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A BOUND ON THE NUMBER OF LEAVES IN
A SPANNING TREE OF A CONNECTED GRAPH OF
MINIMUM DEGREE 6

E. N. Simarova∗ UDC 519.172.1

We prove that a connected graph of minimum degree 6 has a spanning tree such that at least 11
21

of its vertices are leaves. Bibliography: 4 titles.

1. Introduction

In this paper, we consider a connected graph without loops and multiple edges with mini-
mum vertex degree at least 6. We use the standard notation. For a graph G, we denote the
number of its vertices by v(G) and the minimum vertex degree by δ(G).

Definition 1. Let G be a connected graph. We denote by n(G) the maximum number of
leaves in a spanning tree of G. Let

t(G) =
n(G)

v(G)
.

Starting from 1981, several papers with lower bounds on n(G) and t(G) were published.

In 1981, Linial conjectured that n(G) ≥ δ(G)−2
δ(G)+1v(G) + c for δ(G) ≥ 3, where the constant

c ≥ 0 depends only on δ(G). Indeed, for any d ≥ 3, one can construct an infinite series of
graphs G1, . . . , Gn, . . . such that δ(Gn) = d and limn→∞ t(Gn) = d−2

d+1 . Hence, if the bound

from Linial’s conjecture holds for some δ(G), then it is asymptotically tight.
For δ(G) = 3, this bound was proved in 1991 by Kleitman and West [2]: they proved that

n(G) ≥ 1
4v(G) + 2. This bound is tight, it is attained at an infinite series of graphs. The

bound for δ(G) = 4 was also proved in [2]: n(G) ≥ 2
5v(G) + 8

5 . Later, Karpov [4] proved the

stronger bound n(G) ≥ 2
5v(G) + 2 for all graphs with δ(G) = 4 except for three exceptional

cases. This bound is attained at an infinite series of graphs. In 1992, Griggs and Wu [1] proved
the bound n(G) ≥ 1

2v(G) + 2 for δ(G) = 5, which is also tight. Hence, we see that Linial’s
bound holds for small δ(G). All these bounds were proved using the dead vertices method,
which will be described below. For δ(G) ≥ 6, Linial’s bound is neither proved nor disproved,
and no tight bound is known at the moment. It follows from Alon’s results [3] that for large
δ(G) Linial’s bound is false. However, the case of small δ(G) remains open: nobody knows
where Linial’s bound ceases to be true.

In this paper, we prove that t(G) ≥ 11
21 for a connected graph G with δ(G) = 6. This bound

is not tight, but it is the best lower bound known at the moment. However, the best known
upper bound is Linial’s 4

7 .
As we have already mentioned, all known bounds were obtained using the dead vertices

method. We also use this method. It consists in constructing a spanning tree step by step;
at each step, we add new vertices to the tree and “kill” some leaves of the tree constructed
earlier.

Definition 2. The tree constructed at the previous steps will be called the subtree. We denote
by S both the subtree and the set of its vertices. The set of vertices of the original graph G
not contained in S will be denoted by T .
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Definition 3. A dead vertex is a leaf of the subtree S that is adjacent to no vertex of T .

We successively add vertices to S. If a vertex becomes dead at some step, it remains dead
until the end of the construction, and it also remains a leaf of the subtree.

Consider the formula
8

5
u(S) +

1

5
b(S)− v(S),

where u(S) is the number of leaves, b(S) is the number of dead vertices, and v(S) is the number
of vertices in S. We will construct our subtree successively, adding vertices at each step so
that the inequality

8

5
u1 +

1

5
b1 − v1 ≥ 0

holds, where u1, b1, and v1 are the increments of the number of leaves, dead vertices, and
vertices of S, respectively. If we could construct a spanning tree in this way, then the bound
t(G) ≥ 5

9 would hold. Unfortunately, in some cases we cannot perform such a step. Thus, the
bound we are proving is smaller.

2. The beginning of the construction. Some general cases of adding vertices

2.1. The initial tree. Take an arbitrary vertex and 6 vertices adjacent to it. We obtain a
tree with 7 vertices and 6 leaves. Hence, 8

5u+ 1
5b− v = 8

5 · 6− 7 = 13
5 .

