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THE VOLUME FRACTION OF ONE OF THE PHASES
IN EQUILIBRIUM TWO-PHASE ELASTIC MEDIUM

V. G. Osmolovskii∗ UDC 517

The relationship between the volume fraction of one phase of an equilibrium two-phase medium
and other characteristics of the equilibrium state is studied. Bibliography: 9 titles.

1. Introduction

In the quadratic approximation, the energy density of the deformation of each of the phases
“±” of a two-phase elastic medium occupying the bounded domain Ω ⊂ Rm, m ≥ 1, is given
by the functions

F±(M) = 〈A±(e(M) − ζ±), e(M) − ζ±〉,
M ∈ Rm×m, e(M) =

M +M∗

2
, ζ± ∈ Rm×m

s ,
(1.1)

where Rm×m is the space of m×m-matrices, Rm×m
s is the space of m×m-symmetric matrices,

the quantity 〈P,Q〉 = trPQ, P,Q ∈ Rm×m
s , is the scalar product in Rm×m

s , and the linear
maps A± : Rm×m

s → Rm×m
s are symmetric and positive definite with respect to the specified

scalar product.
The deformation energy functional corresponding to densities (1.1) is defined by

I0[u, χ, t] =

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx, (1.2)

where the m-dimensional vector-valued function u(x) corresponds to the displacement field,
(∇u)ij = uixj

, e(∇u) is the tensor of deformation, and the matrices ζ± and the parameter t ∈ R

are interpreted as the tensors of residual deformation and the temperature, respectively. The
phase distribution in the domain Ω is given by the characteristic function χ(x), x ∈ Ω; the
phases with index “+” and “−” are located on the support of this function and its complement,
respectively. As the domain of definition of functional (1.2), we take the sets

u ∈ H, χ ∈ Z
′,

H = W̊ 1
2 (Ω,Rm), Z

′ is the set of all measurable characteristic functions.
(1.3)

Under the equilibrium state of a two-phase medium for a fixed t, we mean the solution ût,
χ̂t of the variational problem

I0[ût, χ̂t, t] = inf
u∈H,χ∈Z′ I0[u, χ, t], ût ∈ H, χ̂t ∈ Z

′. (1.4)

The equilibrium state ût, χ̂t is said to be single-phase if χ̂t ≡ 0 or χ̂t ≡ 1, and two-phase
otherwise. Obviously, for a single-phase equilibrium state ût, χ̂t, the equilibrium displacement
field equals zero, ût ≡ 0.

The above described approach to determine the equilibrium displacement field ût and the
equilibrium phase distribution χ̂t is traditional, see [4]. An extensive literature is devoted to
investigation of problem (1.4) and those close to it (see [1,7] and references therein). Our goal
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is to study some properties of the volume fraction of the phase with the index “+” in the
equilibrium state, i.e., the quantity

Q̂(t) =
1

|Ω|
∫

Ω

χ̂t(x) dx (1.5)

(here and below, the module of a set in Rm denotes its m-dimensional Lebesgue measure) com-
puted on all the solutions ût, χ̂t of problem (1.4) for a fixed value t. For a better understanding
of the nature of quantity (1.5), we make several preliminary remarks.

For problem (1.4), it is known that there exist temperatures t± of phase transitions that
are independent of the domain Ω and satisfy the relations

t− ≤ t∗ ≤ t+, t∗ = −[〈Aζ, ζ〉] (1.6)

([α] = α+ − α− is the jump taking two values α± of the quantity α, in (1.6) both equalities,
if they are, hold simultaneously), and are characterized by the following conditions [6]:

if t < t−, then
only the single-phase equilibrium with χ̂t ≡ 1 is realized,

if t > t+, then

only the single-phase equilibrium with χ̂t ≡ 0 is realized,

if t = t±, then
there are single-phase equilibriums with χ̂t ≡ 0 and χ̂t ≡ 1, respectively,

if t ∈ (t−, t+), then there are no single-phase equilibriums.

