
Journal of Mathematical Sciences, Vol. 237, No. 4, March, 2019

ON CONTACT BETWEEN A THIN OBSTACLE AND
A PLATE CONTAINING A THIN INCLUSION

A. I. Furtsev

Lavrent’ev Institute of Hydrodynamics SB RAS
15, pr. Akad. Lavrent’eva, Novosibirsk 630090, Russia

Novosibirsk State University
1, Pirogova St., Novosibirsk 630090, Russia

al.furtsev@mail.ru UDC 539.3:517.958

We consider problems governing a contact between an elastic plate with a thin elastic

inclusion and a thin elastic obstacle and study the equilibrium of the plate with or without

cuts. We discuss various statements and establish the existence of a solution. We

analyze the limit problem as the rigidity parameter of the elastic inclusion tends to

infinity. Bibliography: 14 titles. Illustrations: 5 figures.

At present, the solvabililty of the equilibrium problem is established for various models describing

cracks in solids (cf. [1]–[3] for details). In particular, various cases of thin inclusions in elastic

bodies were studied in [4]–[11]. There is a huge literature devoted to contact problems, in

particular, obstacle problems. The obstacle problems for a plate were analyzed in [12, 13]. The

contact problem for a plate with a beam being a thin obstacle was first studied in [14].

In this paper, we are interested in the equilibrium of a plate (the Kirchhoff–Love model)

with an obstacle and an inclusion (the Bernoulli–Euler beam model).

The paper is organized as follows. A plate without cuts (Figure 1, I) is considered in

Section 1. We formulate the equilibrium problem and establish its unique solvability by using

the variational approach. In Section 2, we study the equilibrium problem for a plate containing

a cut (Figure 1, II). In Section 3, we study the dependence of solutions to the problem about

a plate without cuts on the rigidity parameter of the inclusion. Then we pass to the limit as

the rigidity parameter tends to infinity and find a complete collection of the boundary contact

conditions for the limit problem.

1 Plate without Cuts

Assume that x1, x2, z denote the Cartesian coordinates and consider a plate occupying a

bounded domain Ω ⊂ R
2 in the x1x2-plane (Figure 2). We assume that the boundary Γ of
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Ω is smooth. Assume that γob and γin are segments in Ω intersecting under a nonzero angle.

We also assume that the sets γob and γin are open and have no common points with Γ. In the

problem under consideration, the sets γob and γin are interpreted as an obstacle and an inclusion

respectively. We introduce the notation: γ = γob∪γin, Ωg = Ω\γ, γ̊ob = γob \γin, γ̊in = γin \γob,
γ̊ = γ̊ob ∪ γ̊in. We denote by n = (n1, n2) the outward unit normal to Γ and by ν = (ν1, ν2) the

unit normal to γ̊. The functions w = w(x1, x1), u = u(η1), v = v(η2) are unknown. They are

defined on the sets Ω, γob, γin and characterize displacements of the plate, obstacle, inclusion

along the z-axis respectively.

I II

Figure 1. Contacting bodies: a thin obstacle – 1, a thin inclusion – 2, a plate – 3.

Figure 2. Geometry of the problem: the plate Ω, the obstacle γob, and the inclusion γin.

We study the boundary value problem

(bijklw,kl),ij = f in Ωg, (1)

w − u � 0 on γob, w = v on γin, [w] = [w,ν ] = 0 on γ̊, (2)

[mν ] = 0 on γ̊,

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 = 0, (3)

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 � 0 ∀ (w, u, v) ∈ K, (4)

w = w,n = 0 on Γ, u = u,1 = 0 on ∂γob, (5)
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where

f ∈ L2(Ω), bijkl ∈ L∞(Ω), (6)

bijkl = bjikl = bklij , bijklϑklϑij � c0|ϑ|2, c0 > 0, ∀ϑij : ϑij = ϑji, i, j, k, l = 1, 2, (7)

w,ij =
∂2w

∂xi∂xj
, w,ν =

dw

dν
, u,1 =

du

dη1
, v,2 =

dv

dη2
; [w] = w

∣∣̊
γ+−w

∣∣̊
γ− ,

mν(w) = −mij(w)νjνi, tν(w) = −mij,j(w)νi −mij,k(w)τkτjνi,

mij(w) = −bijklw,kl in Ω, (τ1, τ2) = (−ν2, ν1).

Equation (1) is the equilibrium equation for a plate. We will use the standard convention about

summation over repeated indices. In (6) and (7), f is the distributed load and bijkl are the

moduli of elasticity of the plate. We note that the equilibrium equation does not hold on the

set γ, where the contact conditions (in particular, (2)) are given. The conditions (3) and (4)

for the bending moment mν and shearing force tν express the virtual work principle. The set of

admissible displacements is defined by

K = {(w, u, v) ∈ H2
0 (Ω)×H2

0 (γob)×H2(γin) : w − u � 0 on γob, w = v on γin}.

