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A STUDY OF ELASTIC-PLASTIC BOUNDARY PROPAGATION
IN A TUBE OF ELASTIC-PERFECTLY PLASTIC MATERIAL
UNDER DYNAMIC LOADINGS OF DIFFERENT TYPES

P. V. Tishin UDC 539.375

Abstract. The dynamics of distribution of the border between areas of elasticity and plasticity for a hollow
thick-walled cylinder under the influence of the internal pressure applied instantly is investigated in this
work. Proof of the accuracy of the obtained numerical solution is provided. A more general regime of
loading a tube is examined.

1. Introduction

The study of loading a tube with internal pressure is considered to be classical in the mechanics
of solids. Elastic and plastic cases were examined, for example, in [9–11]. The case of elastic-plastic
material was investigated by V. V. Sokolovsky [12]. Usually, the static case of this problem is studied.
The influence of moment stresses on the deformation of metals was studied by B. Hopkinson [5, 6]. The
dynamics of propagation of the border between the regions of elasticity and plasticity were studied by
E. V. Lomakin [8]. In order to estimate the influence of lagging of fluidity on the spreading of the plasticity
region, Lomakin obtained a numerical solution to the problem of dynamical propagation of the border
between the elastic and plastic regions of the tube. The aim of this work is to study a more general case
of loading and to prove the accuracy of the found numerical solution.

The problem of dynamic deformation of a thick-walled tube under the influence of internal pressure
in the conditions of flat deformation is examined. Here, the model of an ideal elastic-plastic body is
accepted.

Let us look at the equations of the relation between displacement and strain and at the differential
equations of motion in polar coordinates:
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1
r

∂uθ

∂θ
+
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(2)

The generalized Hooke’s law for isotropic medium is as follows:

σij = λI1(ε)gij + 2μεij , (3)

where I1(ε) = εii is the first invariant of the strain tensor.
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2. Formulation of the Problem in the Case of Ideal Elastic-Plastic Body

2.1. The Elastic Case. We will denote the inner radius of the tube by a, and the outer by b, and
also assume the tube to be made up of an incompressible material and to be long enough, which means
that the axial deformations are equal to zero (I1(ε) = 0). Because of the Saint-Venant principle, we will
conclude that the transversal sections of the tube will remain plain. Stress conditions in them will be
equal. Unknown functions depend only on the radius r. Therefore, from Eqs. (1), (2) we will obtain the
equation of motion for the tube:

∂σr

∂r
+

σr − σθ

r
= ρ

∂2U

∂t2
,

where U = ur are dimensional variables.
The conditions of incompressiveness are

∂U

∂r
+

U

r
= 0.

The conditions of deformation are

εr =
∂U

∂r
, εθ =

U

r
.

Let us denote the nondimensionalized radius by

r̄ =
r

a
.

Then the equation of motion will be

∂σr

∂r̄
+

σr − σθ

r̄
= ρ

∂2U

∂t2
a.

The virtual displacement is

U = a
C(t)

r̄
(from the equation of incompressiveness). From Hooke’s law (3) in the case of incompressiveness

σr = p + 2μεr = 2μεr, σθ = p + 2μεθ = 2μεθ

it follows that
σr − σθ = sr − sθ = 2μ(εr − εθ),

where sr and sθ are the deviators of stress. The conditions of incompressiveness with nondimensionalized r̄
are the same:

∂Ū

∂r̄
+

Ū

r̄
= 0,

where

Ū =
U(r, t)

a
=

C(t)
r̄

.

The deformations are

εr =
∂U

∂r
=

∂U

a∂r̄
= −C(t)

r̄2
, εθ =

U

ar̄
=

C(t)
r̄2

.

The remainder is

σr − σθ = 2μ(εr − εθ) = −4μ
C(t)
r̄2

. (4)

We can use the nondimensionalized time
t̄ =

t

t∗
,

where

t∗ =
a

C0
, C0 =

√
μ

ρ
,
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and C0 is the velocity of the wave of displacement. Then

ρ
∂2U

∂t2
a = ρa2

C ′′(t̄)
r̄

C2
0

a2
= C2

0ρ
C ′′(t̄)

r̄
= μ

C ′′(t̄)
r̄

.

