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ular, we present the existence and uniqueness theorems for linear and nonlinear in-
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The theory of inverse problems for equations in mathematical physics is a rapidly developed

in the last decades field of mathematics. Unlike the classical boundary value problems, which

are well studied and the solvability conditions for which are known, the situation with inverse

problems is much more complicated. Even the formulation of such problems often requires

additional investigations, in particular, the study of differential properties of solutions to the

direct problems. This is especially evident in the case of nonlinear problems, where for obtaining

solvability results it is necessary to trace attentively an exact dependence of differential properties

of the solution to the direct problem on the smoothness of coefficients and other data of the

problem (cf., for example, [1] in the elliptic case).

In this paper, we give a survey of some results obtained by the authors during the last fifteen

years (cf. [2]–[13]). We deal with multidimensional inverse problems for elliptic and parabolic

∗ To whom the correspondence should be addressed.

Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 17, No. 3, 2017, pp. 67-85.

1072-3374/19/2374-0576 c© 2019 Springer Science+Business Media, LLC

576

DOI 10.1007/s10958-019-04184-2



equations. Unfortunately, limitations on the length of the paper do not allow us to describe

the results of other authors regarding problems in close settings. We also note that the list of

references does not pretend to be complete, but more reflects interests of the authors.

We formulate some results on the existence and uniqueness of a solution of the spatial vari-

ables to the inverse source problem and the inverse coefficient problem. As a rule, the solvability

theory for these problems is more complicated than that for the problems of reconstructing a

scalar function of one variable. In the case of linear elliptic and parabolic problems, the inverse

problem is equivalently reduced to an operator equation of the second kind with a compact

operator. For nonlinear inverse (coefficient) problems the global sufficient conditions for the

existence and uniqueness of a solution are obtained in the corresponding classes of functions.

1 Inverse Problems for Elliptic Equations
in Hölder Spaces

1.1. The linear problem with source in the elliptic equation. Assume that, in the

space R
n of points x = (x1, . . . , xn), we are given a bounded domain D with sufficiently smooth

boundary ∂D ∈ C2,α, where 0 < α < 1 is a fixed constant. Let the space R
n be embedded into

the space R
n+1 of points (y, x) = (y, x1, . . . , xn). For q > 0 and q1 < 0 < q2 we introduce the

cylinders in R
n+1

Q(q1, q2) := {(y, x) ∈ R
n+1 | q1 < y < q2, x ∈ D}, Q(q) := Q(−q, q)

with base D and lateral surfaces

Γ(q1, q2) := {(y, x) ∈ R
n+1 | q1 < y < q2, x ∈ ∂D}, Γ(q) := Γ(−q, q).

Definition 1. We say that a domain Ω ⊂ R
n+1 satisfies Condition (A) if it satisfies the

exterior cone condition and there exist numbers p, q, 0 < q < p, such that Q(q) ⊂ Ω ⊂ Q(p).

If, in addition, Q(q1, q2) ⊂ Ω, then we say that Condition (A) holds with the cylinder Q(q1, q2)

and write q = min{|q1|, q2}.
Definition 2. Let a domain Ω satisfy Condition (A). We define the sets of Hölder functions

U (Ω) := {u ∈ C(Ω) | ∃q > 0 u ∈ C2,α(Ω ∪ Γ(q))},
F (D) := Cα(D),

G (Ω) := {g ∈ C(Ω) | ∃q > 0 g ∈ Cα(Ω) ∩ Cα(Q(q))},
M (∂Ω) := {μ ∈ C(∂Ω) | ∃q > 0 μ ∈ C2,α(Γ(q))},
R(Ω) := {(g, μ, χ) | g ∈ G (Ω), μ ∈ M (∂Ω), χ ∈ C2,α(D), χ(x) = μ(0, x), x ∈ ∂D}.

In a domain Ω satisfying Condition (A), we consider the inverse problem for finding a pair

of functions (u, f) ∈ U (Ω)×F (D) from the conditions

(Lu)(y, x) = f(x)h(y, x) + g(y, x), (y, x) ∈ Ω, (1)

u(y, x) = μ(y, x), (y, x) ∈ ∂Ω, u(0, x) = χ(x), x ∈ D. (2)
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In Equation (1), L is a uniformly elliptic operator in Ω of the form

(Lu)(y, x) = a(y, x)
∂2u

∂y2
+

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(y, x)u. (3)

For the problem (1), (2) the Fredholm alternative holds.

Theorem 1. Let a domain Ω satisfy Condition (A), and let the coefficients of the operator

L and the function h satisfy the conditions

aij , bi ∈ Cα(D), a, ay, c, cy, h, hy ∈ Cα(Ω),

c(y, x) � 0, |h(0, x)| � h0 > 0, (y, x) ∈ Ω.

Then for the problem (1), (2) one of the following assertions holds:

1) the homogeneous inverse problem (1), (2), i.e., the inverse problem (1), (2) with g = μ =

χ = 0, has finitely many linearly independent solutions,

2) for arbitrary functions g ∈ Cα(Ω), μ ∈ C2,α(∂Ω), χ ∈ C2,α(D), χ(x) = μ(0, x), x ∈ ∂Ω,

the inverse problem (1), (2) has a unique solution (u, f) ∈ U (Ω)×F (D).