The conditions (5) mean that the plate is fixed on the edge and the obstacle is fixed at the

endpoints.

1.1. Variational statement of the problem. The boundary value problem (1)–(5) can

be formulated as the variational problem

inf
(w,u,v)∈K

Π(w, u, v) (8)

with the total potential energy functional

Π(w, u, v) =
1

2

∫

Ω

bijklw,klw,ij −
∫

Ω

fw +
1

2

∫

γob

(u,11)
2 +

1

2

∫

γin

(v,22)
2. (9)

We note that the functional Π is convex and differentiable; moreover, it is minimized over a

convex set. Therefore, the problem (8) is equivalent to the variational inequality

(w, u, v) ∈ K, ∀(w, u, v) ∈ K :

∫

Ω

bijklw,kl(w − w),ij −
∫

Ω

f(w − w) +

∫

γob

u,11(u− u),11 +

∫

γin

v,22(v − v),22 � 0. (10)

We show that the problems (1)–(5) and (10) are equivalent for smooth solutions. For this

purpose we use the Green formula

∫

Ωg

bijklw,klw̃,ij −
∫

Ωg

(bijklw,kl),ijw̃ = −
∫

γ̊

[mνw̃,ν ] +

∫

γ̊

[tνw̃] +

∫

Γ

mnw̃,n −
∫

Γ

tnw̃, (11)

valid for w, mij(w), w̃ ∈ H2(Ωg).
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Let functions w, u, v satisfy (1)–(5) almost everywhere on the corresponding sets, and let

these functions be sufficiently smooth so that u ∈ H2(γob), v ∈ H2(γin) and the Green formula

(11) is valid for w. We prove that the triple (w, u, v) is a solution of the variational inequality

(10). By (2) and (5), we have (w, u, v) ∈ K. We choose arbitrarily (w, u, v) ∈ K. Multiplying

both sides of (1) by w − w and integrating over Ωg, we find

∫

Ωg

(bijklw,kl),ij(w − w) =

∫

Ωg

f(w − w).

Taking into account the Green formula (11) and the first condition in (5), we get

∫

Ωg

bijklw,kl(w − w),ij −
∫

Ωg

f(w − w) = −
∫

γ̊

[mν(w − w),ν ] +

∫

γ̊

[tν(w − w)].

Using the last condition in (2), we obtain the identity

∫

Ω

bijklw,kl(w − w),ij −
∫

Ω

f(w − w) = −
∫

γ̊

[mν ](w − w),ν +

∫

γ̊

[tν ](w − w).

From (3) and (4) it follows that

−
∫

γ̊

[mν ](w − w),ν +

∫

γ̊

[tν ](w − w) =

∫

γ̊

[tν ](w − w) � −
∫

γob

u,11(u− u),11 −
∫

γin

v,22(v − v),22.

Thus, the variational inequality (10) is valid.

Let (w, u, v) be a solution of the variational inequality (10). It is obvious that it satisfies (2)

and (5). Let us prove (1) and (3), (4). Substituting (w, u, v) = (w ± ϕ, u, v), ϕ ∈ C∞
0 (Ωg) for

test functions into (10), we get ∫

Ωg

bijklw,klϕ,ij =

∫

Ωg

fϕ,

which means that w satisfies the equilibrium equation (1) in the sense of the theory of distri-

butions. Taking into account this equation, we can apply the Green formula (11) to (10) and

obtain the inequality

−
∫

γ̊

[mν ](w−w),ν+

∫

γ̊

[tν ](w−w)+

∫

γob

u,11(u−u),11+

∫

γin

v,22(v−v),22 � 0 ∀(w, u, v) ∈ K. (12)

To prove the first condition in (3), we substitute (w, u, v) = (w± φA, u, v), where φA = 0 on

γ̊, for test functions into (12), where

φA ∈ H2(Ω), supp φA ⊂ A, A ⊂ Ω, A = A, (13)

and for A we take the set shown in Figure 3. Then we obtain the equality
∫

γ̊

[mν ](φA),ν = 0.
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Figure 3. Neighborhoods of points of the set γ̊.

By the arbitrariness of φA, we obtain the required condition in (3). Finally, taking (w, u, v) =

(0, 0, 0) and the (w, u, v) = 2(w, u, v) for test functions in (12), we find

−
∫

γ̊

[mν ]w,ν +

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 = 0,

−
∫

γ̊

[mν ]w,ν +

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 � 0 ∀(w, u, v) ∈ K.

Taking into account the proved condition in (3), we obtain the remaining relations in (3) and

(4). Thus, a smooth solution of the variational inequality (10) satisfies all the conditions (1)–(5)

of the boundary value problem. Thus the problems (1)–(5) and (10) are equivalent on the class

of sufficiently smooth solutions.