Then the equation of motion can be represented as

∂σr

∂r̄
= μ

[
C ′′(t̄)

r̄
+ 4

C(t̄)
r̄3

]
.

The border conditions are

r̄ =
b

a
= r̄∗, σr = 0, r̄ = 1, σr = −q,

where q is the pressure density on the inner surface of the tube. The initial conditions are

U(r, 0) = 0 =⇒ C(0) = 0,

U ′(r, 0) = 0 =⇒ C ′(0) = 0.

By integrating the motion equation σr = 0 using conditions

r̄ = r̄∗ =
b

a
,

we get the distribution of σr:

σr = μ

[
ln

(
r̄

r̄∗

)
C ′′(t̄) − 2

(
1
r̄2

− 1
r̄2∗

)
C(t̄)

]
.

Using the second border condition r̄ = 1, σr = −q, we get the differential equation, which can be used to
determine the function C(t̄). The solution under initial conditions C(0) = 0, C ′(0) = 0 is

C(t) =
q

2μ

r̄2∗
r̄2∗ − 1

(1 − cos ωt̄), (5)

here

ω2 =
2(r̄2∗ − 1)
r̄2∗ ln r̄∗

.

2.2. The Plastic Case. Next, the case of continuous movement of the border between the elastic and
plastic domains will be examined. From the Tresca criterion we get condition of plasticity:

|σr − σθ| = 2K.

The solution (5) is correct provided that 2μC(t̄) < K.
Let us find the boundary value of the q = q∗, under which plastic deformations on the inner radius

of the tube will start:

q∗ = K
r̄2∗ − 1

r̄2∗(1 − cos ωt̄)
>

K(r̄2∗ − 1)
2r̄2∗

.

By examining the static case of the problem, we get

q∗ >
K(r̄2∗ − 1)

r̄2∗
(see [7]). The solution obtained in the elastic case is correct when q < q∗. We will study the case where
q > q∗.

From the border conditions on the border between the plastic and elastic areas and from the incom-
pressiveness of material we get

Ue(x) = Up(x) =⇒ Cp = Ce = C(t̄),

where the indices e and p mean elastic and plastic, respectively.
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The motion differential equation for the plastic area is
∂σr

∂r̄
= μ

C ′′(t̄)
r̄

+
2K

r̄
.

Under internal loading, the plasticity area will spread from the inner border. We will use the border
conditions:

r̄ = 1, σr = −q.

Integrating we get
σr = −q + [2K + μC ′′(t̄)] ln r̄.

Let us denote the nondimensionalized radius coordinate of the border between elastic and plastic areas by
x(t̄). On this border, the stress σr is considered to be continuous (as a consequence of incompressiveness),
so:

q − [2K + μC ′′(t̄)] lnx = μ

[(
ln

r̄∗
x

)
C ′′(t̄) + 2

(
1
x2

− 1
r̄2∗

)
C(t̄)

]
.

It can be represented as
μ ln r̄∗

K
C ′′(t̄) + lnx2 +

2μ

K

(
1
x2

− 1
r̄2∗

)
C(t̄) =

q

K
.

On the border between the elastic and plastic areas, |σr − σθ| = 2K. Using (4), we get

x2(t) =
2μC(t̄)

K
.

Let us determine x2(t̄) = y(t̄). Then we get
ln r̄∗

2
y′′ + ln y − y

r̄2∗
=

q

K
− 1. (6)

Initial conditions: t0 is the time of appearing of plastic deformation on the inner radius (r̄ = 1), and for
each value of q/K it is different; t0 is defined by the solution in elastic case:

K(1 − 1/r̄2∗)
q

=
(
1 − cos(ωt0)

)
,

t0 =
1
ω

arccos
(

1 − K

q

(
1 − 1

r̄2∗

))
.

The initial conditions can be represented as

y(t0) =
2μC(t0)

K
= 1, y′(t0) =

2μC ′(t0)
K

.