2.2. A vertex of T is adjacent to a non-pendant vertex of S. We join this extra vertex
with a non-pendant vertex of S and obtain u1 = 1, b1 ≥ 0, v1 = 1. Since 8

5 − 1 ≥ 0, the
desired inequality holds.

2.3. A vertex a ∈ S has at least three neighbors in T . If a has exactly 3 neighbors,
then we join them with a and obtain u1 = 2, b1 ≥ 0, v1 = 3. The increment is 8·2

5 − 3 = 1
5 ≥ 0.

If a has more than 3 neighbors, then we add three of them and, after that, add the other
neighbors of a according to Sec. 2.2.

2.4. A vertex a ∈ T is adjacent to S and to at least four vertices of T . If a has
exactly 5 neighbors in T , then we add a and these neighbors to the subtree S (see Fig. 1).
We have u1 = 4, b1 ≥ 0, v1 = 6. The increment is 8

5 · 4 − 6 = 2
5 ≥ 0. If a has more than five

neighbors, then we add five of them and, after that, add all the others according to Sec. 2.2.
In the remaining case, a has 4 neighbors in T . Since the degree of a is at least 6, it is

adjacent to two vertices of S (say, b and c). Clearly, b and c are leaves of S (otherwise, we
perform the step described in Sec. 2.2). Assume that b is adjacent in T only to a and its
neighbors. We join a with c and join the four neighbors of a with a. Then b becomes dead,
and the desired inequality holds: 8

5 · 3 + 1
5 − 5 = 0.

Fig. 1 Fig. 2
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Now let b has a neighbor d ∈ T different from a and its neighbors (see Fig. 2). Then we
join a and d with b and join the four neighbors of a with a. We obtain u1 = 4, b1 ≥ 0,
v1 = 6, and 8·4

5 − 6 = 2
5 ≥ 0, i.e., the desired inequality holds.

3. There is a vertex in T that is not adjacent to S

Let us say that a vertex x is at level i if the distance between x and S is i (vertices of S are
at level 0). Since G is connected, every vertex has a level. In our case, there exists a vertex b
of level 2. Clearly, b is adjacent to a vertex a of level 1, and a is adjacent to S.

3.1. The vertex a has a neighbor in T that is not adjacent to b. Then we add a to S,
and join with a the vertex b and all neighbors of a that are not adjacent to b. After that,
we join the remaining 5 neighbors of b with b. In total, we add 8 vertices to S. One leaf
of S becomes non-pendant, and 6 new leaves appear (the five neighbors of b that are different
from a and the neighbor of a that is not adjacent to b). We obtain 8·5

5 − 8 = 0 (see Fig. 3).
In what follows, all vertices of T that are adjacent to a are also adjacent to b.

3.2. The vertex a has a neighbor d ∈ S that has two neighbors in T . Then d has a
neighbor e ∈ T different from a. Consider two cases.

3.2.1. The vertex e is not adjacent to b. Then we join a and e with d, join b with a, and after
that join the five remaining neighbors of b with b. In total, we add 8 vertices to S. One leaf
of S becomes non-pendant, and 6 new leaves appear (e and the five neighbors of b that are
different from a). We obtain 8·5

5 − 8 = 0 (see Fig. 4).

Fig. 3
Fig. 4

3.2.2. The vertex e is adjacent to b. Then a and e are symmetric. If e has a neighbor in S
adjacent to a vertex of T that is not a neighbor of b, then, as in Sec. 3.2.1, we can add 8
vertices to S preserving the desired inequality.

Hence, all vertices of S that are adjacent to a or e can be adjacent in T only to a, e, b and
neighbors of b. Then we add a to S, join b with a, and join the five remaining neighbors of b
with b. All vertices in S that are adjacent to a or e, except one that is joined with a in the
tree, become dead. If there are at least 4 vertices in S adjacent to a or e (see Fig. 5), then we
add 7 vertices, one leaf of S becomes non-pendant, 3 leaves become dead, and five new leaves
appear (all neighbors of b except a). We obtain 8·4

5 + 1·3
5 − 7 = 0.