Since the variational inequality (10) and the minimization problem (8) are equivalent, the

problems (1)–(5) and (8) are equivalent on the class of sufficiently smooth solutions.

1.2. Unique solvability of the problem. We prove the solvability of the minimization

problem (8). The energy functional Π is weakly lower semicontinuous since it is convex and

continuous. We note that if

(wn, un, vn) ∈ K, (wn, un, vn) −→ (w, u, v) strongly in H2
0 (Ω)×H2

0 (γob)×H2(γin),

then

(wn
∣∣
γ
, un, vn) −→ (w

∣∣
γ
, u, v) strongly in L2(γ)× L2(γob)× L2(γin)

in view of the embedding theorem. Passing to a subsequence, if necessary, we can set

(wn
∣∣
γ
, un, vn) −→ (w

∣∣
γ
, u, v) a.e. on γ × γob × γin.

Since wn − un � 0 almost everywhere on γob and wn = vn almost everywhere on γin, we have

w − u � 0 almost everywhere on γob and w = v almost everywhere on γin. Hence the set K

is closed. Since K is convex, we conclude that K is weakly closed. Consequently, to prove the

solvability of the problem (8), it suffices to verify that the functional Π is coercive. For this

purpose we prove the following assertion.
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Lemma 1. There exists a constant c > 0 such that∫

Ω

bijklw,klw,ij +

∫

γob

(u,11)
2 +

∫

γin

(v,22)
2 � c‖(w, u, v)‖2 ∀(w, u, v) ∈ K,

where ‖(w, u, v)‖2 = ‖w‖2
H2

0 (Ω)
+ ‖u‖2

H2
0 (γob)

+ ‖v‖2H2(γin)
.

Proof. By the conditions (7) and the Poincaré–Friedrichs inequality, there exist constants

c1 > 0 and c2 > 0 such that∫

Ω

bijklw,klw,ij +

∫

γob

(u,11)
2 � c1‖w‖2H2

0 (Ω) + c2‖u‖2H2
0 (γob)

.

Using the condition w = v on γin and the embedding theorem, we can choose a constant c3 > 0

such that
c1
2
‖w‖2H2

0 (Ω) − c3

∫

γin

v2 � 0.

According to the theory of Sobolev spaces,

c3

∫

γin

v2 +

∫

γin

(v,22)
2 � c4‖v‖2H2(γin)

,

where c4 > 0 is a constant. Adding the above inequalities, we find∫

Ω

bijklw,klw,ij +

∫

γob

(u,11)
2 +

∫

γin

(v,22)
2 � c1

2
‖w‖2H2

0 (Ω) + c2‖u‖2H2
0 (γob)

+ c4‖v‖2H2(γin)
.

For the constant c > 0 we can take the least of the constants c1/2, c2, and c4.

By Lemma 1, it is easy to see that

Π(w, u, v) � c

2
‖(w, u, v)‖2 − c5‖w‖H2

0 (Ω) �
c

2
‖(w, u, v)‖2 − c5‖(w, u, v)‖, c5 > 0.

Hence Π(w, u, v) −→ ∞ as ‖(w, u, v)‖ −→ ∞. Thus, the functional Π is coercive on the set K

and, consequently, the minimization problem (8) is solvable.

To prove the uniqueness of a solution to the problem (8), we assume that there are two

different solutions (w1, u1, v1) and (w2, u2, v2). Then
∫

Ω

bijklw
1
,kl(w − w1),ij +

∫

Ω

f(w − w1) +

∫

γob

u1,11(u− u1),11 +

∫

γin

v1,22(v − v1),22 � 0,

∫

Ω

bijklw
2
,kl(w − w2),ij +

∫

Ω

f(w − w2) +

∫

γob

u2,11(u− u2),11 +

∫

γin

v2,22(v − v2),22 � 0,

where (w, u, v) ∈ K is arbitrary. Substituting (w, u, v) = (w2, u2, v2) into the first inequality and

(w, u, v) = (w1, u1, v1) into the second one, we summarize the results and obtain the estimate
∫

Ω

bijklw̃,klw̃,ij +

∫

γob

(ũ,11)
2 +

∫

γin

(ṽ,22)
2 � 0,
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where (w̃, ũ, ṽ) = (w2 − w1, u2 − u1, v2 − v1). Moreover, we have the estimate

c‖(w̃, ũ, ṽ)‖2 �
∫

Ω

bijklw̃,klw̃,ij +

∫

γob

(ũ,11)
2 +

∫

γin

(ṽ,22)
2

which is proved in the same way as Lemma 1 (the key role is played by the condition w̃ = ṽ on

γin which follows from the construction of (w̃, ũ, ṽ)). Hence ‖(w̃, ũ, ṽ)‖ � 0 and, consequently,

(w̃, ũ, ṽ) = (0, 0, 0). Thus, the solutions (w1, u1, v1) and (w2, u2, v2) are equal, which contradicts

our assumption. Thereby we have proved that the problem (8) is uniquely solvable.