Theorem 1 leads to a number of sufficient unique solvability conditions for inverse problems

of the form (1), (2). In what follows, the norm symbol without indices means the sup-norm. We

introduce the notation and inequalities used below:

1

a(x)

n∑

i,j=1

aij(x)ξiξj � λ0|ξ|2, x ∈ D, (4)

β =
1

λ0

∥∥∥∥
b

a

∥∥∥∥ ; γ = max

{∥∥∥∥
h(q1, ·)
h(0, ·)

∥∥∥∥ ,
∥∥∥∥
h(q2, ·)
h(0, ·)

∥∥∥∥

}
. (5)

Theorem 2. Let a domain Ω satisfy Condition (A) with cylinder Q(q1, q2), and let q =

min{|q1|, q2}. Assume that an operator L of the form (3) with coefficients a = a(x), c = c(x)

and the function h(y, x) satisfy the conditions

a, aij , bi, c ∈ Cα(D), h, hy, hyy ∈ Cα(Ω),

c(x) � 0, |h(0, x)| � h0 > 0, x ∈ D;

moreover, the inequality (4) holds with a constant λ0 > 0 and the constant γ in (5) is such that

γ < 1. Let, in addition, at least one of the following two conditions be satisfied:

1) the domain D for some i ∈ {1, . . . , n} lies in the strip 0 < xi < li < l∗, where

l∗ =
1

β + 1
ln

⎛

⎝1 +
q2(1− γ)λ0

16
∥∥∥ h(·,·)
h(0,·)

∥∥∥+ q2
∥∥∥hyy(·,·)

h(0,·)
∥∥∥

⎞

⎠ ,

2) the coefficient c(x) satisfies the inequality

c(x)

a(x)
� κ < − 1

q2(1− γ)

(
16

∥∥∥∥
h(·, ·)
h(0, ·)

∥∥∥∥+ q2
∥∥∥∥
hyy(·, ·)
h(0, ·)

∥∥∥∥

)
.

Then for any triple of functions (g, μ, χ) ∈ R(Ω) the inverse problem (1), (2) has a unique

solution (u, f) ∈ U (Ω)×F (D).

578



In the case where Ω is a cylinder with base D, the following global uniqueness and existence

theorem is valid.

Theorem 3. Let Ω = Q(q1, q2), and let a uniformly elliptic operator L of the form (3) with

coefficients a = a(x), c = c(x) and the function h(y, x) satisfy the conditions

a, aij , bi, c ∈ Cα(D), h, hy, hyy ∈ Cα(Ω),

h(y, x) � 0, hyy(y, x) � 0, (y, x) ∈ Ω,

c(x) � 0, h(0, x) � h0 > 0, x ∈ D.

Then for any triple of functions (g, μ, χ) ∈ R(Ω) the inverse problem (1), (2) has a unique

solution (u, f) ∈ U (Ω)×F (D).

To formulate the unique solvability theorem for the inverse problem (1), (2) in the important

particular case where Ω is a symmetric cylinder relative to the plane y = 0, we introduce the

notation. Let BR = {x ∈ R
n | |x| < R} be a ball in R

n such that D ⊂ BR. Let Ω = (−q, q)×D

be a symmetric cylinder in R
n+1 with respect to the plane y = 0. Denote ΩR = [−q, q] × BR.

In this notation, we have the following existence and uniqueness result for the problem (1), (2)

with an operator L of the form (3) under the additional symmetry condition on the coefficients

of the operator:

a(y, x) = a(−y, x), c(y, x) = c(−y, x), (y, x) ∈ Ω. (6)

An important role in this result is played by a y-even component of the function h(y, x):

he(y, x) =
h(y, x) + h(−y, x)

2
, (y, x) ∈ [−q, q]×D.

Theorem 4. Let the coefficients of a uniformly elliptic operator L of the form (3) in Ω and

the function h(y, x) satisfy (6) and the following conditions:

a, ay, c, cy ∈ Cα(ΩR), aij , bi,∈ Cα(BR), h, hy ∈ Cα(Ω),

c(y, x) � 0, (y, x) ∈ Ω,

he(y, x)(he)y(y, x) � 0, cy(y, x) � 0, (y, x) ∈ [−q, 0]×BR,

|h(0, x)| � h0 > 0, x ∈ D.

Then for any triple of functions (g, μ, χ) ∈ R(Ω) the inverse problem (1), (2) has a unique

solution (u, f) ∈ U (Ω)×F (D).

As a consequence of Theorems 1–4 on the solvability of the inverse problem with overde-

termination inside the domain, we formulate the results on the solvability of inverse problems

with overdetermination on the boundary. We introduce additional notation and definitions. For

q > 0 we introduce the sets

Q1(q) = {(y, x) ∈ R
n+1 | −q < y < 0, x ∈ D},

Γ1(q) = {(y, x) ∈ R
n+1 | −q < y � 0, x ∈ ∂D},

Γ0 = {(y, x) ∈ R
n+1 | y = 0, x ∈ D}.
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Definition 3. We say that a domain Ω− ⊂ R
n+1 satisfies Condition (B) if it satisfies the

exterior cone condition and there exist numbers p, q, 0 < q < p, such that Q1(q) ⊂ Ω− ⊂ Q1(p).

Definition 4. Let a domain Ω− satisfy Condition (B). We define the sets of Hölder functions

U1(Ω−) := {u ∈ C(Ω−) | ∃q > 0 u ∈ C2,α(Ω− ∪ Γ1(q) ∪ Γ0)},
G (Ω−) := {g ∈ C(Ω−) | ∃q > 0 g ∈ Cα(Ω−) ∩ Cα(Q1(q))},
M (∂Ω−) := {μ ∈ C(∂Ω−) | ∃q > 0 μ ∈ C2,α(Γ1(q)), μy(0, x) = 0, x ∈ ∂D},
R(Ω−) := {(g, μ, χ) | g ∈ G (Ω−), μ ∈ M (∂Ω−), χ ∈ C2,α(D), χ(x) = μ(0, x), x ∈ ∂D}.
We consider the inverse problem of finding a pair of functions (u, f) ∈ U1(Ω−)×F (D) from

the conditions

(Lu)(y, x) = f(x)h(y, x) + g(y, x), (y, x) ∈ Ω−, (7)

⎧
⎪⎪⎨

⎪⎪⎩

u(y, x) = μ(y, x), (y, x) ∈ ∂Ω− \ Γ0,

uy(0, x) = 0, x ∈ D,

u(0, x) = χ(x), x ∈ D.

