a
convex body in the plane ϕ = const, whereas B is responsible for the three-dimensional
properties of the solution. Therefore, we are mostly interested in the operator B. Regarding
the two-dimensional problem, the detailed discussion of the asymptotic expansion construction
can be found in [1]; the mathematically rigorous construction scheme can be found in [8–10]
and [11].
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3.2. Reflected field series expansion. The mathematical justification of the results pre-
sented in this section can be found in the previous papers on shortwave diffraction on a strictly
convex body (see [10,12] and [13]). The reflected wave Uref = eiksW ref is constructed in the

form of an asymptotic series with respect to the powers of k−m/3, m = 0, 1, 2, ... , similarly to
series (10):

W ref =
∑
m=0

W ref
m k−

m
3 . (16)

We introduce a system of recurrence equations forW ref
m , and then write down the coefficients

of the expansion.

3.3. System of equations for the reflected field. Expanding the coefficients of the initial
Helmholtz equation (3) with respect to the powers of s, n, we pass to the stretched coordinates
σ, ν, as in (8), and eventually obtain

(Δ + k2)eiksW ref = eiksg−1g
∑
m=0

k−
m
3 LmW ref = 0, (17)

where g = (4M 4
0)/(ρ

2
0). The differential operators Lm, m = 0, 1, 2, ... , (of the first and second

order) with respect to σ and ν, contain polynomials in σ and ν as their factors. When m
increases, the explicit formulas for Lm become cumbersome. We present them here only for
the cases of m = 0, 1, 2.

Substituting the series for W ref (16) into (17), and equating the coefficients at equal powers
of k to zero, we find a system of recurrence equations (1). In order to solve system (1), we
supply it with boundary conditions on the surface of the body ν = 0, hence the solutions are,
respectively, W ref

m . In the case of the Neumann problem, the required boundary condition will
be

∂

∂ν
(W ref

m +W inc
m )|ν=0 = 0, m = 0, 1, 2, . . . . (18)

For the Dirichlet problem,

(W ref
m +W inc

m )|ν=0 = 0, m = 0, 1, 2, . . . , (19)

here we have also taken into account the conditions on the field as ν → +∞, and hence W ref

describes the wave leaving the body of revolution. A discussion on supplying correct boundary
conditions can be found in [1, 4, 8, 9].

3.4. The main term of the reflected field. The first equation of system (1) has the form(
i
∂

∂σ
+

∂2

∂ν2
+ ν

)
W ref

0 (σ, ν) = 0.

The last equation has its variables σ and ν separated, and thus, under the Fourier transform,
one can have the Airy equation in ν. The solution is taken in the form

W ref
0 (σ, ν) =

1√
π

+∞∫
−∞

eiσζB0(ζ)w1(ζ − ν)dζ, (20)

where B0(ζ) is an arbitrary function (for now), w1(ζ − ν) is the Airy function in Fock’s
definition [1]. The choice of the exact form follows from the limiting absorption principle,
namely, we claim that for the small positive imaginary part of the wavenumber k, Im k > 0,
the Airy function w1(ζ − ν) goes to zero as ν → +∞, see [1]. Equivalently we can say that
formula (20) now describes the wave leaving the scatterer as ν → +∞.
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The function B0(ζ) can be found from boundary condition (18) or (19), where we take
m = 0, for the Neumann and Dirichlet problems, respectively,

BNeu
0 (ζ) = − v′(ζ)

w′
1(ζ)

, BDir
0 (ζ) = − v(ζ)

w1(ζ)
. (21)

The main term of the expansion of the reflected wave W ref
0 can be uniquely determined.

3.5. Nonhomogeneous equations. The remaining equations in (1) are nonhomogeneous,
and we want to construct the general solution for each of them, while the homogeneous equation
is already solved and its general solution has form (20) with its own function Bm(ζ), m =
1, 2, . . . . (in addition different for the Dirichlet and Neumann problems). The particular
solution can be found by the method used in [4], where instead of v(ζ − ν) and its derivative
v′(ζ − ν) we take w1(ζ − ν) and w′

1(ζ − ν).
We mentioned that the variables separate in system (1), and after σ has been singled out,

we can use the Fourier transform in (12) implying explicit formulas for the operators L̃m, thus
obtained from the operators Lm. We took into account the fact that v(ζ − ν) is replaced by
w1(ζ − ν), and the contour of integration should be regularized:

L̃0 =
∂2

∂ν2
+ (ν − ζ),

where ∂2

∂ν2
+ (ν − ζ) is the Airy operator;

L̃1 = −i

(
2

ρ0

)1/3

ρ′0 ν
∂

∂ζ
,

L̃2 =

(
2

ρ0

) 2
3
[
ρ0ρ

′′
0 − 2ρ′ 20
2

ν
∂2

∂ζ2
− 3ν2

4
+ νζ − ζ2

4
+

1

2

∂

∂ν
+

Λ0

2

(
∂

∂ζ
+

∂

∂ν

)]
.