2 Plate Containing a Cut

In this section, we study the case where displacements of the plate can be discontinuous on

a given line. We introduce the set of admissible displacements

Kc = {(w, u, v) ∈ H2
Γ(Ωg)×H2

0 (γob)×H2(γin) : w − u � 0 on γ̊+ob, w = v on γ̊+in},

where H2
Γ(Ωg) = {w ∈ H2(Ωg) : w = w,n = 0 on Γ}, and consider the equilibrium problem for

finding w, u, v such that

(bijklw,kl),ij = f in Ωg, (14)

w − u � 0 on γ̊+ob, w = v on γ̊+in, (15)

mν = 0 on γ̊+, mν = tν = 0 on γ̊−, (16)
∫

γ̊+

tνw +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 = 0, (17)

∫

γ̊+

tνw +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 � 0 ∀ (w, u, v) ∈ Kc, (18)

w = w,n = 0 on Γ, u = u,1 = 0 on ∂γob. (19)

The contact conditions on γ̊+ are described by (15), (17), (18) and the first relation in (16).

The second relation in (16) means that the plate edge is free on the other cut side.

The boundary value problem (14)–(19) admits the variational statement

inf
(w,u,v)∈Kc

{1

2

∫

Ωg

bijklw,klw,ij −
∫

Ωg

fw +
1

2

∫

γob

(u,11)
2 +

1

2

∫

γin

(v,22)
2
}
. (20)

The problem (20) has a unique solution satisfying the variational inequality

(w, u, v) ∈ Kc ∀ (w, u, v) ∈ Kc :

∫

Ωg

bijklw,kl(w − w),ij −
∫

Ωg

f(w − w) +

∫

γob

u,11(u− u),11 +

∫

γin

v,22(v − v),22 � 0. (21)
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Indeed, the functional in (20) is weakly lower semicontinuous and the set Kc is weakly closed.

Let us show that the functional is coercive. Assume that the set γ can be extended to the

exterior boundary Γ, dividing Ωg into the subdomains Ωi, mes (∂Ωi ∩ Γ) 
= 0, i = 1, . . . , 4

(cf. Figure 4). For the restrictions of w on Ωi, and their generalized derivatives the Poincaré–

Friedrichs inequality holds. Hence there exist constants c6 > 0 and c2 > 0 such that

∫

Ωg

bijklw,klw,ij +

∫

γob

(u,11)
2 +

∫

γin

(v,22)
2 � c6‖w‖2H2

Γ(Ωg)
+ c2‖u‖2H2

0 (γob)
+

∫

γin

(v,22)
2.

Since w = v on γ̊+in, we can choose a constant c7 > 0 such that

∫

Ωg

bijklw,klw,ij +

∫

γob

(u,11)
2 +

∫

γin

(v,22)
2 � c6

2
‖w‖2H2

Γ(Ωg)
+ c2‖u‖2H2

0 (γob)
+ c7‖v‖2H2(γin)

.

This estimate, together with the inequality

−
∫

Ωg

fw � −c5‖w‖H2
Γ(Ωg), c5 > 0,

implies the coercivity of the functional on Kc. Hence the problem (20) has a solution. The

uniqueness of a solution can be easily proved by contradiction.

Figure 4. Geometry of the problem about a plate containing a cut.

Let us show the equivalence of the problems (14)–(19) and (20), (21) on the class of suffi-

ciently smooth solutions. Assume that w, u, v satisfy (14)–(19), u ∈ H2(γob), v ∈ H2(γin), and

w is sufficiently smooth so that the Green formula (11) holds. We show that (w, u, v) satisfies

(21). It is obvious that (w, u, v) ∈ Kc. Let (w, u, v) ∈ Kc. Multiplying both sides of (14) by

w − w, integrating over Ωg, and using the Green formula (11) and the conditions (19), we get

∫

Ωg

bijklw,kl(w − w),ij −
∫

Ωg

f(w − w) = −
∫

γ̊

[mν(w − w),ν ] +

∫

γ̊

[tν(w − w)].

Applying (16), we obtain the identity

∫

Ωg

bijklw,kl(w − w),ij −
∫

Ωg

f(w − w) =

∫

γ̊+

tν(w − w)
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which implies (21) in view of (17) and (18). On the other hand, for a smooth solution to the

problem (21) all the relations (14)–(19) hold. Indeed, (15) and (19) are valid by the definition

of the set Kc. The equilibrium equation (14) in the sense of the theory of distributions can be

easily obtained by taking (w, u, v) = (w ± ϕ, u, v) in (21), where ϕ ∈ C∞
0 (Ωg). By the Green

formula (11) and (19), from (21) we find

−
∫

γ̊

[mν(w − w),ν ] +

∫

γ̊

[tν(w − w)] +

∫

γob

u,11(u− u),11 +

∫

γin

v,22(v − v),22 � 0 ∀(w, u, v) ∈ Kc.