(8)

If g = 0, μ = 0, χ = 0 in (7), (8), the corresponding inverse problem is said to be homogeneous.

The following assertion holds (the Fredholm alternative for the problem (7), (8)).

Theorem 5. Assume that a domain Ω− satisfies Condition (B) and the coefficients of an

operator L of the form (3) and the function h(y, x) satisfy the conditions

aij , bi ∈ Cα(D), a, ay, c, cy, h, hy ∈ Cα(Ω−),

c(y, x) � 0, (y, x) ∈ Ω−,

|h(0, x)| � h0 > 0, ay(0, x) = cy(0, x) = hy(0, x) = 0, x ∈ D.

Then for the problem (7), (8) one of the following two assertions holds:

1) the homogeneous inverse problem (7), (8), i.e., the inverse problem (7), (8) with g = μ =

χ = 0, has finitely many linearly independent solutions,

2) for an arbitrary triple of functions (g, μ, χ) ∈ R(Ω−) the inverse problem (7), (8) has a

unique solution (u, f) ∈ U1(Ω−)×F (D).

There are various sufficient conditions for the unique solvability of the problem (7), (8). We

formulate one of such conditions in the case where the domain is a cylinder, i.e., Ω− = Q1(q).

Theorem 6. Let Ω− = Q1(q), and let an operator L of the form (3) with c = c(x) and the

function h(y, x) satisfy the conditions

a, ay, ayy, h, hy, hyy ∈ Cα(Ω−), aij , bi, c ∈ Cα(D),

ay(0, x) = 0, hy(0, x) = 0, c(x) � 0, x ∈ D,

ayy(y, x) + c(x) � 0, (y, x) ∈ Ω−,

h(y, x) � 0, hyy(y, x) � 0, (y, x) ∈ Ω−,

h(0, x) � h0 > 0, x ∈ D.
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Then for any triple of functions (g, μ, χ) ∈ R(Ω−) the inverse problem (7), (8) has a unique

solution.

Remark 1. The problems of finding a source in the elliptic equation with overdetermination

in the domain are studied in [11, 12]. Similar problems with overdetermination on the boundary

of a cylindrical domain were studied in [14]–[23]. Various existence and uniqueness conditions

obtained for these inverse problems agree with the assumptions of Theorem 6 and are involved

in this theorem as particular cases. A more detailed overview of the background, examples, and

applications can be found in [2].

1.2. The inverse coefficient problem. We consider the inverse problem of finding the

lower order term in the elliptic equation. Unlike the source problem, this problem is nonlinear

and requires different methods.

Definition 5. Let a domain Ω satisfy Condition (A). We introduce the sets of Hölder

functions

U2(Ω) = {u ∈ C(Ω) | u ∈ C2,α(Ω), uyy ∈ C(Ω)},
F1(D) = {f ∈ Cα(D) | f(x) � 0, x ∈ D}.

For the sake of brevity we consider a particular case where Ω = Q(q1, q2) is a cylindrical

domain. In Ω, we consider the problem of finding a pair of functions (u, f) ∈ C2,α(Ω)×F1(D)

from the following conditions:

− (Lu)(y, x) = f(x)u(y, x) + g(y, x), (y, x) ∈ Ω, (9)

u(y, x) = μ(y, x), (y, x) ∈ ∂Ω, u(0, x) = χ(x), x ∈ D. (10)

Theorem 7. Let Ω = Q(q1, q2), and let an elliptic operator L of the form (3) with c = c(x)

and the functions g, μ satisfy the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω) ∩ C(Ω),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ C(Γ(q1, q2)),

c(x) � 0, x ∈ D,

c(x) + ayy(y, x) � 0, g(y, x) � 0, gyy(y, x) � 0, (y, x) ∈ Ω,

μ(y, x) � 0, μyy(y, x) � 0, (y, x) ∈ Γ(q1, q2);

moreover, at least one of the functions g and μ is not equal to zero identically. Then the

inverse problem (9), (10) cannot have two different solutions in the class of functions (u, f) ∈
C2,α(Ω)×F1(D).

As in the linear problem, we separately consider the case of a symmetric cylinder with respect

to the plane y = 0, i.e., Ω = Q(q). In this case, we also assume that the operator has the form

(3). The inverse problem consists in finding a pair of functions (u, f) ∈ C2,α(Ω)×F1(D) from

the conditions

− (Lu)(y, x) = f(x)u(y, x) + g(y, x), (y, x) ∈ Ω, (11)
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{
u(y, x) = μ(y, x), (y, x) ∈ Γ(q),

u(q, x) = u(−q, x) = 0, x ∈ D,
(12)

u(0, x) = χ(x), x ∈ D. (13)

For the inverse problem (11)–(13) the following uniqueness theorem holds, where an important

role is played by y-even components of the functions g and μ:

ge(y, x) =
g(y, x) + g(−y, x)

2
, (y, x) ∈ ΩR,

μe(y, x) =
μ(y, x) + μ(−y, x)

2
, (y, x) ∈ Γ(q).