Equation (6) is an ordinary differential equation with separable variables. Let us integrate it once.
We get

ln r̄∗
4

y′2 =
q

K
y +

y2

2r̄2∗
− y ln y + P1, (7)

where P1 is a constant, which is defined by the initial conditions. We have
(
1 − cos(ωt0)

)
=

K(1 − 1/r̄2∗)
q

=
K

(
r̄2∗ − 1

)
r̄2∗q

, (8)

ω2 =
2(r̄2∗ − 1)
r̄2∗ ln r̄∗

,

C(t0) =
q

2μ

r̄2∗
r̄2∗ − 1

(
1 − cos(ωt)

)
, (9)

y′(t0) =
2μC ′(t0)

K
, y(t0) = 1. (10)
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From (9) we get

C ′(t0) =
qr̄2∗

2μ(r̄2∗ − 1)

√
2(r̄2∗ − 1)
r̄2∗ ln r̄∗

sin(ωt0) =
q

μω ln r̄∗
sin(ωt0).

From (9) and (10) we get

y′(t0) =
2q

Kω ln r̄∗
sin(ωt0) =

2q

Kω ln r̄∗

√
1 − cos2(ωt0). (11)

From (8) we get

cos(ωt0) = 1 − K(r̄2∗ − 1)
qr2∗

, cos2(ωt0) = 1 − 2K(r̄2∗ − 1)
qr̄2∗

+
K2(r̄2∗ − 1)2

q2r̄4∗
. (12)

From (11) and (12) we get

y′(t0) =
2q

Kω ln r̄∗

√
2K(ln r̄2∗ − 1)

qr̄2∗
− K2(r̄2∗ − 1)2

q2r̄4∗
.

Finally we obtain

P1 =
ln r̄∗

4
y′2 − q

K
− 1

2r̄2∗
=

q2

K2ω2 ln r̄∗

(
2K(r̄2∗ − 1)

qr̄2∗
− K2(r̄2∗ − 1)2

q2r̄4∗

)
− q

K
− 1

2r2∗

=
q

K
− q

K
− ln r̄∗ω2

4
− 1

r̄2∗
,

P1 = − r̄2∗ − 1
2r̄2∗

− 1
2r̄2∗

= −1
2
.

Solving Eq. (7) of y′, we get

y′ =
2√
ln r̄∗

√
q

K
y +

y2

2r̄2∗
− y ln y − 1

2
. (13)

Substituting y = x2, we get ⎧⎪⎨
⎪⎩

x′ =
1√
ln r̄∗

√
q

K
+

x2

2r̄2∗
− 2 lnx − 1

2x2
,

x(t0) = 1.

The equation must be solved with the condition that the parameters q/K and r̄∗ satisfy the inequality

q

K
≥ 1

2

(
1 − 1

r2∗

)
.

Now we will calculate under which value of q/K the cylinder will be in plasticity completely:

x′ =
1√
ln r̄∗

√
q

K
+

x2

2r̄2∗
− 2 lnx − 1

2x2
= 0,

q

K
= ξ,

x = r̄∗,
q

K
= 2 ln r̄∗ +

1
2r̄2∗

− 1
2
.

When studying the static case, q/K = 2 ln r̄∗ [7].
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Fig. 1

2.3. Numerical Solution. Let us solve this differential equation numerically using the Runge–Kutta
method of the 4th degree with step correction end error estimation [2, 4]. We will use the equations of
the Runge–Kutta method with coefficients that are mentioned in [3]. Let us solve the Cauchy problem{

y′ = f(x, y),

y(x0) = y0.

The approximate solution in consequent points is obtained from the equation

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4),

where

k1 = f(xn, yn),

k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
,

k3 = f

(
xn +

h

2
, yn +

h

2
k2

)
,

k4 = f(xn + h, yn + hk3),

and h is the step.
In order to estimate the error and choose the step, we will use the method of horizontally estimated

step. We will calculate the value of the integral at a point after one “long” step and two “short” steps,
taking into account the error of the method. Then we will subtract the found values. We have

Δ =
I1 − I22
1 − 1/2s

,

where I1 is the integral value calculated after one step, I22 is the integral value calculated after two steps,
C is constant, s is the degree of the method, and Δ = Chs+1 is the main error. We will choose the next
step hnew so that the error on this step is equal to ε (Chs+1

new = ε):
(

h

hnew

)s+1

=
Δ
ε

= χ.
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We will choose the new step using the equation

hnew =
0.95h
s+1
√

χ
.