Taking the test functions (w, u, v) = (0, 0, 0) and (w, u, v) = 2(w, u, v), we obtain the relations

−
∫

γ̊

[mνw,ν ] +

∫

γ̊

[tνw] +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 = 0,

−
∫

γ̊

[mνw,ν ] +

∫

γ̊

[tνw] +

∫

γob

u,11u,11 +

∫

γin

v,22v,22 � 0 ∀(w, u, v) ∈ Kc.

(22)

Let us prove (16) and thereby prove (17) and (18). For this purpose we take

(w, u, v) = (±φB+ , 0, 0), (w, u, v) = (±φD+ , 0, 0), φB+

∣∣̊
γ+= φD+

∣∣̊
γ+= 0,

(w, u, v) = (±φB− , 0, 0), (w, u, v) = (±φD− , 0, 0)

for test functions in (22), where φA ∈ H2(Ωg), supp φA ⊂ A, A ⊂ Ω, A = A, and the sets B±
and D± are as shown in Figure 4. Then∫

γ̊+
in

mν(φB+),ν = 0,

∫

γ̊+
ob

mν(φD+),ν = 0,

∫

γ̊−
in

mν(φB−),ν −
∫

γ̊−
in

tνφB− = 0,

∫

γ̊−
ob

mν(φD−),ν −
∫

γ̊−
ob

tνφD− = 0,

which implies (16) because (φB+),ν , (φD+),ν , (φB−),ν , (φD−),ν , φD− , φB− are arbitrary. Thus,

a smooth solution of the variational inequality (21) satisfies (14)–(19). Hence we proved the

equivalence of the problems (14)–(19) and (21) on the class of sufficiently smooth solutions.

3 Limit Problem as the Rigidity Parameter Tends to Infinity

We come back to the case of a plate without cuts, studied in Section 1. Now, we consider

the equilibrium problem with the positive parameter λ:

(bijklw
λ
,kl),ij = f in Ωg, (23)

wλ − uλ � 0 on γob, wλ = vλ on γin, [wλ] = [wλ
,ν ] = 0 on γ̊, (24)

[mν(w
λ)] = 0 on γ̊,

∫

γ̊

[tν(wλ)]wλ +

∫

γob

uλ,11u
λ
,11 + λ

∫

γin

vλ,22v
λ
,22 = 0, (25)

∫

γ̊

[tν(wλ)]w +

∫

γob

uλ,11u,11 + λ

∫

γin

vλ,22v,22 � 0 ∀(w, u, v) ∈ K, (26)
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wλ = wλ
,n = 0 on Γ, uλ = uλ,1 = 0 on ∂γob, (27)

The parameter λ characterizes the inclusion rigidity. Indeed, taking the test functions (w, u, v) =

(±φ, 0,±ϕ), where ϕ = φ on γin, φ ∈ C∞
0 (Ω \ γob \ ∂γin), in (26), we get

∫

γ̊in

[tν(wλ)]ϕ+ λ

∫

γ̊in

vλ,22ϕ,22 = 0 ∀ ϕ ∈ C∞
0 (̊γin).

This means that a solution to the problem (23)–(27) satisfies the equation

−λvλ,2222 = [tν(wλ)] on γ̊in

in the sense of the theory of distributions. Within the framework of the theory of Bernoulli–Euler

beams, the equation obtained expresses the connection between the beam bending and the load

on the beam. With each fixed λ ∈ (0,∞) we can associate a unique solution (wλ, uλ, vλ) to the

boundary value problem (23)–(27). Indeed, this problem can be formulated as the minimization

problem

inf
(wλ,uλ,vλ)∈K

{1

2

∫

Ω

bijklw
λ
,klw

λ
,ij −

∫

Ω

fwλ +
1

2

∫

γob

(uλ,11)
2 +

λ

2

∫

γin

(vλ,22)
2
}

(28)

and as the variational inequality

(wλ, uλ, vλ) ∈ K, ∀(w, u, v) ∈ K :

∫

Ω

bijklw
λ
,kl(w − wλ),ij −

∫

Ω

f(w − wλ) +

∫

γob

uλ,11(u− uλ),11 + λ

∫

γin

vλ,22(v − vλ),22 � 0. (29)

The equivalence of the problems (23)–(27) and (29) on the class of sufficiently smooth solutions

is proved in the same way as in Subsection 1.1. Furthermore, the minimization problem (28) is

uniquely solvable. The proof is the same as in Subsection 1.2.

