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AVERAGED PROBABILITY OF THE ERROR IN
CALCULATING WAVELET COEFFICIENTS FOR THE
RANDOM SAMPLE SIZE

0. V. Shestakov!

Signal denoising methods based on the threshold processing of wavelet coefficients are widely used in
various application areas. When applying these methods, it is usually assumed that the number of
wavelet coefficients is fixed, and the noise distribution is Gaussian. Such a model has been well stud-
ied in the literature, and optimal threshold values have been calculated for different signal classes and
loss functions. However, in some situations the sample size is not known in advance and is modeled
by a random variable. In this paper, we consider a model with a random number of observations con-
taminated by a Gaussian noise, and study the behavior of the loss function based on the probabilities
of errors in calculating wavelet coefficients for a growing sample size.

1. Introduction

In many areas, such as plasma physics, medicine, geophysics, astronomy, and communication systems
there is a need for analyzing and processing signals of a different kind and origin. One of the first steps of
data processing is a transformation leading to their “economical” representation. One possible example
of such transformation is a wavelet transform that exploits the correlations between adjacent samples in
a digital signal, to a sparse data representation. This principle is also the basis for a popular threshold
methods to reduce noise in signals: small wavelet coefficients are assumed to be dominated by noise
and carry little useful information. Replacing these coefficients by zero eliminates a major part of the
noise without affecting the signal too much. These procedures also compress the data with little loss
of information, which allows one to store information more economically and transfer it faster through
digital communication channels.

In some cases, the amount of data available for analysis (sample size) is not known in advance. Such
situations can arise, for example, in the case of missing data, limited data acquisition time at random
recording times, or lack of information on the characteristics of the equipment used. For example, the
device used may belong to a batch within which certain specifications may be not rigidly fixed. In
such a case, it is assumed that the sample size of the data is a random variable with some probability
distribution.

In models with a fixed sample size, the statistical properties of wavelet threshold methods are well
studied, and expressions for the “optimal” thresholds oriented to various loss functions are obtained [1-6].
In this paper, we consider a model with a random number of wavelet coefficients of a signal function
“contaminated” with a white Gaussian noise. A loss function based on the probabilities of errors in the
calculation of wavelet coefficients is considered, and its order is estimated.

2. Data model

Let the function of the observed signal belong to a class of functions possessing a certain degree of
smoothness. After the wavelet transform of the observed signal, a set of empirical wavelet coefficients is
obtained. In this paper we assume that these coeflicients have the following form:

Yik=pir+ 2k j=0,...,J =1, k=0,...,27 -1, (1)
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where p; 5, are the wavelet coefficients of the “pure” signal and z;j, are the “noise” wavelet coefficients
for which it is assumed that they are independent and have a normal distribution with zero mean
and variance o2. Since the signal function has a certain degree of smoothness, the absolute values of its
wavelet coefficients decay with increasing j. Suppose that for some v > 0 there exists a positive constant
A such that A2

1 k] < 27 1/2)° (2)
Such a rate of decay is provided, for example, by the membership of the signal function in the class of
Lipschitz-regular functions with regularity exponent ~y, provided that the basic wavelet functions also
satisfy certain additional smoothness conditions [7]. We denote by C(A,~) the class of functions whose
wavelet coefficients satisfy (2).

A popular denoising method is the threshold processing of empirical wavelet coefficients, the meaning
of which is to remove the coefficients whose absolute values do not exceed a given threshold. The
estimate f@k is calculated using the threshold function pr (Y} ) with the threshold 7. The most common
function is the hard thresholding function pgl ) (x) = 1(|z| > T) and soft thresholding function pgf )(m) =
= sign(z)(|x| — T)4+. The meaning of this processing is that since most of the “pure” coefficients are
small in absolute value, the zeroing of the empirical coefficients should remove the noise without greatly
affecting the useful signal.

3. The loss function for a nonrandom number of wavelet coeflicients

A model in which the number of empirical wavelet coefficients is not random has been well studied.
For it optimal thresholds are calculated and the orders of various loss functions are estimated [1-6]. In
particular, the function [5] considers the loss function

J—12/-1 .
> P ([T s ><)
ry(f) =EP (‘Yﬁm_ﬂ&n‘ > ¢ | 5777) = o7 :

It represents the average probability that the error in computing the wavelet coefficient will exceed ¢.
This definition of the loss function is a generalization of the definition proposed in [4]. In the same
paper [4] it was shown that the estimates whose purpose is to minimize losses 7;(f) give comparable,
and sometimes better, results than estimates minimizing the mean-square risk.

In [5] the following statements that estimate the minimax order of (3) are proved.

Theorem 1. When choosing the asymptotically optimal threshold for a hard threshold processing
the following inequalities are valid:

(3)

2y g1 2y g 1
Cp2 217 J 241 L sup  ry(f) < Cy2 2417 J2o+1,
feC(Ay)

Theorem 2. When choosing the asymptotically optimal threshold for a soft threshold processing the
following inequalities are valid:

_2 g __2y g
Cn2 7171 (J) < sup 1y(f) < Cu2 70 go(J).
feC(Ay)

Here C,,, and C); are some positive constants, the function g;(J) > 0 tends to zero arbitrarily slowly,
and ga2(J) > 0 increases unboundedly in J such that

Ings(J) = o(VIn27), J — cc.

The asymptotically optimal threshold in Theorems 1 and 2 for J — oo satisfies the relation [5]

4
T:a,/iln}].
2v+1
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In the next section, the order of the loss function in the model with a random number of empirical
wavelet coefficients is estimated.