Theorem 8. Let the coefficients of a uniformly elliptic operator L in ΩR = [−q, q]×BR and

the functions g, μ satisfy the conditions

a, ay, c, cy ∈ Cα(ΩR), aij , bi ∈ Cα(BR), μ ∈ C2,α(Γ(q)), g, gy ∈ Cα(ΩR),

a(y, x) = a(−y, x), c(y, x) = c(−y, x), c(y, x) � 0, ge(y, x) � 0, (y, x) ∈ ΩR,

cy(y, x) � 0, (ge)y(y, x) � 0, (y, x) ∈ [−q, 0]×D,

μe(y, x) � 0, (μe)y(y, x) � 0, (y, x) ∈ [−q, 0]× ∂D;

moreover, at least one of the functions ge, μe is not equal to zero identically. Then the problem

(11)–(13) cannot have two different solutions in the class of functions (u, f) ∈ C2,α(Ω)×F1(D).

We consider the inverse problem in the domain Ω− = Q1(q) = (−q, 0)×D with data on the

boundary. We look for a pair of functions (u, f) ∈ U2(Ω−)×F1(D) such that

− (Lu)(y, x) = f(x)u(y, x) + g(y, x), (y, x) ∈ Ω−, (14)

{
u(y, x) = μ(y, x), (y, x) ∈ Γ1(q),

u(−q, x) = 0, uy(0, x) = 0, x ∈ D,
(15)

u(0, x) = χ(x), x ∈ D. (16)

For the inverse problem (14)–(16) the following uniqueness theorem holds.

Theorem 9. Let the coefficients of a uniformly elliptic operator L in Ω− = (−q, 0)×D and

the functions g, μ satisfy the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω− ∪ Γ0) ∩ C(Ω−),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ Cα(Γ1(q)),

ay(0, x) = gy(0, x) = 0, c(x) � 0, x ∈ D,

ayy(y, x) + c(x) � 0, g(y, x) � 0, gyy(y, x) � 0, (y, x) ∈ Ω−,

μ(y, x) � 0, μyy(y, x) � 0, (y, x) ∈ [−q, 0]× ∂D,

μy(0, x) = 0, x ∈ ∂D;

moreover, at least one of the functions g, μ is not equal to zero identically. Then the problem

(14)–(16) cannot have two different solutions in the class of functions (u, f) ∈ U2(Ω−)×F1(D).
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In the case where Ω is a cylinder, sufficient conditions for the existence of a solution are

obtained for the inverse coefficient problem. In the cylinder Ω = Q(q1, q2), we consider the

inverse problem of finding a pair of functions (u, f) ∈ U2(Ω)×F1(D) from the conditions

− (Lu)(y, x) = f(x)u(y, x) + g(y, x), (y, x) ∈ Ω, (17)

{
u(y, x) = μ(y, x), (y, x) ∈ Γ(q1, q2),

u(q1, x) = u(q2, x) = 0, u(0, x) = χ(x), x ∈ D.
(18)

The operator L in (17) has the form

Lu = a(y, x)
∂2u

∂y2
+

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u ≡ a(y, x)

∂2u

∂y2
+ Lxu. (19)

We say that for the problem (17), (18) the compatibility conditions hold at y = q1, y = 0, y = q2
if the functions μ, χ, g satisfy the conditions

μ(q1, x) = 0, μ(0, x) = χ(x), μ(q2, x) = 0, x ∈ ∂D, (20)

− a(q1, x)μyy(q1, x) = g(q1, x), −a(q2, x)μyy(q2, x) = g(q2, x), x ∈ ∂D. (21)

To formulate the following theorem, we introduce the set of functions

H (D) :=
{
χ ∈ C(D) | χ ∈ C2,α(D), Lxχ ∈ C(D)

}

and an auxiliary function w as the solution to the Dirichlet problem

− (Lw)(y, x)− 2ay(y, x)wy(y, x)− ayy(y, x)w(y, x) = (gyy)
−(y, x), (y, x) ∈ Ω,

w(y, x) = (μyy)
−(y, x), (y, x) ∈ Γ(q1, q2),

w(qi, x) =
g+(qi, x)

a(qi, x)
, i = 1, 2, x ∈ D.

As usual, g+(y, x) := max{0, g(y, x)} and g−(y, x) := max{0,−g(y, x)} denote the positive and

negative parts of a function g respectively. For the inverse problem (17), (18) the following

existence theorem holds.

Theorem 10. Let Ω = Q(q1, q2), and let an operator L of the form (19) and the functions

g, μ satisfy the compatibility conditions (20), (21) and also the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω) ∩ C(Ω),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ C(Γ(q1, q2)),

χ ∈ H (D), c(x) � 0, x ∈ D,

c(x) + ayy(y, x) � 0, (y, x) ∈ Ω,

χ(x) � χ0 > 0, a(0, x)w(0, x)− (Lxχ)(x)− g(0, x) � 0, x ∈ D.

Then the inverse problem (17), (18) has a solution (u, f) ∈ U2(Ω)×F1(D).
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We formulate more results concerning the solvability of the inverse problem of finding the

coefficient of the equation in the cylinder with overdetermination on the boundary. We fix q > 0

and consider in Ω− = Q1(q) the problem of finding a pair of functions (u, f) ∈ U2(Ω−)×F1(D)

from the relations (14)–(16) with an operator L of the form (19). We say that for the problem

(14)–(16) the compatibility conditions are satisfied at y = −q and y = 0 if the functions μ, χ, g

satisfy the conditions

μ(−q, x) = 0, μ(0, x) = χ(x), μy(0, x) = 0, − a(−q, x)μyy(−q, x) = g(−q, x), x ∈ ∂D. (22)

Assume that the coefficients of the operator L and the given functions satisfy the compatibility

conditions (22) and the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω− ∪ Γ0) ∩ C(Ω−),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ C(Γ1(q)),

c(x) � 0, x ∈ D,

c(x) + ayy(y, x) � 0, (y, x) ∈ Ω−,

gy(0, x) = 0, ay(0, x) = 0, x ∈ D.