3.1. The limit as λ → ∞. We study the behavior of the solution (wλ, uλ, vλ) to the

problem (29) as λ → ∞. We show that it is possible to extract a converging subsequence

from the family (wλ, uλ, vλ)λ∈(0,∞). Substituting the test functions (w, u, v) = (0, 0, 0) and

(w, u, v) = 2(wλ, uλ, vλ) into (29), we obtain the equality

∫

Ω

bijklw
λ
,klw

λ
,ij −

∫

Ω

fwλ +

∫

γob

(uλ,11)
2 + λ

∫

γin

(vλ,22)
2 = 0. (30)

Applying Lemma 1 and the Cauchy–Bunyakowsky inequality to the left-hand side of (30), we

obtain the uniform estimate

‖wλ‖2H2
0 (Ω) − ‖wλ‖H2

0 (Ω) + ‖uλ‖2H2
0 (γob)

+ ‖vλ‖2H2(γin)
� 0

with respect to λ ∈ [λ0,∞), where λ0 > 0. This estimate implies the boundedness of the

solution:

‖wλ‖H2
0 (Ω) � c8, ‖uλ‖H2

0 (γob)
� c9, ‖vλ‖H2(γin) � c10, c8, c9, c10 > 0. (31)
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In turn, from (30) and (7) it follows that

λ

∫

γin

(vλ,22)
2 �

∫

Ω

fwλ,

which implies the estimate ∫

γin

(vλ,22)
2 � c11

λ
, c11 > 0. (32)

By the estimates (31) and (32), there exists a subsequence such that

(wλ, uλ, vλ) −→ (w, u, v) weakly in H2
0 (Ω)×H2

0 (γob)×H2(γin), λ −→ ∞, (33)

v,22 = 0 on γin. (34)

We clarify some properties of the limit functions. Since the set K is weakly closed, from (33)

we have w − u � 0 on γob and w = v on γin. The relation (34) means that the function v(η2)

is affine on γin. By the linear connection between the coordinates η2 and x1, x2, the restriction

w
∣∣
γin

belongs to the space of rigid displacements

L(γin) = {l : l(x1, x2) = a0 + a1x1 + a2x2 on γin, ai ∈ R, i = 0, 1, 2}.
The space L(γin) consists of all functions possessing the affine structure on the set γin. Thus,

for the limit functions we have (w, u) ∈ Kr, where

Kr =
{
(w, u) ∈ H2

0 (Ω)×H2
0 (γob) : w − u � 0 on γob, w

∣∣
γin

∈ L(γin)
}
.

We deduce the variational problem corresponding to the limit case. For this purpose we pass to

the limit in (29). Let (w, u) ∈ Kr be arbitrary. It is obvious that (w, u,w
∣∣
γin

) ∈ K. Therefore,

(29) implies∫

Ω

bijklw
λ
,klw,ij +

∫

γob

uλ,11u,11 −
∫

Ω

f(w − wλ) �
∫

Ω

bijklw
λ
,klw

λ
,ij +

∫

γob

(uλ,11)
2 + λ

∫

γin

(vλ,22)
2.

Taking into account (33) and (34), we pass to the lower limit on both sides of the obtained

inequality. Then

lim inf
λ→∞

{ ∫

Ω

bijklw
λ
,klw,ij +

∫

γob

uλ,11u,11 −
∫

Ω

f(w − wλ)

}

=

∫

Ω

bijklw,klw,ij +

∫

γob

u,11u,11 −
∫

Ω

f(w − w).

On the other hand,

lim inf
λ→∞

{ ∫

Ω

bijklw
λ
,klw

λ
,ij +

∫

γob

(uλ,11)
2 + λ

∫

γin

(vλ,22)
2

}

� lim inf
λ→∞

∫

Ω

bijklw
λ
,klw

λ
,ij + lim inf

λ→∞

∫

γob

(uλ,11)
2 + λ0 lim inf

λ→∞

∫

γin

(vλ,22)
2

�
∫

Ω

bijklw,klw,ij +

∫

γob

(u,11)
2.
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As a result,

(w, u) ∈ Kr, ∀(w, u) ∈ Kr :∫

Ω

bijklw,kl(w − w),ij −
∫

Ω

f(w − w) +

∫

γob

u,11(u− u),11 � 0. (35)

Thus, we obtain the variational inequality corresponding to the limit case. We note that it is

equivalent to the minimization problem

inf
(w,u)∈Kr

{1

2

∫

Ω

bijklw,klw,ij −
∫

Ω

fw +
1

2

∫

γob

(u,11)
2
}
,

the solvability of which can be proved independently from the above arguments since the func-

tional is coercive.