Assume that at most 3 vertices of S are adjacent to a or e. Since a has a neighbor in S, it
must have at least 3 neighbors in S (otherwise, we apply Sec. 2.4), and similarly for e. Hence,
there exist exactly 3 vertices in S adjacent to a or e, and all these 3 vertices are adjacent both
to a and e and have no other neighbors in T . Then we add a to S, join b with a, and join
the 4 remaining neighbors of b with b. As a result, two new dead vertices (the neighbors of a
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in S) appear. Moreover, the vertex e also becomes dead, since all its neighbors are added to
the subtree. Then, again, we have 3 new dead vertices, and 8·4

5 + 1·3
5 − 7 = 0 (see Fig. 6).

Fig. 5
Fig. 6

3.3. All neighbors of a in S are not adjacent to vertices of T different from a. If a
has at least 4 neighbors in S, then we add a to S, join b with a, and join all the remaining
neighbors of b with b (see Fig. 7). One leaf of S disappears, but 5 new leaves appear (the 5
neighbors of b different from a). Also, three new dead vertices appear (the neighbors of a in S
that are not joined with a in the new subtree). We obtain 8·4

5 + 1·3
5 − 7 = 0.

Thus, the only remaining case is the following one: a is adjacent to exactly 3 vertices of S
and to 3 vertices of T (namely, to b and two other vertices, say c and d).

Lemma 1. The vertices b, c, d are pairwise adjacent and not adjacent to S.

Proof. Note that c and d are adjacent to b (otherwise, we apply Sec. 3.1). Let us prove that
none of the vertices c and d can be adjacent to S. Assume that c is adjacent to a vertex of S
(see Fig. 8). This vertex has a unique neighbor in T (namely, c; otherwise, we apply Sec. 3.2).
Then we add a to S, join b with a, and join all the other neighbors of b with b. We obtain
two dead vertices which are neighbors of a and one extra dead vertex which is a neighbor of c.
Thus, 8·4

5 + 1·3
5 − 7 = 0.

Therefore, neither c nor d is adjacent to S. Hence, c is adjacent to d (otherwise, we apply
Sec. 3.1). �

Fig. 7 Fig. 8

Lemma 2. Each of the vertices b, c, and d has exactly 6 neighbors.

Proof. If one of these vertices (say, b) has at least 7 neighbors, then we add a to S, join b
with a, and join the six remaining neighbors of b with b, obtaining 8·5

5 + 2
5 − 8 ≥ 0. �

Lemma 3. Let e be a neighbor of b, and let e �= a. Then e has no neighbors in S.
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Proof. Assume the converse. By Lemma 1, we have e /∈ {c, d}. Then we add e to S, join b with
e, and join all the remaining neighbors of b with b (see Fig. 9). All neighbors of a that belong
to S become dead. Therefore, u1 = 4, b1 ≥ 3, v1 = 7, and the increment is 8·4

5 + 3
5 −7 ≥ 0. �

Fig. 9 Fig. 10

Lemma 4. Let e be a neighbor of b, and let e �= a. Then e has at most two neighbors that are
not adjacent to b.

Proof. Assume the converse. Then e has at least 3 neighbors not adjacent to b. By Lemma 3, all
these neighbors belong to T . Then we add a to S, join b and all its remaining neighbors with a,
and, finally, join three new neighbors with e (see Fig. 10). We obtain 8·6

5 + 2
5 − 10 = 0. �

Corollary 1. Let e be a neighbor of b. Then b is adjacent to at least one of the vertices c
and d.

Proof. Assume the converse. Then e is adjacent to none of the vertices a, c, d. Hence, e has at
least 3 neighbors that are not adjacent to b. This contradicts Lemmas 3 and 4. �

In a similar way, we can replace b with c or d in Lemma 1 and Corollary 4.
Let e, f, g be the three neighbors of b different from a, c, d.

Lemma 5. The vertices e, f , and g are pairwise adjacent.

Proof. Assume the converse, and let e and f be nonadjacent. Then both e and f are adjacent
to all vertices b, c, d (otherwise, one of the vertices e or f has at least 3 neighbors that are not
adjacent to b, a contradiction with Lemma 4). For the same reason, g is adjacent to at least
one of the vertices c or d. Assume that g is adjacent to c. Then c already has 6 neighbors. We
add a to S, join b with a, and join c, d, e, f, g with b. We obtain v1 = 7, u1 = 4, b1 ≥ 3 (two
neighbors of a in S and the vertex c become dead, see Fig. 11). We obtain 8·4

5 + 3
5 − 7 = 0.