3.6. The first term in the reflected field W ref
1 . Copying the expression for the first term

in the expansion of the incident field W inc
1 (σ, ν) (see (14)), we assume that the first term of

the reflected field has the form

W ref
1 (σ, ν) = i

(
ρ′0√
π

)(
2

ρ0

) 1
3

∞∫
−∞

eiσζ W ref
1 (ζ, ν)dζ, (22)

where

W ref
1 (ζ, ν)=B1(ζ)w1(ζ − ν)+P1(ζ, ν)w1(ζ − ν)+Q1(ζ, ν)w

′
1(ζ − ν), (23)

the term B1(ζ)w1(ζ − ν) satisfies the nonhomogeneous equation:

L̃0B1(ζ)w1(ζ − ν) = 0.

The polynomials P1(ζ, ν) and Q1(ζ, ν) are polynomials in ν of the first and second degree,
respectively, with coefficients dependent on ζ. These polynomials (and also W ref

1 ) can be
found from the equation

L̃0W1 + L̃1W0 = 0.

To this end we rewrite the last equation in expanded form[
∂2

∂ν2
+ (ν − ζ)

](
P1(ζ, ν)w1(ζ − ν) +Q1(ζ, ν)w

′
1(ζ − ν)

)

= ν

[
∂B0(ζ)

∂ζ
w1(ζ − ν) +B0(ζ)w

′
1(ζ − ν)

]
.
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On the other hand,[
∂2

∂ν2
+ (ν − ζ)

](
P1(ζ, ν)w1(ζ − ν) +Q1(ζ, ν)w

′
1(ζ − ν)

)

= w1(ζ − ν)

(
P ′′
1 − 2[ζ − ν]Q′

1 +Q1

)
+ w′

1(ζ − ν)

(
− 2P ′

1 +Q′′
1

)
.

We equate both sides in the last two equations (since the left-hand sides are equal), and collect
the factors of w1(ζ − ν) and w′

1(ζ − ν) in order to get the required polynomials:

P ′′
1 − 2[ζ − ν]Q′

1 +Q1 = ν
∂B0(ζ)

∂ζ
and − 2P ′

1 +Q′′
1 = ν B0(ζ).

The choice of degrees of P1(ζ, ν), Q1(ζ, ν) (the second and the first degree, respectively) is
made in line with the form of the incident field. Equating the left-hand and right-hand side
coefficients with equal powers of ν in the last relations, we get polynomials

P1 = ν2P
(2)
1 and Q1 = Q

(1)
1 ν +Q

(0)
1 .

Let us find B1(ζ). The coefficients follow from the condition

∂ν

∂n

∂

∂ν

(
W inc

1 +W ref
1

) ∣∣
n=0

=
2M 2

0

ρ0

∂

∂ν

(
W inc

1 +W ref
1

) ∣∣
ν=0

= 0,

here the function W inc
1 (σ, ν) is defined by formula (14), and the attenuation function W ref

1 is
expressed by (22), (23). Omitting cumbersome calculations, we present the final form of the

correction term W ref
1 (σ, ν) of order O(k−

1
3 ) of the reflected field in Fock’s region W ref

0 (σ, ν)
for the Neumann boundary conditions:

W ref
1 (σ, ν) =

(
2

ρ0

)1/3 iρ′0√
π

+∞∫
−∞

eiσζ{B1(ζ)w1(ζ − ν)

+ P
(2)
1 ν2w1(ζ − ν) + (Q

(1)
1 ν +Q

(0)
1 )w′

1(ζ − ν)}dζ. (24)

The coefficients B1, P
(2)
1 , Q

(1)
1 , and Q

(0)
1 have the form

BNeu
1 (ζ)=

[
− ζ2v′(ζ)
4w′

1(ζ)
− 5

6

ζ

(w′
1(ζ))

2
+

2

3

ζ3w1(ζ)

(w′
1(ζ))

3

]
; P

(2)Neu
1 (ζ) =

v′(ζ)
4w′

1(ζ)
;

Q
(1)Neu
1 (ζ) =

(−ζ)

3(w′
1(ζ))

2
; Q

(0)Neu
1 (ζ) =

( −2ζ2

3(w′
1(ζ))

2
− v′(ζ)

2w′
1(ζ)

)
.