(1.7)

For t ∈ (t,t+), solutions (of course, two-phase solutions) may exist or not depending on the
parameters of the problem [2,5]. From what said, it follows that for quantity (1.5),

Q̂(t) = 1 if t < t−, Q̂(t) = 0 if t > t+. (1.8)

There is a criterion for the coincidence of the temperatures t± [8],

t± = t∗ if and only if [Aζ] = 0. (1.9)

In the case [Aζ] = 0, functional (1.2) is of the form

I0[u, χ, t] = |Ω|〈A−ζ−, ζ−〉
+

∫

Ω

{
χ〈A+e(∇u), e(∇u)〉 + (1− χ)〈A−e(∇u), e(∇u)〉 + (t− t∗)χ

}
dx. (1.10)

Therefore for t+ = t−, the set of all the solutions of problem (1.4) is exhausted by the relations

ût ≡ 0 for all t ∈ R,

χ̂t ≡ 1 for t < t∗,
χ̂t ≡ 0 for t > t∗,

χ̂t∗ is an arbitrary element of Z
′.

(1.11)

Consequently in the case t+ = t−,

Q̂(t) ≡ 1 for t < t∗,

Q̂(t) ≡ 0 for t > t∗,

Q̂(t∗) is an arbitrary number from the interval [0, 1].

(1.12)
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From (1.7), (1.8), and (1.12), it follows that function (1.5) does not have to be definite for all
values of t, and under certain conditions it can turn out to be many-valued.

2. Formulation of results

We give the formulations of the results to be proved below and comment on them.

(1) Independence of quantity (1.5) from the domain Ω. Since the phase transition tempera-
tures (1.6) do not depend on the domain Ω, function (1.5) takes values (1.8) for t /∈ (t−, t+)
in any domain. The description (1.12) does not also depend on the domain Ω. Therefore the
change of domain is reflected in the function (1.5) (if does) on the interval (t,t+) only. Recall
that the domain Ω in (1.2) is always considered as bounded.

Theorem 1. (a) If for t = t0 problem (1.4) has a solution in some domain Ω = ω with

|∂ω| = 0 and such that Q̂(t0) = Q0, then for t = t0 problem (1.4) is solvable in an arbitrary

domain Ω and has a solution such that Q̂(t0) = Q0.

(b) If for t = t0 problem (1.4) has solutions û
(i)
t0 , χ̂

(i)
t0 , i = 1, 2, in some domain Ω with

|∂Ω| = 0, and Q̂(t0) = Qi, Q1 < Q2, then in this domain there exists a solution ût0 , χ̂t0 with

any Q̂(t0) ∈ (Q1, Q2).

Statement (a) of the theorem leads to the independence of function (1.5) from the domain Ω.
Statement (b) says about the structure of the possible ambiguity of this function, which is
confirmed by description (1.12) in the case t− = t+. For the densities

m = 1, F±(M) = a±(M − c±)2, a±, c± ∈ R, a± > 0, (2.1)

m ≥ 2, F±(M) = a tr(e(M) − c±i)2 + b± tr2(e(M)− c±i),
a, b±, c± ∈ R, a > 0, b± ≥ 0,

i is the identity matrix in the space Rm,

(2.2)

function (1.5) was found in explicit form in [7]. It turns out that for t− < t+, it is single-valued.
The situation changes if one takes into account the surface energy of the phase boundary,
proportional to its area, in the energy functional, by replacing functional (1.2) with

I[u, χ, t, σ] = I0[u, χ, t] + σS[χ], (2.3)

where S[χ] is the area of the phase boundary for χ ∈ Z = Z
′∩BV (Ω). For problem (1.4) with

functional (2.3), the temperatures of the phase transitions t± = t±(σ) are also introduced.

The points t = t±(σ) are the points of multivaluedness for the function Q̂(t, σ), but (in any

case for densities (2.1)) the set of values Q̂(t±(σ), σ) for each of the signs consists of only two
points, and does not fill the interval between them. For details, we refer to [7].

(2) The connection between the equilibrium displacement field ût and the equilibrium phase
distribution χ̂t. The following theorem discusses the question of the unique determination of
one component from the pair {ût, χ̂t} through another.

