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ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN
PROCESSES AND ITS GEOMETRIC FOUNDATIONS

R. A. Vitale∗ UDC 519.2

After setting geometric notions, we revisit an exponential functional which has arisen in sev-
eral contexts, with special attention to a set of geometric parameters and associated inequalities.
Bibliography: 32 titles.

1. Introduction

It is an honor and pleasure to contribute to this volume. V. N. Sudakov’s work has had a
great influence on my own interests. In that spirit, what follows is a note on an exponential
functional that bears on the structure of bounded Gaussian processes. The content is largely
expository and begins with a review of relevant notions from classical convex geometry and
their extension to infinite dimensions. We then recall the exponential functional, including a
basic inequality, and a set of geometric parameters. The latter are re-examined for an alternate
representation and then related inequalities are discussed.

2. Background

In what follows, aspects of geometric convexity not otherwise referenced can be found in
the excellent monograph [19]. As stated there, the key feature of the Brunn–Minkowski the-
ory is the interaction of volume evaluation and vector addition of convex bodies (nonempty,
compact, convex subsets): For convex bodies K1,K2, . . . ,Kn in IRd and positive coefficients
λ1, λ2, . . . , λn,

vold (λ1K1 + λ2K2 + · · ·+ λnKn) =

n∑

i1,i2,··· ,id=1

λi1λi2 · · · λidV (Ki1 ,Ki2 , . . . ,Kid), (1)

where, without loss of generality, the “mixed volumes” V (· · · ) are taken to be symmetric in
their arguments. For the special case of a parallel body K + λBd (Bd is the unit ball in IRd),
(1) is the classical Steiner formula

vold(K + λBd) =
d∑

j=0

λj

(
d

j

)
Wj(K), (2)

where

Wj(K) = V (K,K, · · · ,K︸ ︷︷ ︸
k−j

, Bd, Bd, · · · , Bd︸ ︷︷ ︸
j

), 0 ≤ j ≤ d,

are the quermassintegrals or Minkowski functionals (one should note that the latter term
also refers to a different object in the literature). Unfortunately, they have the inconvenient
property of depending on d, the dimension of the specific ambient space. A modified collection
is free of this property: The intrinsic volumes [2, 16] are given by

Vj(K) =

(d
j

)

κj
Wd−j(K), 0 ≤ j ≤ d. (3)
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Here κj is the volume of Bj, and one can extend (3) by taking Vj(K) = 0 for d < j (by contrast,
infinite–dimensional K will have Vj(K) > 0 for all j). We note the equality V0(K) = 1 and
three other specific cases: Vd(K) = vold(K), Vd−1(K) = (1/2)Sd−1(K) (i.e., 1/2 the surface
area of K), and V1(K), which is a mean-width type functional normalized so that if K is a
line segment, then V1(K) is its length.

The corresponding version of the Steiner formula reads

vold(K + λBd) =

d∑

i=0

λjκjVd−j(K). (4)

The Alexandrov–Fenchel inequality asserts that

V 2(K1,K2,K3, . . . ,Kd) ≥ V (K1,K1,K3, . . . ,Kd) V (K2,K2,K3, . . . ,Kd) (5)

for convex bodies K1, K2, . . . ,Kd in IRd. Specifying to intrinsic volumes and making an ap-
propriate adjustment of constants, (5) can be shown to imply the logconcavity of the sequence
{j!Vj(K)}∞j=0 :

(j!Vj(K))2 ≥ (j − 1)!Vj−1(K) · (j + 1)!Vj+1(K), j = 1, 2, . . . , (6)

and a direct consequence [2, 17]:

Vj(K) ≤ V j
1 (K)

j!
j = 1, 2, . . . . (7)

3. Extension of intrinsic volumes to infinite-dimensional bodies

It was the celebrated insight of Sudakov ([21–23], Theorem 1 below) which connected the
geometric structure just described and Gaussian processes. This was subsequently elaborated
by Chevet and Tsirelson. We give a brief review.

For a convex bodyK in a Hilbert space ( ⇐⇒ �2), consider a Gaussian process {Xt, t ∈ K}1
that is isonormal:

t �−→ Xt ∼ N(0, σ2
t ),

where σ2
t = VarXt = ‖t‖2 and Cov

(
Xt,X̂t

)
= 〈t, t̂〉 (scalar product). An important question

is whether there is a version that is a.s. bounded; it was formulated by Dudley [3] as follows:
is K a GB-set?

On the geometric side, making use of the monotonicity of V1(·), set
V1(K) = sup

{
V1(K̂) : K̂ ⊆ K, K̂ finite-dimensional

}
. (8)

Sudakov established the following fact.

Theorem 1. K is a GB-set if and only if V1(K) is finite.