The global error can be calculated using the formula

δk+1 = δke

tk+1∫
tk

μ ds

+ rk,

where δk is the global error value on the kth step, rk is the local error on the kth step, μ is the maximum
singularity number, which is defined as the maximum eigenvalue of the matrix (J + JT)/2, and J is the
Jacobian of the system. In our case, the maximum eigenvalue is equal to

μ =
x/r̄2∗ − 2/x + 1/x3

2
√

r̄∗
(
q/K + x2/(2r̄2∗) − 2 lnx − 1/(2x2)

) .

Fig. 2

In order to ensure that our solution is correct, let us calculate the values of the function at three
different points (t = 2, 5, 11) with three maximum errors on each step.

ε 2 5 11
10−7 2.22802282019651 4.13950553685536 5.46500206374295
10−9 2.22802297613335 4.13950606569059 5.4650026473705
10−11 2.22802298288977 4.1395060800067 5.46500266381324

Global error value at the point t = 11 depends on the maximum error on step.

10−7 10−9 10−11

1.039477084 · 10−6 2.9190828 · 10−8 6.95469 · 10−10

So it is possible to solve this problem numerically using this method. A numerical solution concerning
r∗ = 6 is obtained on the net with step 0.01 for different values of q/K from 2 to 3.5.

Now we will study the case where loading q is unloaded after the time t∗. The border conditions on
the border of the plastic and elastic areas will remain the same. That is why Eq. (6) is correct. But the
initial conditions will change: y(t∗) = y∗, y′(t∗) = y′∗, where y∗ and y′∗ are the squared coordinate and
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Fig. 3

velocity of the border between areas of elasticity and plasticity, respectively, at the moment of ceasing of
the loading. Integrating Eq. (6), using that q = 0, we get

ln r̄∗
4

y′2 =
y2

2r̄2∗
− y ln y + P2, (14)

where P2 is a constant, which is defined from the new initial conditions. We do not have the equation for
y(t) in explicit form, but we have Eq. (13) for y′(t). Let us substitute it in (14), where t = t∗:

P2 =
q

K
y∗ − 1

2
.

Finally, we get

y′2 =
4

ln r̄∗

(
q

K
y∗ +

y2

2r̄2∗
− y ln y − 1

2

)
. (15)

Substituting y = x2, we have

x′ =
1√
ln r̄∗

√
qx2∗
Kx2

+
x2

2r̄2∗
− 2 lnx − 1

2x2
.

Fig. 4
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In Fig. 4, t∗ = inf is mentioned to demonstrate the solution to the problem when loading does not
cease.

3. Nonlinear Conditions of Loading

Let us change the scheme of the numerical experiment.

Fig. 5

Loading is increasing by a parabolic trajectory until the value q∗ is reached at the moment t1, then
remains the same until the time t2, when the loading is stopped.

Let us find the solution to the problem in elastic case for the loading area which is marked I:

q(t) = μ

[
(ln r̄∗)C ′′(t̄) + 2

(
1 − 1

¯r∗2

)
C(t̄)

]
.

The loading function is

q(t) = −q∗

t21
t2 +

2q∗

t1
t.

The initial conditions are

C(0) = 0,

C ′(0) = 0.

We get the solution to the ordinary differential equation:

Coo(t) = ξ cos(ωt̄) + η sin(ωt̄),

Ccn(t) =
q∗

t1μ(1 − 1/r̄2∗)

(
− t2

2t1
+ t +

1
t1ω

)
,

CI(t̄) =
q∗

t1μ(1 − 1/r2∗)

(
−cos(ωt̄)

t1ω
− sin(ωt̄)

ω
− t̄2

2t1
+ t +

1
t1ω

)
.

