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ANALYSIS OF THE PROBLEM OF STABILITY OF THIN SHELLS COMPLIANT  
TO SHEAR AND COMPRESSION 

I. Ye. Bernakevych,  P. P. Vahin,  I. Ya. Kozii,  and  V. M. Kharchenko  UDC 517.958: 519.6 

The problem of stability of shells compliant to shear and compression is studied by the finite-element 
method.  On the basis of relations of the geometrically nonlinear theory of thin shells compliant to shear 
and compression (six-mode version), we write the key equations for the determination of their initial 
postcritical state and formulate the corresponding variational problem.  A numerical scheme of the fi-
nite-element method is constructed for the solution of the problems of stability of these shells.  The or-
der of the rate of convergence of the scheme proposed for the numerical solution of the problems of  
stability is investigated.  

The nonlinear theory of shells [6, 11] gives a key to the explanation of the process of loss of their stability.  
The problems of stability of thin-walled shells were discussed in [2–5, 10, 12] and remain to be extremely im-
portant from the practical viewpoint. 

In the present paper, we write the key relations for the determination of the initial postcritical state of flexi-
ble shells compliant to shear and compression with the use of the finite-element method.  As a specific feature of 
the mathematical model, we can mention the procedure of semidiscretization of the vector of displacements in 
elastic bodies with respect to the thickness coordinate performed on the basis of the Timoshenko–Mindlin kine-
matic hypotheses with preservation of the total vector of rotations of the normal to the median surface. 

1.  Principal Relations of the Theory of Thin Shells Compliant to Shear and Compression 

We consider a shell as a three-dimensional body of constant thickness  h .  We refer the median surface  Ω   
of the shell to a curvilinear orthogonal coordinate system  α = (α1,α2 )   and introduce a variable  α3   or-
thogonal to the surface and such that  α3 ≤ h / 2 .  We assume that the coordinate lines of the median surface 
coincide with the lines of principal curvatures and that the thickness of the shell is much smaller than the other 
its sizes. 

The vector of displacements of an arbitrary point of the shell compliant to shear and compression is com-
pletely defined by the components of the vector of displacements  ui (α) ,  i = 1, 2, 3 ,  and the vector of angles of 
rotation of normal to the median surface of the shell  γ i (α) ,  i = 1, 2, 3 .  We introduce the following notation:   

    u = (u1, u2, u3, γ1, γ 2, γ 3)⊤   is the vector of generalized displacements of points of the median surface 
of the shell,   

  eL  =   (e11, e22, e33, e12, e13, e23,κ11,κ22,κ12,κ13,κ23)
⊤  is the vector of components of the linear 

strain tensor,   
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  is the vector of components of the tensor of rotations,  

and   

    ε = (ε11, ε22, ε33, ε12, ε13, ε23, χ11, χ22, χ12, χ13, χ23)
⊤   is the vector of components of the Green 

strain tensor. 

Then the formulas for the components of the linear strain tensor and the tensor of rotations can be repre-
sented in the matrix form as follows (to within  o(h) ): 

 eL = CLu , 
   (1) 
 ω = CΩu . 

The strain relations written for flexible shells with regard for the linear and nonlinear components of strains 
take the following form: 

 ε = eL + eN , (2) 

where 

 
  
eN = 1

2
(CΩu)11⊤ EΩ(CΩu) . 

Here,  CL   and  CΩ   are,  respectively, the 11 × 6- and 6 × 6-dimensional matrices of differential operators and  

EΩ   is a matrix of the form     EΩ = (E1, E2,…, E11)⊤ ,  where  Ei   are 6 × 6-dimensional matrices.  The com-
plete formula for  CL   is presented in [1], whereas the expressions for  CΩ   and  Ei   can be found in [9]. 

Note that relations (1) are determined by the geometric relations of the theory of shells compliant to shear 
and compression in the linear statement, whereas relations (2) connect the components of the Green strain tensor 
with displacements in the geometrically nonlinear statement of the problem for the analyzed shells.  

The elasticity relations connecting strains with internal forces and moments can be represented in the matrix 
form as follows: 

 σ = B ε , 

where   

   σ = (N11, N22, N33, S, N13, N23,M11,M 22,H ,M13,M 23)
⊤    

is the vector of internal (symmetric) forces (moments) and  B   is a symmetric 11 × 11-dimensional matrix of 
elasticity characteristics of the material [1]. 