In what follows, we assume that all the relevant sets K are GB.
Chevet [2] similarly extended by monotonicity the other intrinsic volumes Vj, j = 2, 3, . . .,

established (7), and thereby concluded that

V1(K) < ∞ =⇒ Vj(K) < ∞, j = 2, 3, . . . .

Sudakov showed specifically that

V1(K) =
√
2π E sup

t∈K
Xt . (9)

1Here, and below, t ∈ K means by convention that t ranges over a countable dense (respectively, any) subset
of K.
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In an important step, Tsirelson [25] placed (9) within a family of representations for all of the
intrinsic volumes. Accommodating technical issues somewhat differently, a sketch is as follows:
For given j, consider

Xj∗
t =

(
X

(1)
t ,X

(2)
t , . . . ,X

(j)
t

)
,

where the components are independent copies of Xt, together with the vector process

Xj∗
K = {Xj∗

t , t ∈ K}.
The closed convex hull

Yj,K = conv
(
Xj∗

K

)

is a candidate for a random convex body in IRj , and, accordingly, its measurability must be
established. To do this, we make use of its support function hYj,K

: Sj−1 → IR1 given by

hYj,K
(u) = sup {〈y, u〉| y ∈ Yj,K} = sup

{
〈x, u〉|x ∈ Xj∗

K

}
= sup

{
j∑

i=1

X
(i)
t ui | t ∈ K

}
,

which is evidently a random variable for each u. Now the measurability of Yj,K coincides with

the measurability of the quantity δH (Yj,K , L) for every convex body L in IRj , where δH is the
Hausdorff metric. This is confirmed by recalling that

δH (Yj,K, L) = sup
{|hYj,K

(u)− hL(u)| |u ∈ a countable, dense subset of Sj−1
}
.

With the foregoing in place, Tsirelson’s representation [25, Theorem 6] is:

Vj(K) =
(2π)j/2

j!κj
E volj (Yj,K) , j = 1, 2, . . . . (10)

For what follows, and in view of the standard isonormal map t �→ Xt = 〈t, Z〉 =
∞∑
1
tiZi,

where {Zi}∞1 is a sequence of standard normal random variables, we introduce the suggestive
notation

Z[ j,∞]K = Yj,K, (11)

where Z[ j,∞] is a j ×∞ matrix of independent, standard normal random variables. Finally,
we mention that an alternate proof of the representation was given by the author [31] based
on a theorem of Hadwiger characterizing intrinsic volumes ( [6], see also [10]).

4. The Wills functional

In various forms, the functional of the title has arisen independently in (i) geometry [7,8,32]
(from where we take its name), (ii) maximum likelihood estimation of location [24–26], and (iii)
financial mathematics [1], see also [27–29]. For a convex body K in IRd, the Wills functional
is given by [32]2

W (K) =
d∑

j=0

Vj((1/
√
2π)K) =

d∑

j=0

(1/(2π)j/2)Vj(K). (12)

A different expression for W (K) takes the form
∫

IRd

e−π dist2(x,(1/
√
2π)K)dx, (13)

2We note that the scaling of K by 1/
√
2π does not appear in the original formulation of Wills as followed

in the geometry literature and also in [27]. The present normalization was adopted by the author in [29] as
somewhat better fitted to Gaussian contexts; see also [25].
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where dist(x,
(
1/
√
2π
)
K) = inf

t∈(1/
√
2π)K

‖x − t‖. Following [7], the equivalence of the two

expressions was shown in [27], and we repeat that here for the reader’s convenience. Consider

W (K) = Evold

(
(1/

√
2π)K + ΛBd

)
, (14)

where Λ is a random variable with density f(λ) = 1(λ ≥ 0)2π λ e−πλ2
x. Expanding the volume

expression, taking expectations, and making note of the equalities EΛj = 1
κj
, j = 0, 1, 2, . . .,

yields (12). For the second representation, again start with (14), but now set

vold((1/
√
2π)K + ΛBd) =

∫

IRd

1
[
dist

(
x, (1/

√
2π)K

)
≤ Λ
]
dx.

Taking expectations and invoking Fubini gives us (13).

Now we make a change of variables z =
√
2π x in (13) to get, equivalently,

(
1

2π

)d/2 ∫

IRd

e−(1/2) dist2(z,K)dz =

(
1

2π

)d/2 ∫

IRd

esupt∈K [〈t,z〉−(1/2)‖t‖2 ]e−(1/2)‖z‖2dz.