Thus, we may assume that e, f, g are pairwise adjacent. �

Fig. 11
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Now let us consider the neighbors of b and c different from a, b, c, d. Each of the vertices b
and c has 3 such neighbors. By Lemma 3, these neighbors belong to T . Assume that b and
c have no common neighbor. Then we add a to S, join b, c, d with a, and join all neighbors
of b and c with b and c, respectively (see Fig. 12). We have added 10 vertices, the number of
leaves has increased by 6 (= +7−1), and two new dead vertices have appeared (the neighbors
of a in S). In total, 8·6

5 + 2
5 − 10 = 0.

Assume that b and c have exactly one common neighbor. Let e, f, g be the neighbors of b
and g, h, i be the neighbors of c. By Corollary 1, the vertices e, f, h, i are adjacent to d. Thus,
d has 7 neighbors a, b, c, e, f, h, i, a contradiction with Lemma 2.

Assume that b and c have exactly two common neighbors. Namely, let e, f, g be the neighbors
of b and f, g, h be the neighbors of c. By Corollary 1, the vertices e and h are adjacent to d.
Moreover, all neighbors of d must be adjacent to b or c. Therefore, either f or g is adjacent to d;
let it be f . By Lemma 5, the vertices e, f, g are pairwise adjacent (since they are neighbors
of b), the vertices e, f, h are also pairwise adjacent (since they are neighbors of d), and, finally,
the vertices f, g, h are pairwise adjacent (since they are neighbors of c). Thus, f already
has 6 neighbors, namely, b, c, d, e, g, h. Assume that f has no other neighbors. Consider the
vertex e. Clearly, e can be adjacent to neither a nor c. Among the vertices considered above, e
is adjacent to b, d, f, g, h. The vertex e must have one more neighbor, say i. By Lemma 3, we
have i ∈ T . Then we add a to S, join b, c, d with a, join e, f, g with b, and, finally, join h, i
with e (see Fig. 13). We add 9 vertices and increase the number of leaves by 5 (= +6−1). Five
new dead vertices appear: the two neighbors of a in S and c, d, f . We obtain 8·5

5 + 5
5 − 9 = 0.

Fig. 12

Fig. 13

Now we turn to the last case, where f has one more neighbor, say k. If k is adjacent to at
least 3 vertices except those considered above, then we add a to S, join b, c, d with a, join e, f, g
with b, join k, h with f , and, finally, join the three new neighbors of k with k. We add 12
vertices and 7 (= +8− 1) leaves. Four new dead vertices appear: the two neighbors of a in S
and c, d. We obtain 8·7

5 + 4
5 − 12 = 0.

Assume that k is adjacent to S. Recall that f is adjacent to 7 vertices of T . This is similar
to the case where we added a and b (with k instead of a and f instead of b). The only case
that is not completely analyzed is where a has exactly 3 neighbors in S and all of them are
adjacent in T only to a. By Lemma 2, the vertex b must have exactly 6 neighbors (otherwise,
we can increase S preserving our inequality). However, f has at least 7 neighbors, and this
case is analyzed.

In what follows, k is not adjacent to S and is adjacent to at most two new vertices of T
(i.e., vertices not considered above). Among the vertices considered above, k can be adjacent
only to e, f, g, h. Hence, k is adjacent to all these four vertices and to exactly two new vertices
of T . The vertex e is adjacent to h and k. By Lemma 4, it can be adjacent only to two vertices
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of T that are not adjacent to b. Hence, these two vertices are h and k. The same holds for g
and h. Then we add a to S, join b, c, d with a, join e, f, g with b, and, finally, join k, h with f .
We add 9 vertices, increase the number of leaves by 5 (= +6−1), and add 7 new dead vertices
(the two neighbors of a in S and c, d, e, g, h). We obtain 8·5

5 + 7
5 − 9 ≥ 0 (see Fig. 14).

In the remaining case, b and c have the same three neighbors in T , namely, e, f, g. Let us
prove that they are also neighbors of d. By Lemma 2, the vertex d has exactly 3 neighbors
in T , and, by Corollary 1, they are adjacent to b or c. Hence, these neighbors are exactly e, f, g
(see Fig. 15). Then we add a to S, join b, c, d with a, and join e, f, g with b. We add 7 vertices,
increase the number of leaves by 4, and four new dead vertices appear (the two neighbors of a
in S and c, d). In total, we have 8·4

5 + 4
5 − 7 ≥ 0.