Under these assumptions, we extend a, g, μ as even functions with respect to y ∈ [−q, 0] Thus,

the extended functions, denoted by ã, g̃, μ̃, satisfy the inclusions

ã, ãy, ãyy, g̃, g̃y, g̃yy ∈ Cα(Ω) ∩ C(Ω), μ̃, μ̃y, μ̃yy ∈ C(Γ(q)).

To formulate the existence theorem, we need to define w as a solution to the auxiliary problem

− (L̃w)(y, x)− 2ãy(y, x)wy(y, x)− ãyy(y, x)w(y, x) = (g̃yy)
−(y, x), (y, x) ∈ Ω,

w(y, x) = (μ̃yy)
−(y, x), (y, x) ∈ Γ(q),

w(q, x) =
g̃+(q, x)

ã(q, x)
, w(−q, x) =

g̃+(−q, x)

ã(−q, x)
, x ∈ D,

where the operator L̃ has the form (19), but with ã instead of a. The following existence theorem

for the problem (14)–(16) holds.

Theorem 11. Let Ω− = Q1(q), and let the coefficients of the operator L and the functions

g, μ, χ satisfy the compatibility conditions (22) and the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω− ∪ Γ0) ∩ C(Ω−),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ C(Γ1(q)),

χ ∈ H (D), c(x) � 0, x ∈ D,

c(x) + ayy(y, x) � 0, (y, x) ∈ Ω−,

χ(x) � χ0 > 0, a(0, x)w(0, x)− (Lxχ)(x)− g(0, x) � 0, x ∈ D,

gy(0, x) = 0, ay(0, x) = 0, x ∈ D.

Then there exists a solution to the problem (14)–(16) in the above-indicated class of functions.
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As a consequence of the above existence and uniquenesses theorems, we obtain the existence

and uniqueness of a solution to the problem (14)–(16).

Theorem 12. Let Ω− = Q1(q), and let the coefficients of the operator L and the functions

g, μ, χ satisfy the compatibility conditions (22) and the conditions

a, ay, ayy, g, gy, gyy ∈ Cα(Ω− ∪ Γ0) ∩ C(Ω−),

aij , bi, c ∈ Cα(D) ∩ C(D), μ, μy, μyy ∈ C(Γ1(q)), χ ∈ H (D),

c(x) � 0, x ∈ D,

μ(y, x) � 0, μyy(y, x) � 0, (y, x) ∈ Γ1(q),

c(x) + ayy(y, x) � 0, g(y, x) � 0, gyy(y, x) � 0, (y, x) ∈ Ω−,

χ(x) � χ0 > 0, a(0, x)w(0, x)− (Lxχ)(x)− g(0, x) � 0, gy(0, x) = ay(0, x) = 0, x ∈ D.

Then the problem (14)–(16) has a unique solution (u, f) ∈ U2(Ω−)×F1(D).

Remark 2. The inverse problem of finding the coefficient in the elliptic equation with

overdetermination in a domain was studied in [12, 13]. A similar problem with overdetermination

on the boundary of the cylinder was studied in [21] under the additional assumption that g = 0

and the coefficients of the operator L are independent of the variable y. The result of [21] agrees

with Theorem 9. In the monograph [24], the question about the existence of a solution to the

inverse problem of finding the coefficient in a cylinder with overdetermination on the boundary

is formulated as an important problem for the further development of the theory of inverse

problems.

2 Inverse Problems for Parabolic Equations
in Sobolev Spaces

2.1. The linear problem with source in the equation. Let Ω ⊂ R
n be a bounded

domain with boundary ∂Ω ∈ C2, and let Q = Ω× (0, T ) be a basic cylinder with lateral surface

S = ∂Ω×[0, T ]. The general source problem with nonzero functions on the right-hand side of the

equation and the initial and boundary conditions, together with the corresponding compatibility

and smoothness conditions, is reduced to the problem of finding a pair of functions {u(x, t); f(x)}
from the relations

ρ(x, t)ut(x, t)− L(t)u(x, t) = h(x, t)f(x), (x, t) ∈ Q, (23)

u(x, 0) = 0, x ∈ Ω, Bu(x, t) = 0, (x, t) ∈ S, (24)

l(u) :=

T∫

0

u(x, t)dμ(t) = χ(x), x ∈ Ω, (25)

where the functions ρ, h, χ, μ(t) are given, the uniformly elliptic operator L(t) with sufficiently

smooth coefficients has the form

L(t)u =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑

i=1

bi(x, t)
∂u

∂xi
+ d(x, t)u,
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and the operator of boundary conditions is either of the first or of the third (the second) kind,

i.e., Bu ≡ u or Bu ≡ ∂u

∂N
+ σ(x)u, where

∂u

∂N
≡

n∑

i,j=1

cos(n, xi)aij(x)
∂u

∂xj

denotes the conormal derivative, n is the outward normal to ∂Ω at the point x = (x1, . . . , xn),

σ ∈ C1(∂Ω), σ(x) � 0 on ∂Ω. The functions χ(x) and h(x, t) satisfy the conditions

χ ∈ W 2
2 (Ω), Bχ(x) = 0, x ∈ ∂Ω,

h, ht ∈ L∞,2(Q), |l(h)(x)| � δ > 0, x ∈ Ω.
(26)

The scalar function μ belongs to BV [0, T ], and the integral in (25) is understood as the Riemann–

Stieltjes integral of continuous functions. We assume that the given functions satisfy the smooth-

ness conditions

(A.1)
aij ∈ C1(Ω), ρ, ρt ∈ C(Q), bi, ∂bi/∂t, d, dt ∈ L∞(Q), μ ∈ BV [0, T ],

μ(0) = μ(0+), μ(t) �≡ const on [0, T ], ρ(x, t) � ρ0 > 0, (x, t) ∈ Q.