In order to determine the moment of beginning of plastic deformations on the inner border, we need
to find the solution to the equation

F (t) =
q∗

t1μ(1 − 1/r2∗)

(
−cos(ωt̄)

t1ω
− sin(ωt̄)

ω
− t̄2

2t1
+ t +

1
t1ω

)
− K

2μ
.

This can be obtained numerically using the chords method [1, 2]. The formula of this method is

tn+1 = tn − (tn − t0)
F (tn) − F (t0)

F (tn).
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Let us assume the initial approximation for t0 to be equal to zero. Then on every step we will take
for t0 the value for which F (t) = F ′′(t) is correct. We are looking for the positive solution to the equation
which is the closest to zero. If the found solution is less than t1, then we solve the three systems of
differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t̄ ∈ [t0, t1),

ln r̄∗(x′2 + xx′′) + 2 lnx − x2

r̄2∗
=

−(q∗t2)/t21 + (2q∗t)/t1
K

− 1,

x(t0) = 1,

x′(t0) =
q∗

t1K(1 − 1/r̄2∗)

(
1 − cos(ωt0) +

sin(ωt0)
t1

− t0
t1

)
.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t̄ ∈ [t1, t2),

ln r∗(x′2 + xx′′) + 2 lnx − x2

r̄2∗
=

q∗

K
− 1,

x(t1) = x1∗ ,

x′(t1) = x′
1∗ ,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t2 ≤ t̄,

ln r∗(x′2 + xx′′) + 2 lnx − x2

r̄2∗
= −1,

x(t2) = x2∗ ,

x′(t2) = x′
2∗ .

Now we will find the function C(t) for the case of beginning of plastic deformation when the loading
area reaches the constant pressure regime:

CII(t̄) = ξ2 cos(ωt) + η2 sin(ωt) +
q∗r̄2∗

2μr̄2∗ − 1)
,

{
CII(t1) = CI(t1),(
CII(t1)

)′ =
(
CI(t1)

)′
,

CII(t̄) =
q∗

t1μ(1 − 1/r̄2∗)

((
cos(ωt1)

ωt1
− 1

ωt1

)
cos(ωt̄) +

(
sin(ωt1)

ωt1
− 1

ω

)
sin(ωt̄) +

t1
2

)
.

Let us find t0 in the second case:

C(t0) =
K

2μ
,

C(t0) = ξ cos ωt0 + η sinωt0 +
qr̄∗2

2μ(r̄∗2 − 1)
.

We get the square equation of cos ωt0. We solve it:

cos ωt0 =
Aξ ± η

√
ξ2 + η2 − A2

ξ2 + η2
,
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where

A =
K

2μ
− qr2∗

2μ(r2∗ − 1)
.

Let us choose the minimal t0 from the interval between t1 and t2. Then

x′(t0) =
μ

K
C ′(t0) =

2μ

K

(−ωξ sin(ωt0) + ηω cos(ωt0)
)
,

x(t0) = 1.

In this case, the initial conditions will change (t0 ∈ [t1, t2]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t̄ ∈ [t0, t2),

ln r∗(x′2 + xx′′) + 2 lnx − x2

r̄2∗
=

q∗

K
− 1,

x(t0) = 1,

x′(t0) =
q∗

t1K(1 − 1/r̄2∗)

(
−

(
cos(ωt1)

t1
− 1

t1

)
sin(ωt0) +

(
sin(ωt1)

t1
− 1

)
cos(ωt0)

)
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t2 ≤ t̄,

ln r∗(x′2 + xx′′) + 2 lnx − x2

r̄2∗
= −1,

x(t2) = x2∗,

x′(t2) = x′
2∗.

We get the numerical solution to the systems of differential equation using the Runge–Kutta method
of the fourth degree with automated step estimation. Only border conditions have been changed, so all
the conclusions concerning the accuracy of the solution will be correct. For each of the two cases we can
get the exact solution to the problem of elasticity. Here we demonstrate the numerical solution when
t2 = 5, q∗ = 6, K = 3, r∗ = 6, μ = 1 for different values of t1 with maximum local error on step equal to
1e − 5.

The author thanks E. V. Lomakin, A. N. Sakharov, and A. V. Muravlev.

Fig. 6
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Fig. 7
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