Theorem 2. (a) For any t, the function ût is uniquely determined by the function χ̂t.
(b) If t− = t+, but t �= t∗ or t− < t+, and

[Aζ] �∈ Im[A], (2.4)

or

[Aζ] ∈ Im[A] and either [A] ≥ 0, or [A] ≤ 0, (2.5)

then χ̂t is uniquely determined by ût.
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Since the function ût is the minimizer of the functional J [u, t] = I0[u, χ̂t, t], u ∈ H, the first
statement of the theorem follows from the strict convexity of this functional. To explain the
second one, we rewrite functional (1.2) in the form

I0[u, χ, t] =

∫

Ω

F−(∇u) dx+

∫

Ω

χ(F+(∇u)− F−(∇u) + t) dx. (2.6)

From (2.6), it follows that

χ̂t(x) =

{
1 if R(x, t) < 0,

0 if R(x, t) > 0,

R(x, t) = F+(∇ût(x)) − F−(∇ût(x)) + t,

(2.7)

χ̂t(x) is an arbitrary characteristic function

on the set Eût = {x ∈ Ω : R(x, t) = 0}. (2.8)

Owing to (1.11), in the case t+ = t− the equality R(x, t) = t− t∗ holds. Therefore, |Eût | = 0
for t+ = t− and t �= t∗, and Eût

= Ω for t+ = t− and t = t∗. Hence to prove the theorem it
remains to verify that

if (2.4) or (2.5) holds and t− < t+, then |Eût
| = 0 for any t. (2.9)

Thus if the conditions of the theorem are satisfied, then function (1.5) cannot have two different
values for the pair {ût, χ̂t} with fixed first component. By virtue of (1.11) and (1.12), if the
condition (b) of the theorem is violated (i.e., for t− = t+ and t = t∗), then ût∗ ≡ 0, but the
values of function (1.5) at the point t = t∗ fill the interval [0, 1].

(3) Smooth dependence on the temperature of the equilibrium energy and the point of single-
valuedness of function (1.5). For a fixed domain Ω, we set

i(t) = inf
u∈H,χ∈Z′ I0[u, χ, t]. (2.10)

Function (2.10) is called the equilibrium energy of functional (1.2). If for t = t0 problem (1.4)
is solvable, then i(t0) = I0[ût0 , χ̂t0 , t0] for any of its solutions ût0 , χ̂t0 . Owing to (1.7),

i(t) = |Ω|(t+ 〈A+ζ+, ζ+〉) for t ≤ t−,

t(t) = |Ω|〈A−ζ−, ζ−〉 for t ≥ t+.
(2.11)

In the case t+ = t−, the relation (2.11) can be refined as follows:

i(t) = |Ω|(t+ 〈A+ζ+, ζ+〉) for t ≤ t∗,

i(t) = |Ω|〈A−ζ−, ζ−〉 for t ≥ t∗.
(2.12)

From the definition (1.6) of the number t∗, the continuity of function (2.12) follows.

Theorem 3. (a) There exists a set of full measure L ⊂ R such that function (2.10) has a
finite classical derivative i′(t) in the points of this set; this derivative is continuous on L and
decreases monotonically. In each point t ∈ R \ L, function (2.10) has finite one-sided classical
derivatives i′(t− 0) > i′(t+ 0), and also

i′(t− 0) = lim
τ∈L,

τ<t,τ→t

i′(τ), i′(t+ 0) = lim
τ∈L,

τ>t,τ→t

i′(τ). (2.13)

(b) If problem (1.4) is solvable for a given t = t0, then for all its solutions ût0 , χ̂t0 ,

|Ω|Q̂(t0) = i′(t0) for t0 ∈ L,
|Ω|Q̂(t0) ∈ [i′(t0 + 0), i′(t0 − 0)] for t0 ∈ E \ L.

(2.14)
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For arbitrary energy densities in the case t− = t+, from (2.12) it follows that

L = R \ {t∗}, i′(t) = |Ω| for t < t∗,

i′(t) = 0 for t > t∗,

i′(t∗ − 0) = |Ω|, i′(t∗ + 0) = 0.