In the case of the Dirichlet problem, the same coefficients B1, P
(2)
1 , Q

(1)
1 , and Q

(0)
1 have the

form

BDir
1 (ζ) =

[
− ζ2v(ζ)

4w1(ζ)
+

1

2

1

w2
1(ζ)

− 2

3

ζw′
1(ζ)

w3
1(ζ)

]
; P

(2)Dir
1 (ζ) =

v(ζ)

4w1(ζ)
;

Q
(1)Dir
1 (ζ) =

1

3w2
1(ζ)

; Q
(0)Dir
1 (ζ) =

(
2ζ

3w2
1(ζ)

− v(ζ)

2w1(ζ)

)
.

We note that we used the following identity in the expressions for the coefficients:

v′(t)w1(t)− v(t)w′
1(t) = −1.
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3.7. The second term W ref
2 of the reflected field. Finally, we obtain the asymptotic

expansion for W ref
2 (σ, ν), which consists of the general solution of the homogeneous equation

and a particular solution of the nonhomogeneous equation, namely, the third equation in
system (1). We present it here again

L̃0W
ref
2 = −L̃1W

ref
1 − L̃2W

ref
0 − . . . .

We look for W ref
2 (σ, ν) in the form

W ref
2 (σ, ν) =

1√
π

(
2

ρ0

) 2
3

∞∫
−∞

eiσζW ref
2 (ζ, ν)dζ, (25)

where

W ref
2 (ζ, ν)=B2(ζ)w1(ζ − ν)+P2(ζ, ν)w1(ζ − ν)+Q2(ζ, ν)w

′
1(ζ − ν).

As before the first term satisfies the homogeneous equation

L̃0B2(ζ)w1(ζ − ν) = 0.

We choose the form of the polynomials P2 and Q2 using the form of the polynomials of the
incident wave

P2(ζ, ν)=P
(4)
2 ν4 + P

(3)
2 ν3 + P

(2)
2 ν2 + P

(1)
2 ν; Q2=Q

(3)
2 ν3+Q

(2)
2 ν2+Q

(1)
2 ν+Q

(0)
2 .

Similarly to the way in which we found the polynomials P1 and Q1 for W ref
1 (ζ, ν), after some

cumbersome computations, for both Dirichlet and Neumann boundary conditions, we find
P2(ζ, ν) and Q2(ζ, ν):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(4)
2 =

(ρ′0)2v′(ζ)
32w′

1(ζ)

P
(3)
2 = −(ρ′0)2

18

[
1

(w′
1(ζ))

2
− 2ζ2w1(ζ)

[w′
1(ζ)]

3

]

P
(2)
2 =

(ρ′0)2

2
· ζ

3w1(ζ)

[w′
1(ζ)]

3
− (ρ′0)2ζ2v′(ζ)

16w′
1(ζ)

− ζ

24[w′
1(ζ)]

2

[
7(ρ′0)

2 + 6ρ0ρ
′′
0

]

P
(1)
2 =

v′(ζ)
40w′

1(ζ)

[
(ρ′0)

2 − 4ρ0ρ
′′
0 + 4

]− (ρ′0)2ζ2

6[w′
1(ζ)]

2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q
(3)
2 = − (ρ′0)2ζ

12[w′
1(ζ)]

2

Q
(2)
2 =

v′(ζ)
40w′

1(ζ)

[
(ρ′0)

2 − 4ρ0ρ
′′
0 − 6

]− (ρ′0)2ζ2

6[w′
1(ζ)]

2

Q
(1)
2 =

2

3
(ρ′0)

2 ζ
4[w1(ζ)]

2

[w′
1(ζ)]

4
− 5

36

ζ3(ρ′0)2

[w′
1(ζ)]

2
− ζ4w1(ζ)

[w′
1(ζ)]

3
· 7(ρ

′
0)

2 + 3ρ0ρ
′′
0

9

+
ζv′(ζ)
w′
1(ζ)