The differential equations used to describe the equilibrium of the deformed body and the static boundary 
conditions imposed on a part  Γσ   of the contour of the median surface of the shell   Γ = Γu ∪ Γσ   follow from 
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the principle of admissible displacements [6] and can be represented in the matrix form as follows:  

 Cσσ∗ + P = 0 , (3) 

 Gσσ∗
Γσ

= σg . (4) 

In order to make the system kinematically determined, it is necessary to supplement it with the boundary 
conditions in displacements: 

 Guu Γu
= ug ,      Γu = Γ \ Γσ . (5) 

In relations (3)–(5), we have introduced the following notation:   

    P = (P1, P2, P3,m1,m2,m3)
⊤   is the vector of external load,   

    σ
∗ = (N11

∗ , N22
∗ , N33

∗ , N12
∗ , N21

∗ , N13
∗ , N31

∗ , N23
∗ , N32

∗ , M11
∗ , M 22

∗ , M12
∗ , M 21

∗ , M13
∗ , M 23

∗ )⊤     is the vector 
of introduced forces (moments),   

    σg = (Nt , Ns , Nn ,Mt ,Ms ,Mn)
⊤   is the vector of boundary forces (moments),   

    ug = (utb , usb , unb , γ tb , γ sb , γ nb)⊤   is the vector of boundary displacements,   

  Cσ   is a  6 × 15  matrix of differential operators, and  Gσ   and  Gu   are  6 × 15-  and  6 × 6-dimen-
sional  matrices,  respectively.  The complete formulas for the matrices  Cσ ,  Gσ ,  and  Gu   can be 
found in [9]. 

The relationship between the symmetric forces (moments) and their characteristics introduced above can be 
represented in the matrix form as follows:  

 σ∗ = Fσ , 

where  F   is a  15 × 11  matrix whose nonzero elements are presented in [9]. 
The linear formulation of the equilibrium equations and the corresponding boundary conditions of the theo-

ry of shells compliant to shear and compression can be found in [1]. 

2.  Problem of Stability of the Shells Compliant to Shear and Compression 

To formulate the problem of stability of the proposed mathematical model of shells, we use the energy crite-
rion of stability and the critical load corresponding to the loss of stability [7]. 

The condition for the determination of the critical load under which the stable equilibrium state turns into 
the unstable state has the form 

 δ2Π = 0 , (6) 
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where  Π   is the functional of total potential energy in the geometrically nonlinear theory of shells compliant to 
shear and compression [7]: 

 
  

Π(u) = 1
2

ε⊤(u)E0Bε(u) dΩ
Ω
∫∫ − u⊤P dΩ

Ω
∫∫ − (Guu)⊤σg dΓσ

Γσ

∫ . 

The functional  Π   is defined as the difference between the functionals of strain energy U   and the work of 
external forces  A : 

 Π = U − A . 

Note that  δ2Π = δ2U . 
The total displacements  u∗   in the initial postcritical state are determined as the sum of displacements in 

the initial (subcritical) state  u0   and the perturbed displacements  u : 

 u∗ = u0 + αu . 

Here,  α   is a small parameter,   0 < α ≪ 1 . 
The strain energy  U∗   in the initial postcritical state is given by the formula 

 
 
U∗ = 1

2
ε∗⊤(u)E0Bε∗(u) dΩ

Ω
∫∫   

  =  
  

1
2

(eL (u0 ) + αeL (u) + α2eN (u))⊤
Ω
∫∫ E0(σ0 + ασL (u) + α2σN (u))dΩ   

  =   U0 + αU1 + α2U2 +… . 

Here,  ε∗   are the strains in the initial postcritical state determined as the sums of linear subcritical strains and 
nonlinear strains caused by the perturbed displacements, 

 
 
U0 = 1

2
eL⊤(u0 )E0σ0 dΩ

Ω
∫∫ , 

 
 
U1 = eL⊤(u)E0σ0 dΩ

Ω
∫∫ , 

 
 
U2 = 1

2
eL⊤(u)E0σL (u) + 2eN⊤(u)E0σ0( )dΩ

Ω
∫∫ , 

where  σ0   are the stresses in the subcritical state and  σL   and  σN   are the stresses caused by perturbed linear 
strains  eL   and rotations  ω ,  respectively. 
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The functional  U2   contains the terms quadratic in the perturbed displacements and its second variation 
yields the stability equation (6). 

By using the finite-element approximation 

 u = Nq , 

where  q   is the vector of required displacements and rotations at all nodes of the finite elements and  N   is  
a block-diagonal matrix of approximating polynomials, we represent the functional  U2   as follows: 

 
  
U2 = 1

2
q⊤(CLN)⊤E0B(CLN)q dΩ

Ω
∫∫  

  + 
  

q⊤ (E0σ0)k(CΩN)11
⊤EkCΩN

k=1

11

∑
⎛

⎝⎜
⎞

⎠⎟

⊤

q dΩ
Ω
∫∫ . (7) 

Since the subcritical state is determined by the linear theory, the integral characteristics  σ0   are propor-
tional to the loading parameter  λ : 

 σ0 = λσ0
∗ , (8) 

where  σ0
∗   is the level of stresses under a given external load. 

In view of relation (8), we get the following equation of stability from  (7): 

 
  

(CLN)⊤E0BCLNq dΩ
Ω
∫∫ + λ (E0σ0)k(CΩN)11

⊤ EkCΩNq dΩ
k=1

11

∑
Ω
∫∫ = 0 . 