By a solution to the inverse problem (23)–(25) we understand a pair of functions u ∈ W 2,1
2 (Q),

f ∈ L2(Ω) satisfying Equation (23) almost everywhere in Q and the conditions (24), (25).

Equivalently, by a solution we sometimes understand a function f ∈ L2(Ω) such that u =

u(x, t; f), regarded as a solution to the direct problem (23), (24) with a given f , satisfies the

observation condition (25).

The following conditions on the function μ(t) play an important role:

μ(t) is a nondecreasing function continuous from the right on [0, T ], and
T∨

0

(μ) > 0. (27)

Particular cases of the nonlocal observation (25) are the final overdetermination, i.e., l(u) ≡
u(x, t1), 0 < t1 � T < ∞, where t1 is fixed, and the integral overdetermination, i.e.,

l(u) ≡
T∫

0

u(x, t)ω(t)dt.

The problems with such observation conditions for “stationary” parabolic equations in L2

were considered in [25]–[27]. The problem with final observation was studied in the Hölder

class in [28, 29], where the Fredholm property and uniqueness were proved and the positivty

method was proposed (cf. also [30]–[32] and [38, 39]). A more general condition than (25) was

considered in [33] (for abstract equations and the semigroup method cf. also [34]–[37]). The

results of [25]–[27] are generalized to parabolic equations with coefficients depending on x and t.

It is proved that the problem (23)–(25) is equivalent to a second kind operator equation for

the unknown f(x).

Theorem 13. Let (26) and Condition (A.1) hold. Then the inverse problem (23)–(25) is

equivalent to a linear second kind operator equation with compact operator B in L2(Ω).
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To formulate the further results, we assume that it is possible to extract the “stationary”

part L0 of the operator L(t):

L(t)u = L0u+ d(x, t)u,

L0u =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑

i=1

bi(x)
∂u

∂xi
+ c0(x)u,

⎫
⎪⎪⎬

⎪⎪⎭
(28)

where the coefficients aij , bi, d satisfy Condition (A.1), the functions bi are now independent of

t, and the coefficient c0(x) satisfies the conditions

(E)

c0 ∈ L∞(Ω), c0(x) � 0, x ∈ Ω,

Bu ≡ ∂u

∂N
implies c0(x) �≡ 0 in Ω.

Theorem 14. Assume that the operator L(t) in Equation (23) has the form (28), the con-

ditions (26), (A.1), and (E) hold, the function μ(t) is nondecreasing on [0, T ], |l(h)(x)| � δ > 0

in Ω, h(x, t)/l(h)(x) � 0 in Q, and at least one of the following conditions is satisfied:

1) ht(x, t)/l(h)(x) � 0, d(x, t) � 0, dt(x, t) � 0 in Q,

2) dμ(t) = ω(t)dt, where ω ∈ W 1
1 (0, T ) is such that

(
ω(t)(x, t)

)′
t
+ d(x, t)ω(t) � 0 in Q,

3) dμ(t) = ω(t)dt, where ω ∈ BV [0, T ] is such that for all x ∈ Ω the function

π(x, t) ≡ ω(t)(x, t) +

t∫

0

d(x, τ)ω(τ)dτ

is nonincreasing with respect to t ∈ [0, T ].

Then there exists a unique solution u ∈ W 2,1
2 (Q), f ∈ L2(Ω) to the problem (23)–(25) and the

following stability estimate holds:

‖f‖2,Ω + ‖u‖(2,1)2,Q � C‖L0χ‖2,Ω.

The solution u(x, t) possesses the following additional differential properties:

u ∈ C([0, T ];W 2
2 (Ω)), ut ∈ C([0, T ];L2(Ω)), ut ∈ W 2,1

2 (Qε), Qε = Ω× (ε, T ).

Some analogs of such conditions for “stationary” equations within the framework of the

semigroup approach and the positivity method were considered in [33]. For “nonstationary”

parabolic equations the well-posedness was proved by a new method (cf. [6]), which made it

possible to prove the convergence of the corresponding iteration sequence to the solution.

The sufficient uniqueness condition for the linear inverse problem are widely used in the

coefficient problems. Since the problem is linear, the proof of the uniqueness of its solution is

reduced in a standard way to the proof that the homogeneous inverse problem i.e., the problem

(23)–(25) with χ = 0, has no nonzero solutions.

Let |l(h)(x)| > 0 almost everywhere in Ω. We consider the function ϕ0(x) := sgn l(h)(x)

such that ϕ2
0(x) = 1 almost everywhere in Ω.
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Theorem 15. Assume that the operator L(t) in Equation (23) has the form (28), Conditions

(A.1) and (E) hold, h, ht ∈ L∞,2(Q), the function μ(t) satisfies (27), |l(h)(x)| > 0 in Ω, and

h(x, t)ϕ0(x) � 0 in Q. In addition, assume that at least one of the following conditions holds:

1) ht(x, t)ϕ0(x) � 0, d(x, t) � 0, dt(x, t) � 0 in Q,

2) dμ(t) = ω(t)dt, where ω ∈ BV [0, T ] is such that for all x ∈ Ω the function

π(x, t) ≡ ω(t)(x, t) +

t∫

0

d(x, τ)ω(τ)dτ

is nonincreasing with respect to t ∈ [0, T ].

Then the problem (23)–(25) with χ = 0 has only zero solution u = 0, f = 0.