Fig. 14

Fig. 15

4. Irreplaceable losses

4.1. New notation and a general concept. Let us add to the subtree all possible con-
structions for which the inequality 8

5u1+
1
5b1−v1 ≥ 0 is preserved. If we have built a spanning

tree, then we are done. Assume that T �= ∅, but we cannot perform any further step of the
construction. Then all vertices of T are adjacent to S. Since we cannot perform the step of
Sec. 2.4, each vertex of T has at least 3 neighbors in S. Each vertex of S is adjacent to at
most 2 vertices of T (otherwise, we can perform the step of Sec. 2.3). We want each vertex
of S to be adjacent to at most one vertex of T .

Definition 4. A tick consists of three vertices: a vertex of S and two vertices of T adjacent
to it.

Choose a maximal set M of ticks such that no two of them have a common vertex. Hence,
any vertex of S that is not covered by this set of ticks is adjacent to at most one vertex of T
not covered by the ticks of M .

Let us introduce new notation. Denote by A the set of all vertices of S covered by the ticks
of M and by B the set of all vertices of T covered by the ticks of M . Let C be the set of all
vertices of S \A that are adjacent to T , and let D = T \B. Denote by E the set of all vertices
of D that are adjacent to B. Let F = D \ E.

Note that any vertex of A belongs to a tick which contains this vertex and two its neighbors
lying in T . As observed above, any vertex of S (in particular, any vertex of A) has at most
two neighbors in T . Hence, a vertex of A has exactly two neighbors in T , and these neighbors
form a tick together with this vertex. Thus, each vertex of A is adjacent to B and not adjacent
to D. Moreover, each vertex of B is adjacent to exactly one vertex of A (namely, to the vertex
of the same tick). Since any vertex of T has at least 3 neighbors in S, each vertex of B is
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adjacent to at least two vertices of C. By construction, each vertex of C has exactly one
neighbor in D.

Fig. 16

At the end of this section, we will make a global addition of vertices: the vertices from
the set B will be added to S via the chosen ticks, i.e., we will join the vertices from B with
vertices from A. Hence, if after some adding operation some vertex from C has exactly one
neighbor in T and this neighbor belongs to B, then this vertex will become dead after the global
addition. We will not take into account the dead vertices from C after the global addition.
Hence, we may take them into account after operations preceding the global addition. This
concerns only Sec. 4. After that, we will return to our standard adding operations.

Remark. Our local additions (i.e., all additions of this section except the global one) will
change our sets of vertices (A, B, and others). Vertices from B will be added only together
with all their neighbors. If a vertex from B is added to S, then all vertices of its tick are also
added, with two vertices from B joined to the vertex from A belonging to their tick. In this
case, we exclude this tick from M and all its vertices from A and B. The only requirement is
that after a local addition, vertices from C that become dead after the global addition should
not be counted as dead, but we have agreed about this above.

What happens when we add some vertices from the set D? After a local addition, the
set S increases. We add to the set C all vertices of the new set S that are adjacent to the
remaining set T . After that, in the new set C, a vertex adjacent to two vertices of the new
set D can appear. Let us explain how to perform several more local additions after which any
vertex of C will be adjacent to exactly one vertex of the new set D. (The sets C and D can
also be modified after an addition.) Assume that C contains a vertex x adjacent to at least
two vertices y1, . . . , ym ∈ D. Note that each of the vertices y1, . . . , ym is adjacent to at least
3 vertices from C (before local additions, each vertex yi ∈ D has at least 3 neighbors in C,
and x was not in C). After joining y1, . . . , ym with x, all neighbors in T of all these 3m vertices
will belong to B. Let us count these 3m vertices as dead now (rather than after the global

addition). Having 3m dead vertices, we obtain 8·(m−1)
5 + 3·m

5 −m = 6m−8
5 ≥ 0 for m ≥ 2. After

this operation, we again add to C new vertices and remove vertices that are not adjacent to
the new set T . Since T is finite, this process will terminate. Note that no new vertex will be
added to A or B.
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4.2. Local additions of vertices

4.2.1. A vertex x ∈ B is adjacent to at least 2 vertices of E. Let x belong to a tick {u, x, t}
where u ∈ S. Let x be adjacent to y1, . . . , ym ∈ E. Then we join t, x with u and join y1, . . . , ym
with x. Since y1, . . . , ym ∈ D (see Fig. 17), each of these vertices has at least 3 neighbors in C.
After this addition, all neighbors in T of these 3m vertices will belong to B. We will count
these 3m vertices as dead already and obtain the increment 8·m

5 + 3m
5 − (m+ 2) = 6m−10

5 ≥ 0
for m ≥ 2.