This equation can be represented in the matrix form as 

 KT (0)q + λG(q0 )q = 0 , (9) 

where  KT (q) = KU (q) +G(q)   is the matrix of tangential stiffness, 

 
  
KU (q) = ((CL + (CΩNq)11⊤ EΩCΩ)N)⊤E0B(CL + (CΩNq)11⊤ EΩCΩ)N dΩ

Ω
∫  

is the matrix of displacements, 

 
  
G(q0 ) = Tk(Nq0)(CΩN)11

⊤ EkCΩN dΩ
k=1

11

∑
Ω
∫∫  

is the geometric matrix of stiffness or the matrix of initial stresses,  q0   is the required vector of displacements 
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in the linear static problem, and 

 
   
T (q) = (T1,T2,…, T11)⊤ = E0B CLNq +

1
2

(CΩNq)11⊤ EΩCΩNq
⎛
⎝⎜

⎞
⎠⎟ . 

The least eigenvalue of Eq. (9) determines the critical loading parameter  λ∗   for which the shell passes 
from the stable initial equilibrium state into a neighboring equilibrium state. 

We now introduce the space of kinematically admissible vectors of displacements 

 
 
V = v = (v1, v2, v3, ξ1, ξ2, ξ3)∈ W2

1(Ω)⎡⎣ ⎤⎦
6
v = 0 on Γu{ }  

and the forms 

 
  
a(u, v) = (CLv)⊤E0BCLu dΩ

Ω
∫∫ , 

 
  
g(u, v) = ck(CΩv)11⊤ EkCΩu dΩ

k=1

11

∑
Ω
∫∫ ,     ck = (E0σ0)k . 

Further, we formulate the variational problem of stability: 

  Given: 

   σ0 = BeL (u0 ) ,  where  u0   is a solution of the linear variational problem. 

  It is necessary to find: 

   a pair   {u, λ} ∈V × R ,  u V = 1 ,  such that  a(u, v) + λg(u, v) = 0   ∀ u, v ∈V . 

The scheme of solution of the problems of stability of shells by the finite-element method is realized in the 
form of a problem-oriented software. 

3.  Numerical Example 

Consider the problem of determination of the critical loads in the case of axisymmetric buckling of a circu-
lar plate with radius  R   and thickness  h   restrained on its contour and subjected to the action of radial com-
pressive forces  P   uniformly distributed along the contour (Fig. 1).  It is assumed that the points of the contour 
may freely move in the plane of the plate and its bent surface is axially symmetric. 

We now compare the results of numerical and analytic calculations of the critical load  Pcr   for this problem 

in the case where Young’s modulus of the material of the plate E = 0.625 ⋅1011 N/m2,  its Poisson’s ratio  
ν = 0.22 ,  and   h/R = 1/20   ( h = 0.5 m,  R = 10 m).  The analytic value of the critical load determined accord-

ing to the Kirchhoff–Love theory is given in [2]:  Pcr ⋅10−8 = 1.0043391 . 
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Fig. 1.  Circular plate restrained along the contour under the action of radial compression. 

Table 1 

Partition Pcr ⋅10−8  
(five-mode version) 

Pcr ⋅10−8  
(six-mode version) 

k(ε)  

4 × 1 1.0222421 1.0271414 2.60 
8 × 1 1.0045389 1.0055348 3.32 

16 × 1 1.0023116 1.0019751 3.77 
32 × 1 1.0021293 1.0016176 3.95 
64 × 1 1.0021170 1.0015914 4.08 

128 × 1 1.0021162 1.0015897 – 
256 × 1 1.0021161 1.0015896 – 

In Table 1, we compare the results of numerical calculations of  Pcr   for this problem performed by using  
a five-mode version of the theory of shells of the Timoshenko–Mindlin type and a six-mode version of the theo-
ry of shells compliant to shear and compression. 

In order to find the orders of convergence rates, we use the formula 

 
 
k(ε) = log2

fε − fε/2
fε/2 − fε/4

⎛

⎝⎜
⎞

⎠⎟
, 

where fε ,  fε/2 ,  and  fε/4   are the values of approximate solutions obtained on the grids with steps of  ε ,   ε/2 ,  
and  ε/4 ,  respectively.   The computed values of the rates of convergence in the space variable are in good 
agreement with the corresponding theoretical values presented in [8]. 

By analyzing the results presented in Table 1, we conclude that the critical load required for the loss of sta-
bility of a circular plate decreases if the presence of compression is taken into account. 

CONCLUSIONS 

The performed numerical experiments, the comparative analysis of the accumulated numerical results ob-
tained with regard for the compliance to shear and compression and the classical results available from the litera-
ture, as well as the investigation of the order of convergence rate for the applied method imply that the proposed 
method aimed at the numerical solution of the problems of stability in the theory of shells compliant to shear and 
compression enables one to get reliable results.  In the future, it is reasonable to perform the analysis of the criti-
cal loads for shells with more complicated geometry. 
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