[(ρ′0)2 + ρ0ρ
′′
0 + 4]

30
+

1

[w′
1(ζ)]

2
· [(ρ

′
0)

2 + 3ρ0ρ
′′
0]

18

Q
(0)
2 =

4(ρ′0)2

3

ζ5[w1(ζ)]
2

[w′
1(ζ)]

4
− 5

18

(ρ′0)2ζ4

[w′
1(ζ)]

2
− ζ3w1(ζ)

[w′
1(ζ)]

3
· [23(ρ

′
0)

2 + 6ρ0ρ
′′
0]

9

+
ζ2v′(ζ)
w′
1(ζ)

[23(ρ′0)2 + 8ρ0ρ
′′
0 + 2]

120
+

ζ

[w′
1(ζ)]

2

[
Λ0

2
+

[25(ρ′0)2 + 30ρ0ρ
′′
0 ]

36

]
.

(26)
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Similarly to the way in which we obtained B1(ζ), we find B2(ζ), which together with formulas
(25)–(26), gives the required second term W ref

2 of the reflected field. Finally, the coefficient
B2(ζ) equals

B2(ζ) = Q
(1)
2 + P

(1)
2

w1(ζ)

w′
1(ζ)

−Q
(0)
2

ζw1(ζ)

w′
1(ζ)

+
v(ζ)

w′
1(ζ)

[
8α

5!
− β

3!
+

3(ρ′0)2

8
+

2α

5!
ζ3 +

3

8
(ρ′0)

2ζ3
]

+
v′(ζ)
w′
1(ζ)

[
8α

5!
ζ − β

3!
ζ +

(ρ′0)2

8

(
7ζ +

ζ4

4

)
+

4α

5!
ζ

]
, (27)

where α and β are given by (7). The prolongation of the body reveals only in the second large

parameter Λ0 (2), which appears only in the operator B (see (15)) and in the coefficient Q
(0)
2 (ζ)

(26), which occurs in W ref
2 (ζ, ν) at w′

1(ζ−ν) and at w1(ζ−ν)(− ζ w1(ζ)
w′

1(ζ)
) in the coefficient B2(ζ),

see (27).

4. The total field

The first term in the expansion of the total field can be expressed as

U0(s, n) = eiksW0(σ, ν) = eiks(W inc
0 +W ref

0 ).

Substitute the representations for the main term of the incident (11) and reflected (20), (21)
waves, in order to obtain the total field

U0(s, n) =
eiks√
π

∫
Γ
eiσζ

[
v(ζ − ν)−B0(ζ)w1(ζ − ν)

]
dζ, (28)

where the function B0(ζ) (21) is substituted according to the type of the boundary conditions.

the roots of Airy function w1(ζ)Γ1

Γ2
π
3

2π
3

Fig. 2. Integration contour Γ = Γ1∪Γ2 goes along the straight line from ∞ei
2π
3

to 0, and then from 0 to ∞ along the positive real axis in the complex plane of
ζ. This contour envelops the roots of the Airy function w1(ζq), q = 1, 2, . . . in
the first quadrant, or the roots of its derivative w′

1(ζp), p = 1, 2, . . . . The roots

of the Airy function w1(ζ) and its derivative belong to the ray ei
π
3 .

It is important to choose the contour of integration Γ, which should go around the first
quadrant of the complex plane of ζ in the positive direction. All the zeros of the integrand in
(28) belong to the first quadrant of the complex plane of ζ. For example, we may assume that
the contour Γ goes from the infinity along the ray arg ζ = 2π

3 toward zero, and then from zero
to ∞, along the positive real axis (see Fig. 2).
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We rewrite integral (28), using the relations between the Airy functions: v(t) can be ex-
pressed via the functions w1(t), w2(t) according to the formula

v(t) =
w1(t)− w2(t)

2i
,

and then integral (28) can be rewritten as follows:

U0(s, n) = eiks
1√
π

i

2

∫
Γ
eiσζ [w2(ζ − ν)−B0(ζ)w1(ζ − ν)] dζ,

and B0(ζ) is chosen according to the type of the boundary conditions: Neumann or Dirichlet:

BNeu
0 (ζ) = −w′

2(ζ)

w′
1(ζ)

, BDir
0 (ζ) = −w2(ζ)

w1(ζ)
.