In what follows, each vertex of B will have at most one neighbor in E.

Fig. 17

4.2.2. A vertex x ∈ E has at least two neighbors in D. Let u, v, t be a tick (where u ∈ S) and x
be adjacent to v. Let x be adjacent to y, z ∈ D. Before a local addition, each vertex of T had
at least 3 neighbors in S. Since the vertices x, y, z ∈ D had no neighbors in A, all of them
had 3 neighbors in C (see Fig. 18). We join v, t with u, join x with v, and join y, z with x.
We count the nine neighbors of x, y, z in C as dead vertices now and obtain the increment at
least 8·2

5 + 1·9
5 − 5 = 0.

Fig. 18

4.2.3. Vertices from the set R. Let R be the set of all vertices from F that are adjacent to E.
Let us prove that each vertex from R has one neighbor in E and five neighbors in C. Indeed,
assume that a vertex x ∈ R has two neighbors y, z ∈ T . Clearly, y, z ∈ D. We join x with S
via one of the neighbors in C, and join y, z with x. We have u1 = 1, v1 = 3, b1 ≥ 8 (since
each vertex of D is adjacent to at least 3 vertices of C), and 8

5 +
8
5 − 3 ≥ 0.

If a vertex from the set R has at least 6 neighbors in C, then we join this vertex with one
of these neighbors and obtain 8·0

5 + 5
5 − 1 = 0.
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4.3. The global addition of vertices. Assume that we can perform no local addition. Then
each vertex from B is adjacent in T to at most one vertex from E and, possibly, other vertices
from B. Vertices from E can be adjacent only to vertices from the sets B, C, R, and E.
Moreover, by Sec. 4.2.2, any vertex from E has at most one neighbor in R ∪E. Therefore,
other vertices from the set T are not adjacent to A,B,E,R. Then we join the vertices from B
with their neighbors in A (in the corresponding ticks), join the vertices from E with their
neighbors in B (each vertex is joined with exactly one neighbor), and join the vertices from R
with their neighbors in E. The whole this system of vertices is not adjacent to any of the
remaining vertices from the set D. Let us study what happens after this global addition of
vertices.

Let |A| = x; then |B| = 2x. By a branch of a vertex q we mean the set of all vertices that
have been added in the global addition and have q as an ancestor in the subtree S. Then 2x
new branches with ancestors from the set B have appeared. Since each of these branches
contains at least one leaf, at least 2x new leaves have appeared. Since vertices that remain
in T are not adjacent to A,B,E,R, all these leaves become dead vertices. Hence, the number
of leaves increases at least by x, and the number of dead vertices increases at least by 2x.

Now consider the set E. Let it contain y vertices adjacent to at least two vertices from B
and z vertices adjacent to exactly one vertex from B. Each of these vertices is adjacent to
at least 3 vertices from C (this holds for all vertices in D). Each of the z vertices adjacent
to one vertex from B, by Sec. 4.2.2, has at most one neighbor in D and, therefore, at least 4
neighbors in S. All these neighbors belong to C and become dead after the global addition.
Hence, the number of dead vertices increases at least by 3y + 4z.

Let |R| = r. Each of these vertices has 5 neighbors in C. Hence, 5r new dead vertices
appear. The total increment is at least

8x

5
+

2x+ 3y + 4z + 5r

5
− 2x− y − r − z = −2y + z

5
.

Thus, we have decreased our sum. We will return to this later.

Remark. Note that the operation of addition with losses described in this section can be
performed at most once. Indeed, assume the converse. Assume that after such an operation a
vertex x ∈ S appears that has exactly two neighbors in T , say y and z. Note that before the
first addition with losses, we had y, z ∈ T . Moreover, none of the vertices y, z belonged to B,
since all vertices from B had already been added. Therefore, both y and z had 3 neighbors
in C at that moment, and all these neighbors are now adjacent in T only to y or z. Hence, if
we join y and z with x, then we obtain u1 = 1, b1 ≥ 6, v1 = 2, and the inequality 8

5 +
6
5 −2 ≥ 0

holds.