For an isonormal Gaussian process {Xt, t ∈ K} given by Xt = 〈t, Z〉, where Z is d-dimensional
standard normal, we have thus shown that

W (K) = E esupt∈K[Xt−(1/2)σ2
t ]. (15)

Extension of the domain of W to infinite-dimensional K is naturally done via finite-dimen-
sional approximation as in (8). Representation (15), and also (12) in the form

W (K) =

∞∑

j=0

(1/(2π)j/2)Vj(K) (16)

are maintained. Tsirelson [25] gave a proof of this using specifically polytopal approximants
and a result of Chevet [2]. He further established, by inserting the domination (7) into (16),
the inequality

W (K) ≤ e(1/
√
2π)V1(K), (17)

or, equivalently,

E esupt∈K{Xt−(1/2)σ2
t } ≤ eE supt∈K Xt (18)

([25], see also [17, 27, 28] and Remark 1 below). The latter guarantee that (15) and (16) are,
in fact, finite for any GB set K and are interesting in their own right as well. In Sec. 6, we
discuss variants.

The asymptotic form of W (rK), r → ∞, was studied in [29]. The context there (see
also [11]) was a geometric treatment of the Itô–Nisio phenomenon [9] which showed that, in
a weak sense, a local neighborhood of a discontinuity of {Xt, t ∈ K} generically resembles a
ball of small radius and high dimension. Relevant here is the following: For t ∈ K, let B(t, ε)
be the t-centered ball of radius ε and set

δ(t) = lim
ε→0

[
sup

s∈K∩B(t,ε)
Xs − inf

s∈K∩B(t,ε)
Xs

]
.
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Each of these limits is an almost sure constant. Considering them as numbers, set Δ(K) =
sup
t∈K

δ(t) (departing from convention, we regard this as over all t ∈ K). Then

W (rK) = e(Δ(K)/2)r+o(r). (19)

An important tool in [29] was a class of geometric parameters {mj(K)}∞1 such that

E sup
t∈K

Xt = m1(K) ≥ · · · ≥ mj−1(K) ≥ mj(K) ≥ · · · → Δ(K)/2. (20)

In what follows, we further examine their structure and discuss related inequalities.

5. Quasi-widths

Following [29,30], we set

mj(K) =
jVj(K)√

2πVj−1(K)
j = 1, 2, . . . . (21)

For each j, mj(rK) is homogeneous of degree 1 in r, and accordingly, we call it the quasi-width
of order j. Note that

m1(K) = (1/
√
2π)V1(K) = E sup

t∈K
Xt (22)

and that, as a consequence of (6), the quasi-widths form a decreasing sequence. For a further
understanding, we derive an alternate expression to (21). In the numerator, recall that

Vj(K) =
(2π)j/2

j!κj
E volj

(
Z[ j,∞]K

)
. (23)

Similarly, in the denominator,

Vj−1(K) =
(2π)(j−1)/2

(j − 1) !κj−1
Evolj−1(Z[ j−1,∞]K), (24)

which we re-express by noting that in distribution,

Z[ (j−1),∞] = Πj−1Z[ j,∞],

where the independent matrix Πj−1 consists of the first j−1 rows of a random j×j orthogonal
matrix. Then

Evolj−1(Z[ j−1,∞]K) = Evolj−1(Πj−1Z[ j,∞]K)

= E{E [volj−1(Πj−1Z[ j,∞]K) | Z[ j,∞]K
]}. (25)

Now Kubota’s integral recursion [2,19,25] in the special case of Cauchy’s surface area formula
implies that

E volj−1(Πj−1K0) =
2κj−1

j κj
Vj−1(K0) =

κj−1

jκj
Sj−1(K0)

for j-dimensional K0. Applying this to the inner expectation in the final expression in (25),
we get the equality

E
[
volj−1(Πj−1Z[ j,∞]K) | Z[ j,∞]K

]
=

κj−1

j κj
Sj−1(Z[ j,∞]K).

It follows that
E volj−1(Z[ j−1,∞]K) =

κj−1

j κj
ESj−1(Z[ j,∞]K).

Inserting this into (24) gives us the equality

Vj−1(K) =
(2π)(j−1)/2

j!κj
E
[
Sj−1(Z[ j,∞]K)

]
. (26)
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Substituting this and (23) into (21), we finally get the equality

mj(K) =
j · Evolj(Z[ j,∞]K)

ESj−1(Z[ j,∞]K)
, (27)

which was our goal. It expresses mj(K) in terms of the mean behavior of the single j-
dimensional random convex body Z[ j,∞]K.

6. A class of inequalities

We turn now to a generalization of (17). Specifically, following [30], we show that a class of
bounds in terms of quasi-widths comes about by varying the domination (7); recall from (6)
that aj = j!Vj(K), j = 0, 1, 2, . . ., is a log-concave sequence:

log aj ≤ log ai + (log ai+1 − log ai)(j − i)

for all i, j = 0, 1, 2, . . .. Equivalently, for any fixed i ∈ {0, 1, 2, . . .}, this can be read as

Vj(K) ≤ i!Vi(K)

j!