(2.15)

Relations (1.12) and (2.15) confirm the statement of the theorem. For densities (2.1), (2.2)
with t− < t+, the function i(t) can be written out in explicit form, see [7]. For this function,
L = R. The same holds for the density,

F±(M) = a tr(e(M) − c±P (k))2,

M ∈ Rm×m, a, c± ∈ R, a > 0, 1 ≤ k < m,
(2.16)

where P (k) is an orthoprojector in Rm onto a k-dimensional subspace. However if t ∈ (t,t+),
then problem (1.4) does not have solutions for these densities [8].

3. Proof of Theorem 1

(a) Given a domain ω, we construct a family of domains

ωξ,λ =
{
x ∈ Rm : x = λx̃+ ξ, x̃ ∈ ω

}
, λ > 0, ξ ∈ Rm, (3.1)

obtained from ω by a stretching in λ times and a subsequent shift to the vector ξ. Let us define
sets H, Z′ and consider the domains of the functions u and χ as arguments of the functional I0.
Given u ∈ H(ω) and χ ∈ Z

′(ω), we define the functions

uξ,λ(x) = λu(x̃), χξ,λ(x) = χ(x̃), x̃ ∈ ω, x = λx̃+ ξ ∈ ωξ,λ. (3.2)

Obviously, uξ,λ ∈ H(ωξ,λ), χ
ξ,λ ∈ Z

′(ωξ,λ), and every function from H(ωξ,λ) and Z
′(ωξ,λ) is ob-

tained with the help of procedure (3.2) from some function from H(ω) and Z
′(ω), respectively.

After changing coordinates, we have

I0[u
ξ,λ, χξ,λ, t, ωξ,λ] = λmI0[u, χ, t, ω]. (3.3)

Since |ωξ,λ| = λm|ω|, from (3.3) it follows that

1

|ωξ,λ|I0[u
ξ,λ, χξ,λ, t, ωξ,λ] =

1

|ω|I0[u, χ, t, ω]. (3.4)

The quasi-convex hull F(M, t) of the function

Fmin(M, t) = min{F+(M) + t, F−(M)}
does not depend on the domain ω and is defined by the equality

F(M, t) = inf
u∈H(ω),
χ∈Z′(ω)

1

|ω|
∫

ω

{
χ(F+(M+∇u)+ t)+(1−χ)F−(M+∇u)

}
dx, M ∈ Rm×m, (3.5)

see [3]. Then ût0 ∈ H(ω), χ̂t0 ∈ Z
′(ω) is a solution of problem (1.4) for the functional

I0[u, χ, t0, ω] if and only if

I0[ût0 , χ̂t0 , t0, ω] = |ω|F(0, t0). (3.6)

In view of (3.4),

I0[û
ξ,λ
t0 , χ̂ξ,λ

t0 , ωξ,λ] = |ωξ,λ|F(0, t0). (3.7)
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Therefore the pair ûξ,λt0 ∈ H(ωξ,λ), χ̂ξ,λ
t0 ∈ Z

′(ωξ,λ) is a solution of problem (1.4) for the
functional I0[u, χ, t0, ωξ,λ]. Taking into account (3.1) and (3.2), we have

1

|ω|
∫

ω

χ̂t0(x̃) dx̃ =
1

|ωξ,λ|
∫

ωξ,λ

χ̂ξ,λ
t0 (x) dx,

∫

ωξ,λ

|∇ûξ,λt0 (x)|2 dx = λm

∫

ω

|∇ût0(x̃)|2 dx̃ =
|ωξ,λ|
|ω|

∫

ω

|∇ût0(x̃)|2 dx̃.
(3.8)

From the first relation of (3.8), it follows that quantity (1.5) for the solutions ût0 ∈ H(ω),

χ̂t0 ∈ Z
′(ω) and ûξ,λt0

∈ H(ωξ,λ), χ̂
ξ,λ
t0

∈ Z
′(ωξ,λ) is the same.