In the study of any problem it is important to obtain necessary and sufficient conditions of

the existence and uniqueness of a solution. We obtain the necessary and sufficient conditions

for uniqueness and well-posedness of parabolic inverse problems related to the completeness and

basis property, respectively, of some system of functions in L2(Ω). These questions were treated

by using an example of the inverse problem of finding a pair of functions {u(x, t); f(x)} from

the relations

ut(x, t)−L0u(x, t) = h(x, t)f(x), (x, t) ∈ Q, (29)

u(x, 0) = 0, x ∈ Ω, Bu(x, t) = 0, (x, t) ∈ S, (30)

l(u) = χ(x), x ∈ Ω, (31)

where χ ∈ W 2
2 (Ω), Bχ(x) = 0 on ∂Ω, and L0 is a stationary uniformly elliptic (symmetric)

operator of the form

L0u =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c0(x)u

with coefficients aij ∈ C1(Ω), c0 ∈ L∞(Ω), and Condition (E) holds.

The eigenfunctions and eigenvalues of the problem

−L0v(x) = λv(x), x ∈ Ω, Bv(x) = 0, x ∈ ∂Ω,

are denoted by {ek(x)} and {λk} respectively, where λk are enumerated in ascending order of

the absolute value (with multiplicity taken into account) and ‖ek‖2,Ω = 1 for all k = 1, 2, . . . .

As is known, ek ∈ W 2
2 (Ω), λk ∈ R, and λk → +∞. In our case, λ1 > 0 and the system {ek(x)}

is an orthonormal basis in the space L2(Ω). We introduce the system of functions

ψk(x) := λk

T∫

0

( t∫

0

e−λk(t−τ)h(x, τ)dτ

)
dμ(t)ek(x) ≡ βk(x)ek(x), k ∈ N. (32)

For this system a completeness criterion holds.

Theorem 16. Assume that h, ht ∈ L∞,2(Q), μ ∈ BV [0, T ], and the operators L0 and B

satisfy the above conditions. Then the system {ψk(x)} in (32) is complete in L2(Ω) if and only

if the solution to the inverse problem (29)–(31) is unique.
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For the system {ψk} the moment problem can be stated, i.e., the problem of finding a

function f(x) ∈ L2(Ω) satisfying the equalities

(ψk, f) :=

∫

Ω

ψk(x)f(x)dx = αk ∀ k = 1, 2, . . . , (33)

where the number sequence α = {αk} is given. As usual, the condition α ∈ l2 means that
∑

k

|αk|2 < ∞.

As proved in [40], the solvability of the inverse problem with final observation is equivalent to

the solvability of the corresponding moment problem. For a more general system of functions

defined in (32) the following result holds.

Theorem 17. Assume that h, ht ∈ L∞,2(Q), μ ∈ BV [0, T ], the operators L0 and B satisfy

the above conditions, and the system {ψk(x)} is introduced by (32). The solvability of the

moment problem (33) is equivalent to the solvability of the inverse problem (29)–(31); namely,

the following two assertions are valid.

1. If α ∈ l2 and (33) is solvable, then the function

χ(x) :=
∑

k

(αk/λk) ek(x) ∈ W 2
2 (Ω);

moreover, Bχ(x) = 0, x ∈ ∂Ω, and the inverse problem (29)–(31) is solvable.

2. Let the inverse problem (29)–(31) with l(u) = χ(x) ∈ W 2
2 (Ω) such that Bχ(x) = 0, x∈∂Ω,

be solvable. Then the moment problem (33) with αk = λk(χ, ek) is solvable and α ∈ l2.

Definition 6. The inverse problem (29)–(31) is said to be well posed if for any function

χ ∈ W 2
2 (Ω) such that Bχ(x) = 0 on ∂Ω there exists a unique function f ∈ L2(Ω) such that the

solution u(x, t; f) to the direct problem (29), (30) satisfies the observation condition (31) and

the following stability estimate holds:

‖f‖2,Ω � C‖L0χ‖2,Ω.
It is found that the unique solvability of the inverse problem (29)–(31) is closely connected

with the basis property of the Riesz system {ψk(x)}.
Theorem 18. Assume that h, ht ∈ L∞,2(Q), μ ∈ BV [0, T ], the operators L0 and B satisfy

the above conditions, and {ψk(x)} is defined by (32). Then {ψk(x)} is the Riesz basis in the

space L2(Ω) if and only if the inverse problem (29)–(31) is well posed.

As a consequence of Theorems 14 and 15, it is possible to obtain the completeness and Riesz

basis property for a large class of such systems in the multidimensional case.

Corollary 1. Assume that h, ht ∈ L∞,2(Q), the operators L0 and B satisfy the above

conditions, the function μ satisfies (27), |l(h)(x)| > 0 in Ω, and h(x, t)ϕ0(x) � 0 in Q. In

addition, at least one of the following assertions holds:

1) ht(x, t)ϕ0(x) � 0 in Q,

2) dμ(t) = ω(t)dt, where ω ∈ BV [0, T ] is nonincreasing on [0, T ].

Then the system {ψk(x)} introduced in (32) is complete in L2(Ω).
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If we reinforce the condition |l(h)(x)| > 0 in Ω in this corollary by requiring the inequality

|l(h)(x)| � δ > 0 in Ω, then the system {ψk(x)} is a Riesz basis in the space L2(Ω).

2.2. The inverse coefficient problem. We consider the inverse problem of reconstructing

the coefficient at u in a parabolic equation. In the cylinder Q = Ω× (0, T ) with lateral surface

S = ∂Ω×[0, T ], we study the problem of finding functions {u(x, t); c(x)} satisfying the conditions

ρ(x, t)ut − L0u− d(x, t)u = c(x)u+ g(x, t), (x, t) ∈ Q, (34)

u(x, 0) = u0(x), x ∈ Ω, Bu = β(x, t), (x, t) ∈ S, (35)

T∫

0

u(x, t)dμ(t) = χ(x), x ∈ Ω. (36)

Here, ρ, d, g, u0, β, μ, χ are given and the uniformly elliptic operator L0 has the form

L0u =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑

i=1

bi(x)
∂u

∂xi
+ c0(x)u, c0(x) � 0,

where c0(x) additionally satisfies Condition (E). The given functions in (34)–(36) satisfy the

conditions (for some fixed p � n+ 1)

(A.2)

aij(x) ∈ C1(Ω), ρ, ρt ∈ C(Q), bi ∈ L∞(Ω), c0 ∈ Lp(Ω), d, dt ∈ L∞(Q),

μ ∈ BV [0, T ], μ(0) = μ(0+), μ(t) �≡ const on [0, T ],

ρ(x, t) � ρ0 > 0, (x, t) ∈ Q, c0(x) � 0 x ∈ Ω, ρ0 = const .