(
(i+ 1)Vi+1(K)

Vi(K)

)j−i

j = 0, 1, 2, . . . . (28)

It is of interest to re-express this. From (21), it follows that

(i+ 1)Vi+1(K)

Vi(K)
= (2π)1/2mi+1(K), (29)

and taking the product of (21) for j = 1, 2, . . . , i shows that

i!Vi(K) = (2π)i/2
i∏

j=1

mj(K). (30)

Substituting (29) and (30) into (28) and re-arranging gives us the estimate

Vj(K) ≤ ci(K) · (2π)j/2 mj
i+1(K)

j!
, (31)

where

ci(K) =

∏i
j=1mj(K)

mi
i+1(K)

=
i∏

j=1

mj(K)

mi+1(K)
(32)

(taking c0(K) = 1). Finally, substituting the domination (31) into (16) yields the estimate

W (K) ≤ ci(K)emi+1(K), i = 0, 1, 2, . . . , (33)

thus generalizing (17) (i.e., i = 0) to the other quasi-widths (we note that there is a minor
typo in the corresponding expression in [30]).

A class of deviation bounds can also be deduced. First note that it follows from (33) with
r ≥ 0 that

W (rK) ≤ ci(K)emi+1(K)r, i = 0, 1, 2, . . . , (34)

using the fact that ci(rK) is homogeneous of degree 0 in r. Then, following [27], one can
re-express (34) as

E esupt∈K{rXt−r2(1/2)σ2
t } ≤ ci(K)emi+1(K)r. (35)

Setting σ2 = supt∈K σ2
t and then re-arranging, we show that

E er[supt∈K Xt−mi+1(K)] ≤ ci(K)e(1/2)σ
2r2 . (36)
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Applying Markov’s inequality, we see that

P(sup
t∈K

Xt −mi+1(K) ≥ a) ≤ ci(K)e(1/2)σ
2r2−ar

for a > 0, and minimizing the bound at r = a/σ2 finally yields the bound

P(sup
t∈K

Xt −mi+1(K) ≥ a) ≤ ci(K)e−a2/(2σ2), i = 0, 1, 2, . . . . (37)

The case i = 0 is well known in the probability literature in the form

P(sup
t∈K

Xt − E sup
t∈K

Xt ≥ a) ≤ e−a2/(2σ2)

(see, e.g., [12, 14]), similarly shown in [27].
In a different vein, one can think of looking for bounds sharper than those in (33). One

option is to express (31) for both i ≥ 1 and i− 1. Then, for a given j, choose the domination
that is tighter. This amounts to using the first domination for j ≥ i and the second for j ≤ i−1
(the two being the same at j = i). That is,

Vj(K) ≤
⎧
⎨

⎩
ci−1(K) · (2π)j/2 mj

i (K))
j! , j = 0, 1, 2, . . . , i− 1,

ci(K) · (2π)j/2 mj
i+1(K))

j! , j = i, i+ 1, i+ 2, . . . ,

and, consequently,

W (K) ≤ ci−1(K)

i−1∑

j=0

mj
i (K)

j!
+ ci(K)

∞∑

j=i

mj
i+1(K)

j!
.

Finally, echoing a comment in [30], we note that the natural way in which quasi-widths
emerge in the derivation of (33), as well as their appearance in (20), suggests that they bear
further examination as functionals of interest for both K and the process {Xt, t ∈ K}. In this
regard, we mention as well the functionals ci(K), i = 1, 2, . . ., which, as noted, are homogeneous
of degree 0 in r and thus can be regarded as “shape” parameters for K.

7. Final remarks

(1) A significant generalization of (18), including a left-tail probability bound, was shown
by Borell [1].

(2) Following the above discussion, it is not possible to let i → ∞ in (37), make use of (20),
and produce the analogous statement with mi(K) replaced by Δ/2; the reason is the
absence of established control over the ci(K). However, a result of this type was shown
in [29] using other means, in which the explicit intermediate estimates (35) and (37)
are bypassed (note that the statement of Theorem 4 there has a typographical error
(“=” should be “≤”), and, in any case, does not always reflect the exact asymptotics
as claimed (see, e.g., [13, 14]); the reader is also cautioned that in [29], the definition
of “oscillation” carries a factor of 1/2 compared to the conventional definition).

(3) For additional geometric understanding of m2(K) (via V2(K)), see [2] and [4].
(4) In view of the key role which (6) played in the discussion above, we note that it appeared

in [18] as the ultra-logconcavity of order ∞ of the sequence {Vj(K)}∞1 . In that study
(relating to negative dependence of random variables), the closure of the class of such
sequences under convolution was conjectured. This was verified in [15] with a later,
geometrically-based, proof in [5] using a theorem of Shephard [20] involving mixed
volumes and a special case of (1).
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