The boundary value problem corresponding to the variational inequality (35) is to find

functions w, u and constants a0, a1, a2 ∈ R such that

(bijklw,kl),ij = f in Ωg, (36)

w − u � 0 on γob, [w] = [w,ν ] = [mν ] = 0 on γ̊, (37)

w = a0 + a1x1 + a2x2 on γin, (38)
∫

γ̊

[tν ]w +

∫

γob

u,11u,11 = 0, (39)

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 � 0 ∀(w, u) ∈ Kr, (40)

w = w,n = 0 on Γ, u = u,1 = 0 on ∂γob. (41)

The equivalence of this problem and the variational inequality (35) on the class of sufficiently

smooth solutions is proved in the same way as in Subsection 1.1.

The system (36)–(41) describes a contact of a thin elastic obstacle with a plate containing a

thin rigid inclusion. The inclusion in the plate is described by the condition (38) which can be

interpreted as the fact that the plate displacements on the set γin have a certain structure.

3.2. Differential statement of the limit problem. The problem (36)–(41) obtained as

the limit of the problems (23)–(27) as λ → ∞ is equivalent to the following problem: Find

functions w, u and constants a0, a1, a2 ∈ R such that

(bijklw,kl),ij = f in Ωg, (42)

w − u � 0 on γob, [w] = [w,ν ] = [mν ] = 0 on γ̊, (43)

w = a0 + a1x1 + a2x2 on γin, (44)

[tν ] = −u,1111, [tν ] � 0, [tν ](w − u) = 0 on γ̊ob, (45)

[u(0)] = [u,1(0)] = [u,11(0)] = 0, (46)

541



∫

γ̊in

[tν ] + [u,111(0)] = 0,

∫

γ̊in

[tν ]xi + [u,111(0)]κi = 0, i = 1, 2, (47)

[u,111(0)] � 0, [u,111(0)](w(κ1,κ2)− u(0)) = 0, (48)

w = w,n = 0 on Γ, u = u,1 = 0 on ∂γob, (49)

where γob ∩ γin = {(κ1,κ2)}, and [u(0)] = u(0+)− u(0−). The contact conditions on the plate,

obstacle, and rigid inclusion are given on the set γ. In particular, the first condition in (45) is

the equilibrium equation for the obstacle. The load on the obstacle is realized by the jump of

the shearing force [tν ] on γ̊ob. At the same time, by the remaining conditions in (45), the jump

[tν ] vanishes at points where there is no contact between the plate and obstacle. The conditions

(47) mean the equilibrium of the rigid inclusion. The inclusion is subject to the action of [tν ]

on γ̊in from the side of the plate and the action of [u,111(0)] at the point (κ1,κ2) from the side

of the obstacle. From the mechanical point of view, the conditions (47) mean that the principal

vector of the above forces and the principal momentum vanish. By the condition (48) the jump

[u,111(0)] vanishes if there is no contact between the obstacle and inclusion.

Figure 5. Neighborhood of a point of the set γ̊ob.

We show that the problems (36)–(41) and (42)–(49) are equivalent on the class of sufficiently

smooth solutions. For this purpose we assume that w, mij(w) ∈ H2(Ωg), u ∈ H4(γob). Let w and

u be smooth solutions to the problem (36)–(41). We prove that they satisfy (42)–(49). It suffices

to obtain the conditions (45)–(48) since the remaining ones are involved in the formulation of

the problem (36)–(41). We substitute the test functions (w, u) = (±φD,±φD

∣∣
γob

) into (40),

where D is the closure of a small neighborhood of some point in γ̊ob (functions of the form φA

are defined by (13) and the set D is represented in Figure 5). Integrating by parts, we get∫

γ̊ob

([tν ] + u,1111)φD = 0,

where the values of φD are arbitrary on γ̊ob. Thus, we obtain the first condition in (45). To

prove the last condition in (45), we assume that w > u at some point x0 ∈ γ̊ob. For D we take

the closure of a small neighborhood of this point and choose a small parameter εφ > 0 such that

(w, u) = (w ± εφφD, u) ∈ Kr, where φD � 0 on γ̊ob. Then (40) implies∫

γ̊

[tν ]w ± εφ

∫

γ̊ob

[tν ]φD +

∫

γob

u,11u,11 � 0.
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The last inequality, together with (39), leads to the equality

∫

γ̊ob

[tν ]φD = 0 (50)

which means that [tν ] = 0 near the point x0. At the same time, if [tν ] > 0 at x0, then w = u at

x0. Indeed, assuming that [tν ] > 0 and w > u at the point x0 and repeating the above procedure,

we obtain the identity (50) which contradicts our assumption. Thereby the last condition in

(45) is proved.

Taking the test functions (w, u) = (±φ,±ϕ), (φ, ϕ) ∈ Kr, where φ = ϕ on γob, φ = â0 +

â1x1 + â2x2 on γin, â0, â1, â2 ∈ R in (40), we get

∫

γ̊in

[tν ]φ+

∫

γ̊ob

[tν ]ϕ+

∫

γ̊ob

u,11ϕ,11 = 0.