Assume that there is a function Φ(x, t) given in the entire cylinder Q and such that Φ,Φt ∈
W 2,1

p (Q); moreover, Φ(x, 0) = u0(x) in Ω, whereas BΦ = β(x, t) on S. Thus, we assume that

(B.2)
g, gt ∈ Lp(Q), u0 ∈ W 2

p (Ω), ∃Φ(x, t) : Φ,Φt ∈ W 2,1
p (Q),

Φ(x, 0) = u0(x)x ∈ Ω, BΦ(x, t) = β(x, t), (x, t) ∈ S.

The solution to the direct problem (34), (35) with c(x) = 0 is denoted by u0(x, t). We also

impose the smoothness and compatibility conditions on the function χ(x):

(C.2) χ ∈ W 2
p (Ω), Bχ(x) = l(β)(x), x ∈ ∂Ω.

If Conditions (A.2), (B.2), (C.2) hold, then the solution to this problem is looked for in the

class of functions u ∈ W 2,1
p (Q), c ∈ E− :=

{
v ∈ Lp(Ω) | v(x) � 0 in Ω

}
with fixed p � n + 1.

Earlier, the coefficient c(x) in such a problem was looked for in the class of bounded or even

smoother functions. Some results for Hölder solutions and a particular case of final observation

can be found in [41, 30, 24].

We consider the case of an absolutely continuous measure dμ(t) = ω(t)dt, where ω ∈ BV [0, T ]

satisfies the conditions

dμ(t) = ω(t)dt, ω ∈ BV [0, T ], ω(t) � 0 on [0, T ],

∀x ∈ Ω π0(x, t) := ρ(x, t)ω(t) +

t∫

0

d(x, ξ)ω(ξ)dξ is nonincreasing in t ∈ [0, T ].
(37)
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Theorem 19. Let Conditions (A.2), (B.2), (C.2), (37) hold, and let

g(x, t) � 0 in Q, u0(x) � 0 in Ω, β(x, t) � 0 on S, χ(x) > 0 in Ω.

Then the solution to the inverse problem (34)–(36) is unique in the class of functions u ∈
W 2,1

p (Q), c ∈ E− for p = n+ 1.

Theorem 20. Let the assumptions of Theorem 19 hold, and let

χ(x) � δ > 0, L0[l(u
0)− χ](x) � 0 in Ω.

Then there exists a unique pair of functions {u; c} solving the inverse problem (34)–(36); more-

over, this solution possesses the properties

ut ∈ C([0, T ];Lp(Ω)) ∩W 2,1
p (Qε), u ∈ C([0, T ];W 2

p (Ω)), (38)

where Qε = Ω× (ε, T ) and c(x) � −v0(x)/χ(x), v0(x) ≡ |L0χ|+ l(g) + ρ(x, 0)ω(0)u0(x).

The following two theorems are devoted to the case of a general nonlocal observation, i.e.,

the case where, regarding the function μ(t), it is only known that μ belongs to BV [0, T ] and

satisfies (27).

Theorem 21. Assume that Conditions (A.2), (B.2), (C.2) hold, μ satisfies (27), and the

following inequalities hold:

g(x, t) � 0, gt(x, t) � 0, d(x, t) � 0, dt(x, t) � 0 in Q,

u0(x) � 0, χ(x) > 0 in Ω,

β(x, t) � 0, βt(x, t) � 0 on S.

If for some v1 ∈ E−

L0u0 + (d(x, 0) + v1(x))u0(x) + g(x, 0) � 0, x ∈ Ω,

and the inverse problem (34)–(36) has a solution u ∈ W 2,1
p (Q), c ∈ E− satisfying the inequality

c � v1, then this solution is unique in the class of functions u ∈ W 2,1
p (Q), c ∈ E− for p = n+1.

Theorem 22. Assume that Conditions (A.2), (B.2), (C.2) hold, μ satisfies (27), and the

following inequalities hold:

g(x, t) � 0, gt(x, t) � 0, d(x, t) � 0, dt(x, t) � 0, in Q,

u0(x) � 0, χ(x) � δ > 0 in Ω,

β(x, t) � 0, βt(x, t) � 0 on S,

L0u0 + [d(x, 0)− v0(x)χ
−1(x)]u0(x) + g(x, 0) � 0, L0[l(u

0)− χ](x) � 0 in Ω,

where v0(x) ≡ |L0χ|+l(g). Then there exists a unique pair {u; c} that is a solution to the inverse

problem (34)–(36); moreover, u(x, t) possesses the differential properties (38) and the function

c(x) satisfies the inequality c(x) � −v0(x)/χ(x) in Ω.
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Remark 3. The assumptions of these theorems contain no restrictions on the norms of the

given functions, but have the form of one-sided inequalities of positivity and monotonicity type

which can be rather easily verified. Under the assumptions of Theorem 20 or 22, an iteration

process for finding a solution c(x) is proposed and the convergence of this process is justified,

which can be useful in applications. A series of examples shows that the class of problem for

which the assumptions of the proved theorem hold is rather large. There is an example of

an inverse coefficient problem possessing a nonunique solution (cf. [10]). The problem in close

settings was studied in [42]–[48].
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