From definition (3.1) of the domains ωξ,λ, it follows that the sets ω̄ξ,λ satisfy all the require-
ments in [9, Chap. 4, Sec. 3] for constructing the Vitali cover of an arbitrary domain Ω ⊂ Rm:
namely, there exist λ = λi, ξ = ξi, i = 1, 2, . . . , for which Ei = ω̄i and ωi = ωξi,λi are such
that

Ei ⊂ Ω, Ei ∩ Ej = ∅ for i �= j, |Ω \ ∪iE
i| = 0. (3.9)

Since |∂ωi| = 0, we have |Ei| = |ωi| for all i. Therefore,
|Ω| = Σi|Ei| = Σi|ωi|. (3.10)

Set
u(i)(x) = ûξ

i,λi

t0 (x), χ(i)(x) = χ̂ξi,λi

t0 (x), x ∈ ωi.

Denote by ū(1), χ̄(i) the extension of these functions by zero to the domain Ω. Obviously,
ū(i) ∈ H(Ω) and χ̄(i) ∈ Z

′(Ω). From (3.8) and (3.10), it follows that the series

ū = Σiū
(i), χ̄ = Σiχ̄

(i)

converge in the spaces H(Ω) and L1(Ω), respectively. Consequently, ū ∈ H(Ω) and χ̄ ∈ Z
′(Ω).

In view of (3.10),

1

|Ω|
∫

Ω

χ̄(x) dx =
1

|ω|
∫
ω
χ̂t0(x̃) dx̃. (3.11)

Taking into account (3.7) and (3.10), we obtain

I0[ū, χ̄, t0, Ω] = ΣiI0[u
(i), χ(i), t0, ω

i] = (Σi|ωi|)F(0, t0) = |Ω|F(0, t0). (3.12)

Therefore, the pair ū, χ̄ is a solution of problem (1.4) for the functional I0[u, χ, t0, Ω]. By
(3.11), quantities (1.5) for this and initial functionals ût0 and χ̂t0 , in the domains Ω and ω,
respectively, coincide.

(b) For each ν ∈ R, we divide the domain Ω by the hyperplane

Te,ν = {x ∈ Rm : x · e = ν}, e ∈ Rm, |e| = 1

into the two parts

Ων
+ = {x ∈ Ω : x · e > ν}, Ων

− = {x ∈ Ω : x · e < ν}.
Obviously, the Ων± are open sets, |Ων

+| depends on ν continuously, and |Ω| = |Ων
+| + |Ων−|.

Then for any μ ∈ [0, 1], there exists ν such that |Ων
+| = μ|Ω| and |Ων−| = (1− μ)||Ω|.

In the sequel, we use the technique used in the proof of the part (a) of the theorem and the
notation from the statement of the part (b).

For each connected component ωi
+ of the set Ων

+, we construct a solution ū+i , χ̄
+
i of prob-

lem (1.4) for the functional I0[u, χ, t0, ω
i
+] with quantity (1.5) equal to Q1. For each connected

component ωi− of the set Ων−, let ū−i , χ̄
−
i be a solution of problem (1.4) for the functional
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I0[u, χ, t0, ω
i−] with quantity (1.5) equal to Q2. Analogously to (3.12), we arrive at the conclu-

sion that the pair û
(3)
t0 , χ̂

(3)
t0 such that

û
(3)
t0 (x) = ū+i (x), χ̂

(3)
t0 (x) == χ̄+

i (x) for x ∈ ωi
+,

û
(3)
t0

(x) = ū−i (x), χ̂
(3)
t0

(x) == χ̄−
i (x) for x ∈ ωi

−

is a solution of problem (1.4) for the functional I0[u, χ, t0, Ω] for which

|Ω|Q3 =

∫

Ω

χ̂
(3)
t0 dx = Σi

∫

ωi
+

χ̄+
i dx+Σi

∫

ωi
−

χ̄−
i dx = Q1Σi|ωi

+|+Q2Σi|ωi
−|

= Q1|Ων
+|+Q2|Ων

−| = |Ω|(μQ1 + (1− μ)Q2).