4. The random number of wavelet coefficients

We now consider a model with a random number of wavelet coefficients. Let M be a positive integer
random variable and N = 2™, Then the analogue of the loss function (3) for the model (1) takes the
form

5 ) 2]21P ((ng —Mj,k( > 5)
r(f)zEP(‘Ym—um‘>s‘5,7],N>:ZP(N:2J =0 k= > (4)
J=0

and its asymptotic order depends to a large extent on the distribution of N. To obtain meaningful
estimates of the order of the loss function (4), N must be “large.” Consider the sequence N,,, n =1,...,
and suppose that there exists a nonrandom increasing sequence of natural numbers J,, n =1, ..., such
that N,,/27" has a certain limit (in the sense of uniform convergence in the distribution) when n — oo,
that is,

sup [Hy () — H(z)| < 22 =0, n— oo, (5)
x>0 2

o) =p (32 <)

and H (x) is the limit distribution function. Suppose that H(x) has no atom at zero and let us investigate
the behavior

where

vy BET )

J=0

when n — oo.
Let 0, — 0, a,, — 0 when n — oo such that .J,, +logy d,, — oo and H(5,) +1— H(5, ') < a, for all
n=1,.... Then

—129—-1
[Jn-+logy 5,) Z Z P (( ,U]k‘ > s)
)= Y PN, =27) N n
J=0
—129—-1
[Jn—logy dn] Z Z P <‘ — My, k‘ > 5)
+ > P (N, =27) 220 o7 +

J=[Jn+log, 6n}+l

1291 .
. )5 % P (|5~ e > <)
+ Z P(NTLZZJ)]Ok 57 =51+ .59 + 5;.
J=[Jn—logy 6n]+1

Given (5), for S; + S3 we have

S)+ 83 < Hy(6,) +1— Hy(6,Y) < ay + e
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When using a hard threshold processing and choosing the asymptotically optimal threshold, for Sy with
the use of Theorem 1, we obtain the estimate

Sy < G2 it UnHos i) (1 jo0 5 o

valid for all f € C'(A,~), and for a soft threshold processing with the use of Theorem 2 we obtain the
estimate
Sy < Cp2 B ntlogadn) g7 100 6,),

where C; and Cy are some positive constants. Thus, the following statement holds.

Theorem 3. In the model with a random number of wavelet coefficients, when using a hard threshold
processing and choosing the asymptotically optimal threshold, starting with some n we have the following
estimate:

1
sup  1p(f) < an +en + G127 2”“ (n oz on )(Jn + log, 0,,) 2+,
FeC(Ay)

and for a soft threshold processing

sup 7 (f) < ap +en+Co2” 1T (Jntog2 6n) 92(Jpn, + logy dy,).
feC(4n)

The asymptotically optimal threshold itself for n — co satisfies the relation

T, ~c il In2Jn+logs on
2v+1

The form of «,, €, and 0, in Theorem 3 depends essentially on the behavior of the sequence N,/ 27n

and the limit distribution function H(x). Thus &, characterizes the convergence rate of H,(z) to H(x),

and ay,, 6, depend on the behavior of H(z) in a neighborhood of zero and infinity.

Corollary 1. If the limit distribution of N, /27" is degenerate: N, /27" Po1 when n — oo, then
starting with some n
2 1
sup r(f) <ep+ Cy2 it g2
FeC(Ay)
for a hard threshold processing, and

sup o (f) <en+ 042_23%‘]”92(%)
feC(Ay)
for a soft threshold processing, where C3 and Cy are some positive constants.
If €,, decays rapidly enough, then these estimates coincide with the estimates for the loss function
with a nonrandom number of wavelet coefficients and, in addition, lower minimax estimates similar to
those given in Theorems 1 and 2 are valid.

Corollary 2. Let H(x) be differentiable in a neighborhood of zero and in this neighborhood b <

2
< H'(z) < B for some positive constants b and B. Let 6, = 9~ mr17n, Then, starting with some n,

2 1
sup  Ta(f) < en + G52 Hin /g2 (6)
JeC(Ay)
for a hard threshold processing, and
2
sup 7 (f) < e+ Co2 T go(J) (7)
feC(Ay)

for a soft th?“eshold processing, where Cs and Cg are some positive constants.

Note that ;=15 < % for v > 0, and if &, = O(2~ Jn/2) (which is a common estimate for the rate of
convergence in the dlstrlbutlon) then the second terms in (6) and (7) determine the rate of decay of
the loss function. Thus, the loss function for a random number of wavelet coefficients can tend to zero
much slower than the loss function for a nonrandom number of wavelet coefficients.



830 O. V. Shestakov

Acknowledgements

This research is supported by Russian Science Foundation, project No. 18-11-00155.

REFERENCES

1. D. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81,
No. 3, 425-455 (1994).

2. D. Donoho and I. M. Johnstone, “Minimax estimation via wavelet shrinkage,” Ann. Stat., 26, No. 3,
879-921 (1998).
3. M. Jansen, Noise Reduction by Wavelet Thresholding, Springer, New York (2001).

4. J. Sadasiva, S. Mukherjee, and C.S. Seelamantula, “An optimum shrinkage estimator based on
minimum-probability-of-error criterion and application to signal denoising,” in: 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), Piscataway, New Jersey
(2014), pp. 4249-4253.

5. A. A. Kudryavtsev and O. V. Shestakov, “Asymptotic behavior of the threshold minimizing the
average probability of error in calculation of wavelet coefficients,” Dokl. Math., 93, No. 3, 295-299
(2016).

6. A. A. Kudryavtsev and O. V. Shestakov, “Asymptotically optimal wavelet thresholding in the models
with non-Gaussian noise distributions,” Dokl. Math., 94, No. 3, 615619 (2016).

7. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York (1999).



	Abstract
	1 Introduction
	2 Data model
	3 The loss function for a nonrandom number of wavelet coefficients
	4 The random number of wavelet coefficients
	References