5. Comparison with the result by V. I. Ivanov [14]

We found three terms of the asymptotic expansion of the wave filed using the Leontovich–
Fock parabolic equation method

U = eiks
(
W0 +

W1

k
1
3

+
W2

k
2
3

+O(k−1)

)
, k � 1. (29)

Compare expansion (29) with the solution found by V. I. Ivanov [14]. Paper [14] contains

numerical comparison of the exact solution and the asymptotic correction term eiksW2k
− 2

3

(the second term) to the Fock’s formula (eiksW0) near a circle (or a circular cylinder in the
orthogonal cross-section) and a sphere. Here ρ0 = a, where a is the radius of the circle or the
sphere. Consequently, we should assume ρ′0 = ρ′′0 = 0, f(0) = ∞, Λ0 = 0 with the operator B
vanishing in formulas (25)–(27). By the axially symmetric nature of the problem, Λ0 = 1 for
the sphere, since ρ0 = f(0) = a.

In the case of a diffraction problem for a plane wave on a circle, formulas (25)–(27) coincide
precisely with formulas (10), (11) from [14], namely:

UNeu = UNeu
0

− eiks

60M 2
0

√
π

∫
Γ

eiσζ
(
[4ζ+6ν]Ψ(ζ, ν)+[ζ−ν][ζ+9ν]Ψ(ζ, ν)− ζ3 − 6

[w′
1(ζ)]

2
w1(ζ−ν)

)
dζ+O

( 1

M4
0

)
,

Ψ(ζ, ν) = v(ζ − ν)− v′(ζ)
w′
1(ζ)

w1(ζ − ν), Ψ = −∂Ψ

∂ν
.

Here

UNeu
0 =

eiks√
π

∫
Γ

eiσζΨ(ζ, ν)dζ

is the Fock’s asymptotics, and all the other terms in (29) are correction ones. We can choose
a broken line (see Fig. 2) as a contour Γ, since the roots of the integrand belong to the first
quadrant. In the case of diffraction on a sphere, there is similarity in the results neither for
the incident nor for the reflected wave. By the axially symmetric nature of the problem, the
incident wave formula should coincide with the two-dimensional formula on a circle. The latter
is not the case in the results presented in [14]. This conclusion is true for both Dirichlet and
Neumann cases.
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6. The boundary current in the Neumann problem
∂U
∂n |n=0 = 0

6.1. Correction terms with factor Λ0

2M2
0
. The constructed two-scale asymptotic expansion

of the field in the Fock’s region allows one to obtain the approximate formulas for determin-
ing the wave field depending of the ratio between the large parameters in the problem: the
Fock’s parameter M0 and the prolongation parameter Λ0 of the body of revolution (2). This

parameter appears in the system of recurrence equations (1) only as ratio Λ0

2M2
0
and its integer

powers. The parameter Λ0 firstly appears from the operator B (15) in the third equation
of system (1) after expanding the Lamé coefficient h−1

ϕ (5) as a series in powers of σ and ν.

Therefore, the solution of system (1) will keep its asymptotic nature with respect to M−m
0 ,

m = 0, 1, 2, provided that Λ0 = 2M2−ε
0 , 0 < ε < 2. The magnitude of ε depends on the actual

values of the parameters k, ρ0, f(0) in the region 2 (see Fig. 1), i.e., in the Fock’s region.

6.2. Dimensionless currents: the Fock’s current and the Fock’s current with a
correction term. The following value IDir is called the current for the attenuation function
W = W inc + W ref for the Dirichlet boundary condition (see [4], we present these formulas
here in order to compare them with a similar result for the Neumann boundary conditions)

IDir =
∂

∂n

(
W inc +W ref

)∣∣
n=0

=
2M2

0

ρ0

∂

∂ν

(
W inc +W ref

)∣∣
ν=0

.

For further comparison we present the form of the dimensionless current with the correction
term

k−1IDir=
1

M0
√
π

⎡
⎣∫

Γ

eiσζ

w1(ζ)
dζ+

Λ0

2M 2
0

∫
Γ

eiσζ
[

ζ

w1(ζ)
− [w′

1(ζ)]
2

[w1(ζ)]3

]
dζ

⎤
⎦ . (30)

We note that the current that corresponds to the Fock’s field is

IDir0 =
2M 2

0

ρ0

1√
π

∫
Γ

eiσζdζ

w1(ζ)
.

The following value INeu is called the current for the attenuation function W = W inc +W ref

for the Neumann boundary conditions

INeu =
(
W inc +W ref

)∣∣∣
ν=0

.