4. Proof of Theorem 2

As has already been established, only statement (2.9) needs justification. We divide the
proof into a number of steps.
(1) For almost all x ∈ Eût,

[A]e(∇ût(x)) = [Aζ]. (4.1)

Let the pair ût, χ̂t minimize functional (1.2) rewritten in the form

I0[u, χ, t] =

∫

Ω

F−(∇u) dx+

∫

Ω\Eût

χ(F+(∇u)− F−(∇u) + t) dx

+

∫

Eût

χ(F+(∇u)− F−(∇u) + t) dx.

(4.2)

Then the pair ût, χ̂
′
t,

χ̂′
t(x) = χ̂t(x) for x ∈ Ω \ Eût , χ̂′

t(x) = ψ(x) for x ∈ Eût ,

with any measurable function ψ characteristic on Eût
also minimizes this functional. Varying

functional (4.2) over u at the point ût, χ̂
′
t, we arrive at the conclusion that for all h ∈ H (the

subscript of F± means the derivative with respect to the matrix argument M),
∫

Ω

F−
M (∇ût)∇hdx+

∫

Ω\Eût

χ̂t(F
+
M (∇ût)− F−

M (∇ût))∇hdx

= −
∫

Eût

ψ(F+
M (∇ût)− F−

M (∇ût))∇hdx.

(4.3)

Taking the function ψ = 0 in (4.3), we see that the left-hand side of this relation is zero.
Therefore for all ψ, ∫

Ω

χEût
ψ(F+

M (∇ût)− F−
M (∇ût))∇hdx = 0, (4.4)

where χEût
is the characteristic function of Eût

.
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Fix x0 ∈ Ω and set

h(x) = φ(x)Bx,

ψ(x) to be the characteristic function of Eût
∩Br(x

0),

φ ∈ C∞
0 (Ω), φ(x) ≡ 1 in Bρ(x

0), B ∈ Rm×m
s , r ∈ (0, ρ).

Since the matrix B is arbitrary, formula (4.4) implies that∫

Br(x0)

χEût
(F+

M (∇ût)− F−
M (∇ût)) dx = 0 for all r ∈ (0, ρ).

Therefore the integrand vanishes at each of its Lebesgue points x0. Consequently,

F+
M (∇ût(x))− F−

M (∇ût(x)) = 0

almost everywhere in Eût
, which coincides with (4.1).

(2) Proof of statement (2.9) under condition (2.4). If condition (2.4) is satisfied, then equal-
ity (4.1) is satisfied almost everywhere on Eût if and only if |Eût | = 0.

(3) Determination of the value t for which equality (4.1) is possible in the case of [Aζ] ∈ Im[A]
and |Eût

| > 0. From the quadraticity of the energy densities F±(M), it follows that

〈A±ζ±, ζ±〉=F±(0)=F±(M −M)=F±(M)− F±
M (M)M+

1

2
F±
MM (M,M).

Then

t− t∗ = (F+(M)− F−(M) + t)− [FM (M)]M +
1

2
[FMM ](M,M).

Set M = ∇ût. Taking into account definition (2.8) of the set Eût and equality (4.1), we obtain

t−t∗=
1

2
[FMM ](e(∇ût), e(∇ût))

=〈[A]e(∇ût), e(∇ût)〉=〈[Aζ], e(∇ût)〉 almost everywhere on Eût
.

(4.5)

In some cases [2], the energy functional (1.2) can be simplified if the equality ζ+ = ζ− holds
true. When implementing this statement, we make use of the scheme proposed in [8].

Under our assumptions, there exists a solution ξ ∈ Rm×m
s of the linear equation

[A]ξ = [Aζ]. (4.6)

The presence of this solution makes it possible to represent the functional (1.2) in the following
way (the tensors of residual deformation are temporarily considered as its arguments):

I0[u, χ, t, ζ
±] = I0[u, χ, t

′, ξ] + |Ω|(〈A−ζ−, ζ−〈−〉A−ξ, ξ〉),
t′ = t+ [〈Aζ, ζ〉]− 〈[A]ξ, ξ〉. (4.7)