Thus, we can perform at most one addition with losses and obtain S and T such that each
vertex from S has at most one neighbor in T .

5. Each vertex from S has at most one neighbor in T

Note that each vertex has at most 3 neighbors in T , since all the other cases are already
analyzed.

5.1. A vertex x ∈ T has exactly 3 neighbors in T . Let these neighbors be a1, a2, a3.
We add x to S and join a1, a2, a3 with x. Each of these 4 vertices has 3 neighbors in S, and
all these neighbors except those joined with x become dead after the addition. Therefore,
8·2
5 + 11

5 − 4 ≥ 0.
In what follows, each vertex from T has at most 2 neighbors in T and, therefore, at least 4

neighbors in S.
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5.2. A vertex x ∈ T has exactly 2 neighbors in T . Let these neighbors be a1 and a2.
We add x to S and join a1, a2 with x. Each of these 3 vertices has 4 neighbors in S, and
all these neighbors except those joined with x become dead after the addition. Therefore,
8
5 +

11
5 − 3 ≥ 0.

In what follows, each vertex of T has at most 1 neighbor in T and, therefore, at least 5
neighbors in S.

5.3. A vertex x ∈ T has no neighbors in T . Then x has 6 neighbors in S, we add x to S,
and obtain 5 new dead vertices. The increment is 5

5 − 1 = 0.

5.4. Each vertex from T has exactly 1 neighbor in T . Consider adjacent vertices
x, y∈T . We add x to S and join y with x. Each of these vertices is adjacent to at least
5 vertices of S, and 9 of them become dead (all except those joined with x in the subtree).
The vertex y also becomes dead, and we obtain 10

5 − 2 = 0.

6. The resulting tree

Consider the moment when S contains all vertices of the graph G. In almost all cases, we
add vertices to S so that the inequality

8

5
u +

1

5
b − v ≥ 0

holds. Problems can appear only in the case where we add vertices of ticks. By the remark
at the end of the previous section, we have performed this operation at most once. Let us
consider this case in detail.

By Sec. 4.2.2, a vertex from the set E can have at most one neighbor outside S ∪ B.
Let x(G) = |A|, let y(G) be the number of vertices in E that have 2 neighbors in B, and
let z(G) be the number of vertices in E that have one neighbor in B. Then

8

5
u +

1

5
b − v ≥ −2y(G) + z(G)

5
.

In the unique addition with losses, we have considered x(G) vertices from A and have added
2x(G) vertices from B and y(G) + z(G) vertices from E. At least 3y(G) + 4z(G) vertices
from C have become dead by Sec. 4.3. Thus,

8

5
u(G) +

1

5
b(G) − v(G) ≥ −2y(G) + z(G)

5
,

and v(G) ≥ 3x(G) + 4y(G) + 5z(G). Since all added vertices from E were adjacent to B
and it was proved that each vertex from B is adjacent to at most one vertex in E, we obtain
2y(G) + z(G) ≤ 2x(G). Therefore,

9

5
u(G) ≥ 8

5
u(G) +

1

5
b(G) ≥ v(G) − 2y(G) + z(G)

5
.

This is equivalent to the inequality

u(G)

v(G)
≥ 5

9

(
1− 1

5
· 2y(G) + z(G)

v(G)

)
.

To prove a lower bound on u(G)
v(G) , we minimize 1− 2

5 · 2y(G)+z(G)
v(G) , i.e., maximize 2y(G)+z(G)

v(G) .
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Note that

2y(G) + z(G)

v(G)
≤ 2y(G) + z(G)

3x(G) + 4y(G) + 5z(G)

=
2y(G) + z(G)

3x(G) + 2(2y(G) + z(G)) + 3z(G)
≤ 2x(G)

7x(G)
=

2

7
.

Therefore,

t(G) =
u(G)

v(G)
≥ 5

9

(
1− 1

5
· 2
7

)
=

5

9
· 33
35

=
11

21
.

Translated by D. V. Karpov.
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