Integrating by parts the last term and taking into account the first condition in (45), we find

â0

∫

γ̊in

[tν ] + â1

∫

γ̊in

[tν ]x1 + â2

∫

γ̊in

[tν ]x2 − [u,11(0)]ϕ,1(0) + [u,111(0)]ϕ(0) = 0.

By the choice of the test functions, we have ϕ(0) = â0 + â1κ1 + â2κ2. Therefore,

â0

(∫

γ̊in

[tν ] + [u,111(0)]
)
+ âi

(∫

γ̊in

[tν ]xi + [u,111(0)]κi

)
− [u,11(0)]ϕ,1(0) = 0.

Since â0, â1, â2, ϕ,1(0) are independent and arbitrary, the conditions (47) and (46) hold.

At the next step, we take the test functions (w, u) = (ζ, 0), (ζ, 0) ∈ Kr, where ζ � 0 on γob,

in (40). Then ∫

γ̊in

[tν ]ζ +

∫

γ̊ob

[tν ]ζ � 0.

Moreover, ζ
∣∣
γin

∈ L(γin). Hence, taking into account (47), we obtain the inequality

−[u,111(0)]ζ(κ1,κ2) +

∫

γ̊ob

[tν ]ζ � 0.

The test functions can be taken in such a way that ζ(κ1,κ2) = 0. Therefore, the second

condition in (45) is valid. Let us prove the first condition in (48) by contradiction. We assume

that ζ(κ1,κ2) > 0 and [u,111(0)] > 0. Then

∫

γ̊ob

[tν ]ζ � [u,111(0)]ζ(κ1,κ2) > 0.

Applying the Cauchy–Bunyakowsky inequality, we get

‖ζ‖L2 (̊γob)

ζ(κ1,κ2)
� [u,111(0)]

‖[tν ]‖L2 (̊γob)
> 0.
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The values ‖ζ‖L2 (̊γob), ζ(κ1,κ2) do not depend on each other and on the values [u,111(0)],

‖[tν ]‖L2 (̊γob). Therefore, the function ζ can chosen in such a way that the obtained chain of

inequalities fails. Hence the assumption [u,111(0)] > 0 leads to a contradiction, which means

that the first condition in (48) is valid. To prove the second condition in (48), we integrate by

parts in (39). Then we have the identity∫

γ̊in

[tν ]w +

∫

γ̊ob

[tν ]w +

∫

γ̊ob

u,1111u− [u,11(0)]u,1(0) + [u,111(0)]u(0) = 0.

Applying the above-proved conditions (44)–(46), we obtain the identity

a0

∫

γ̊in

[tν ] + a1

∫

γ̊in

[tν ]x1 + a2

∫

γ̊in

[tν ]x2 + [u,111(0)]u(0) = 0.

By (47), from the last identity it follows that

−[u,111(0)](a0 + a1κ1 + a2κ2 − u(0)) = 0.

By (38), the obtained equality means that the second relation in (48) is valid. Thus, we have

proved that a sufficiently smooth solution to the problem (36)–(41) satisfies (42)–(49).

Now, let functions w and u be smooth solutions to the problem (42)–(49). We show that

they satisfy (36)–(41). In fact, it suffices to prove (39) and (40) since the remaining relations

are contained in (42)–(49). Let (w, u) ∈ Kr be arbitrary. We multiply both sides of the first

relation in (45) by u and integrate over γ̊ob. Integrating by parts and taking into account (46),

we arrive at the equality ∫

γ̊ob

[tν ]u = −
∫

γob

u,11u,11 + [u,111(0)]u(0)

which implies ∫

γ̊

[tν ]w +

∫

γob

u,11u,11 =

∫

γ̊in

[tν ]w +

∫

γ̊ob

[tν ](w − u) + [u,111(0)]u(0).

By the condition w
∣∣
γin

∈ L(γin) and Equation (47), we get

∫

γ̊

[tν ]w +

∫

γob

u,11u,11 =

∫

γ̊ob

[tν ](w − u)− [u,111(0)](w(κ1,κ2)− u(0)).

The right-hand side of the obtained identity is nonnegative because of the second condition in

(45), the first condition in (48), and the inequalities w− u � 0 on γ̊ob and w(κ1,κ2)− u(0) � 0.

The relation (40) is proved. On the other hand, taking (w, u) = (w, u), we have∫

γ̊

[tν ]w +

∫

γob

u,11u,11 =

∫

γ̊ob

[tν ](w − u) + [u,111(0)](w(κ1,κ2)− u(0))

which implies (39) in view of the last conditions in (45) and (48). Thus, the conditions (39)

and (40) are proved and, consequently, a smooth solution to the problem (42)–(49) satisfies

(36)–(41). Thus, we have proved the equivalence of the problems (36)–(41) and (42)–(49) on

the class of sufficiently smooth solutions.
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