Obviously, the set of minimizers ût, χ̂t of the functional I0[u, χ, t
′, ξ] coincides with the set of

minimizers ût′ , χ̂t′ of the functional I0[u, χ, t
′, ξ], and

t∗ + [〈Aζ, ζ〉]− 〈[A]ξ, ξ〉 = t′∗ = −〈[A]ξ, ξ〉, t− t∗ = t′ − t′∗, Eût = Eût′ . (4.8)

Using (4.1) and (4.6), we obtain

〈[Aζ], e(∇ût)〉 = 〈[A]ξ, ξ〉 almost everywhere on Eût
. (4.9)

Integrating both sides of equalities (4.5) and (4.9) over the set Eût , taking into account the
positivity of its measure and the second relation of (4.8), we come to the conclusion that
t′− t′∗ = 〈[A]ξ, ξ〉. Then by the second equality, from the first relation of (4.8), we have t′ = 0.
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Thus,

for [Aζ] ∈ Im[A] the inequality |Eût′ | > 0 can be true only for t′ = 0. (4.10)

(4) Calculation of the minimizers of the functional I0[u, χ, 0, ξ]. We write I0[u, χ, 0, ξ] in two
different ways

I0[u, χ, 0, ξ] =

∫

Ω

{
F−(∇u) + χ(F+(∇u)− F−(∇u)

}
dx

=

∫

Ω

{
F+(∇u)− (1− χ)(F+(∇u)− F−(∇u)

}
dx.

Then

I0[u, χ, 0, ξ] − |Ω|〈A−ξ, ξ〉
=

∫

Ω

〈A−e(∇u), e(∇u)〉 +
∫

Ω

χ{〈[A]e(∇u), e(∇u)〉 − 2〈[A]ξ, e(∇u)〉 + 〈[A]ξ, ξ〉} dx,

I0[u, χ, 0, ξ] − |Ω|〈A+ξ, ξ〉
=

∫

Ω

〈A+e(∇u), e(∇u)〉 −
∫

Ω

(1− χ){〈[A]e(∇u), e(∇u)〉 − 2〈[A]ξ, e(∇u)〉+〈[A]ξ, ξ〉} dx.

Therefore,

I0[u, χ, 0, ξ] − |Ω|〈A−ξ, ξ〉
=

∫

Ω

{〈A−e(∇u), e(∇u)〉 + χ|[A]1/2(e(∇u) − ξ)|2} dx for [A] ≥ 0,

I0[u, χ, 0, ξ] − |Ω|〈A+ξ, ξ〉
=

∫

Ω

{〈A+e(∇u), e(∇u)〉 + (1− χ)|[−A]1/2(e(∇u) − ξ)|2} dx for [A] ≤ 0.

Consequently, the minimizers of the functional I0[u, χ, 0, ξ], i.e., the functions û0, χ̂0, have
the form

û0 ≡ 0, χ̂0 ≡ 0 for [A] ≥ 0 and [A]1/2ξ �= 0,

û0 ≡ 0, χ̂0 ≡ 1 for [A] ≤ 0 and [−A]1/2ξ �= 0.
(4.11)

(5) Proof of statement (2.9) under condition (2.5). Since t− < t+, from (1.9) it follows that
the matrix [A]ξ is nonzero on the solution of problem (4.6). By symmetry and assumptions on
the sign of the mappings [A], the quantity 〈[A]ξ, ξ〉 is nonzero, which proves the inequalities
in (4.11). Then the functional I0[u, χ, 0, ξ] has a unique (one for each of the signs of mapping
[A]) minimizer (4.11). Consequently, the function R(x, 0) = 〈[A]ξ, ξ〉, defined in (2.7), is
nonzero, which makes the realization of (4.10) impossible.

5. Proof of Theorem 3

(a) For fixed u and χ, the function I0[u, χ, t] is linear in t ∈ R. Consequently, function (2.10),
as the infimum of the family of concave functions, is concave. From the concavity and (2.11),
it follows that it is uniform Lipschitz. Therefore, i(.) ∈ W 1

∞,loc(R) and is locally absolutely

continuous. It has the Sobolev derivative Di(t), and for almost all t ∈ R, the classical deriva-
tive i′(t), and also i′(t) = Di(t) almost everywhere on R.
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Further arguments are traditional and are based only on the properties of concave functions.
For the sake of completeness, we discuss them briefly.