The dimensionless current, corresponding to the total field W Neu
0 , which is equal to

W Neu
0 =

1√
π

∫
Γ

eiσζ [v(ζ − ν)− v′(ζ)
w′
1(ζ)

w1(ζ − ν)]dζ,

has the form

INeu0 =
1√
π

∫
Γ

eiσζ
[
v(ζ)w′

1(ζ)−v′(ζ)w1(ζ)

w′
1(ζ)

]
dζ =

1√
π

∫
Γ

eiσζ
dζ

w′
1(ζ)

,

since the Wronskian v(ζ)w′
1(ζ)−v′(ζ)w1(ζ) = 1. The current with the correction term is equal

to

INeu =
1√
π

⎡
⎣∫

Γ

eiσζ

w′
1(ζ)

dζ +
Λ0

2M 2
0

∫
Γ

eiσζ
[

ζ

w′
1(ζ)

− ζ2w2
1(ζ)

[w′
1(ζ)]

3

]
dζ

⎤
⎦ . (31)

671



Consider the illuminated area 1 (see Fig. 1). The total wave field U = Uinc + Uref =
eiks(W inc +W ref) can be represented by formulas for the Dirichlet and Neumann cases of the
following type:

W inc =ei(νσ−
σ3

3
),

W ref =∓
√

1

3
− 2σ

3
√
σ2 + 3ν

exp

[
i

(
− 5

27
σ3− νσ

3
+

4

27
(σ2 + 3ν)

3
2

)]
, σ < 0.

The minus sign in front of the radical corresponds to the Dirichlet, and the plus sign to the
Neumann boundary condition. V. A. Fock showed [1] that as σ → −∞, the reflected field
W ref coincided with the reflected wave in the boundary layer. Constraining the problem by
ν = O(1), σ → −∞, W ref−∞ is simplified, and the total wave field can be represented by the
relation

W−∞ = ei(νσ−
σ3

3
) ∓

√
2σ2 + ν√
2σ2 + 3ν

e−i(νσ+σ3

3
). (32)

The dimensionless current, generated by ray formula (32), has the following form for the
Neumann conditions

INeuray = 2e−iσ
3

3 , σ → −∞. (33)

For the Dirichlet condition, the dimensionless current is equal to

k−1IDirray =
2iσ

M0
e−iσ

3

3 , σ → −∞. (34)

6.3. Fock’s dimensionless currents. Thus the Fock’s dimensionless current for the Dirich-
let and the Neumann conditions are

k−1IDir0 =
1

M0
√
π

∫
Γ

eiσζ
dζ

w1(ζ)
; (35)

INeu0 =
1√
π

∫
Γ

eiσζ
dζ

w′
1(ζ)

; (36)

here M0 =
(kρ0

2

) 1
3 is Fock’s parameter (2).

7. Penumbra and shadow regions 4,5

Recall that the light-shadow border on the surface of the scatterer ∂Ω corresponds to s = 0,
and for small n and s growing, the observation point (s, n) gets into a shadowed zone near the
scatterer (Fig. 3). The latter condition corresponds to σ → +∞ and to the boundedness of ν =
O(1) in the stretched coordinates (σ, ν). The wave field can be obtained using residue theory,
since the function exp(iσζ) decays exponentially with σ � 1 in the upper half-plane Im ζ >
0, in the same manner as the function exp(−σIm ζ). The integration contour in diffraction
formulas for W ref

0 ,W ref
1 ,W ref

2 can be moved to the upper half-plane. Hence the residues at
the roots of the integrands will be singled out. The integrals W0,W1,W2 (20), (21), (24), (25)–
(27) can be represented as sums of residues, at the roots of the Airy function (w1(ζq) = 0, q =
1, 2, . . . ) for the Dirichlet and at the roots of the derivative of the Airy function (w′

1(ζ
′
p) =

0, p = 1, 2, . . . ) in the case of the Neumann problem on ∂Ω.
Then the full solution in the shadow region

UDir, Neu = eiks
[
W0(s, n) +

W1(s, n)

k
1
3

+
W2(s, n)

k
2
3

+O(k−1)

]

672



is given by functions (from Fock’s formula for W0)

W Dir
0 = −i2

√
π
∑
q=1

w1(ζq − ν)

[w′
1(ζq)]

2
eiσζq (37)

and

W Neu
0 = i2

√
π
∑
p=1

w1(ζ
′
p − ν)

ζ ′p[w1(ζ ′p)]2
eiσζ

′
p , (38)

and so on. Roots ζq, q = 1, 2, . . . belong to ray arg ζ = π
3 and increase in magnitude (Fig. 2).