We fix a representative of the function Di(t) with a uniformly bounded module. Denote
by L′ the set of all Lebesgue points of this representative, i.e., the set of points t ∈ R for which

1

2h

t+h∫

t−h

|Di(ξ)−Di(t)| dξ → 0 as h → 0.

Averaging preserves the concavity property. Therefore, iρ(t) is a smooth concave function.
Hence, (iρ)

′(t2) ≤ (iρ)
′(t1) as t1 < t2. Since D(iρ) = (Di)ρ and (Di)ρ(t) → Di(t) as ρ → 0

and t ∈ L′, we arrive at the monotonicity of the Sobolev derivative,

Di(t2) ≤ Di(t1), for t1 < t2, t1, t2 ∈ L′. (5.1)

In view of the absolute continuity of the function i(t),

i(t+ h)− i(t)

h
=

1

h

t+h∫

t

Di(ξ) dξ.

Then as h → 0, for any t ∈ L′ we have∣∣∣ i(t+ h)− i(t)

h
−Di(t)

∣∣∣ ≤ 2
1

2|h|
∫

|t−ξ|<|h|
|Di(ξ)−Di(t)| dx → 0.

Consequently, at each point t ∈ L′ there exists a finite classical derivative and the equality
i′(t) = Di(t) is fulfilled.

Let t ∈ R and τ ∈ L′. From (5.1), it follows that the limits below exist and are finite:

lim
τ→t,τ<t

Di(τ) = α−, lim
τ→t,τ>t

Di(τ) = α+, α− ≥ α+. (5.2)

Since for ζ ∈ R, ζ �= t,

i(t)− i(ζ)

t− ζ
− α− =

1

t− ζ

t∫

ζ

(Di(ξ) − α−) dξ for ζ < t,

α+ − i(t) − i(ζ)

t− ζ
=

1

ζ − t

ζ∫

t

(α+ −Di(ξ)) dξ for ζ > t,

(5.3)

relations (5.2) imply the existence of the limits

i′(t− 0) = lim
ζ→t,ζ<t

i(t)− i(ζ)

t− ζ
= α−,

i′(t+ 0) = lim
ζ→t,ζ>t

i(t)− i(ζ)

t− ζ
= α+.

(5.4)

If α− = α+ = α, then at the point t there exists a finite classical derivative i′(t) = α.
We redefine the function Di(t) at these points by setting Di(t) = i′(t). Obviously, the set L′
contains only Lebesgue points of the redefined function. By virtue of the sign-definiteness
almost everywhere on the integration intervals of the integrands in (5.3), the points t, for
which α± = α, are also Lebesgue points of the redefined function. Denote by L the union
of L′ with these points. From (5.3), it follows that the points of R \L are not Lebesgue points
for it.
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For α+ = α−, relations (5.2) mean the continuity of the function i′(t) on the set L, and for
α+ < α−, they express the validity of (2.13).

Thus, the set L from Theorem 3(a) is the set of all Lebesgue points of a special representative
of the function Di(t).

(b) For an arbitrary t ∈ R and any solution ût0 , χ̂t0 of problem (1.4), for the functional
I[u, χ, t0] we have

i(t) ≤ I0[ût0 , χ̂t0 , t] = I0[ût0 , χ̂t0 , t0] + (t− t0)|Ω|Q̂(t0) = i(t0) + (t− t0)|Ω|Q̂(t0).

Consequently,

t(t)− i(t0)

t− t0
≤ |Ω|Q̂(t0) for t > t0,

i(t)− i(t0)

t− t0
≥ |Ω|Q̂(t0)| for t < t0.

For t0 ∈ L, the left-hand sides of the last inequalities have the same limit i′(t0). For t0 ∈ R\L,
these limits coincide with i′(t0 ± 0), respectively.

This research was supported by the RFBR grant No. 17-01-00678.

Translated by I. Ponomarenko.
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