Here ζ ′1 and ζ1 take the values

ζ ′1 = 1.01879 · eiπ3 , ζ1 = 2.33811 · eiπ3 .

∂Ω

limiting ray

plane ϕ = const

s = 0s = 0
33

44

55

Fig. 3. Penumbra and shadow regions. The field in the shadow region 4 between
regions 3 and 5 has ray nature of a leaving wave. Region 5 is the creeping waves
zone with ν = O(1), s = O(1) (37), (38).

Using the asymptotic expression for w1(ζ − ν) with ν large compared to the roots

w1(ζ − ν) ∼
ν→+∞

1√
(ν − ζ)

exp(i
2

3
((ν − ζ)

3
2 ) + i

π

4
),

we get approximate values for W Dir
0 and W Neu

0 :

eiksW Dir
0 ∼

ν→+∞
−iei

π
4 2

√
π

[w′
1(ζ1)

2]
· ei(σ−

√
ν)ζ1 · ei 23ν

3
2 · eiks, (39)

eiksW Neu
0 ∼

ν→+∞
iei

π
4 2

√
π

[w1(ζ
′
1)

2]
· ei(σ−

√
ν)ζ′1 · e 2

3
ν
3
2 · eiks. (40)

Let us analyze formulas (39) and (40), see [1]. We note that the inequality σ−√
ν = 0 gives the

geometric border for the shadow. Increasing positive values of σ−√
ν correspond to the points

positioned further deep in the shadow. In the area, where σ−√
ν is not large (and can be both

positive or negative), we have penumbra region. Thus, when σ −√
ν increases, functions (39)

and (40), as well as the field, decay exponentially. Moreover, the highest oscillating factor is

exp(iks + 2
3 iν

3
2 ) in formulas (39) and (40) as ν → +∞. Moving away from the boundary ∂Ω,

the ray field in both the Dirichlet and the Neumann cases is a sum of rays of the leaving wave,
which has the surface of the scatterer as its caustic (see Fig. 3). Note that the formal solution
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corresponding to the creeping waves was found by Friedlander and Keller [15]. Moreover,
diffraction rays in region 4 were first introduced by J. B. Keller in paper [16].

Looking again at formulas (37), (38) for residues, one can see that eiksW Dir
0 and eiksW Neu

0

give us exactly the creeping waves. Formally, the creeping wave is taken in the following form
in the layer ν = O(1), s = O(1):

U = eiks · eik
1
3 Φ(s)

∑
m=0

Vm(s, ν)k−
1
3 ,

where for the Dirichlet case

Φ(s) =
ζq

2
1
3

s∫
0

ρ−
2
3 (s)ds, V0,q = A0(s)w1(ζq − ν),

where for the Neumann case

Φ(s) =
ζ ′p
2

1
3

s∫
0

ρ−
2
3 (s)ds, V0,p = A0(s)w1(ζ

′
p − ν).

If we pass from the coordinate σ to s, in the vicinity of s = 0, formulas (37), (38) will give us
the creeping waves.

8. Conclusions

The shortwave diffraction of a plane incident wave from a strictly convex body of revolution
is under investigation. Geometric properties of the body of revolution (curvature radii of the
surface of the scatterer) are assumed to be much bigger than the incident wavelength. The
problem’s solution gives a clear physical picture of shortwave diffraction. The field is described
by the formulas of the ray method in the illuminated region of the scatterer. The ray method
fails in the vicinity of the light-shadow border, where the ray are tangent to the boundary. In
the latter region, Fock’s boundary layer method is applied, which gives another asymptotic
expansion. The expansion of the field there has a form of integrals with linear combinations
of Airy functions and its derivatives and polynomials of the normal coordinate as integrands.
Fock’s asymptotics is used for the initial data to construct creeping waves in the shadowed
part of the boundary, for the diffraction rays (first introduced by Keller) in the shadow far
from the surface, and for the construction of the wave field in the limiting ray vicinity, where
light turns into shadow.

The authors are grateful to Professor M. M. Popov for valuable ideas and comments and
N. M. Semtchenok for help in numerical analysis.
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