V. G. Osmolovskii∗ UDC 517

The relationship between the volume fraction of one phase of an equilibrium two-phase medium and other characteristics of the equilibrium state is studied. Bibliography: 9 *titles.*

1. Introduction

In the quadratic approximation, the energy density of the deformation of each of the phases " \pm " of a two-phase elastic medium occupying the bounded domain $\Omega \subset \mathbb{R}^m$, $m \geq 1$, is given by the functions

$$
F^{\pm}(M) = \langle A^{\pm}(e(M) - \zeta^{\pm}), e(M) - \zeta^{\pm} \rangle, M \in R^{m \times m}, \quad e(M) = \frac{M + M^*}{2}, \quad \zeta^{\pm} \in R_s^{m \times m},
$$
(1.1)

where $R^{m \times m}$ is the space of $m \times m$ -matrices, $R_s^{m \times m}$ is the space of $m \times m$ -symmetric matrices, the quantity $\langle P, Q \rangle = \text{tr } P Q, P, Q \in R_s^{m \times m}$, is the scalar product in $R_s^{m \times m}$, and the linear maps $A^{\pm}: R_s^{m \times m} \to R_s^{m \times m}$ are symmetric and positive definite with respect to the specified scalar product.

The deformation energy functional corresponding to densities (1.1) is defined by

$$
I_0[u, \chi, t] = \int_{\Omega} \{ \chi(F^+(\nabla u) + t) + (1 - \chi)F^-(\nabla u) \} dx, \tag{1.2}
$$

where the m-dimensional vector-valued function $u(x)$ corresponds to the displacement field, $(\nabla u)_{ij} = u^i_{x_j}, e(\nabla u)$ is the tensor of deformation, and the matrices ζ^{\pm} and the parameter $t \in R$ are interpreted as the tensors of residual deformation and the temperature, respectively. The phase distribution in the domain Ω is given by the characteristic function $\chi(x)$, $x \in \Omega$; the phases with index "+" and "−" are located on the support of this function and its complement, respectively. As the domain of definition of functional (1.2), we take the sets

$$
u \in \mathbb{H}, \quad \chi \in \mathbb{Z}',
$$

\n $\mathbb{H} = \mathring{W}_2^1(\Omega, R^m), \quad \mathbb{Z}'$ is the set of all measurable characteristic functions. (1.3)

Under the equilibrium state of a two-phase medium for a fixed t, we mean the solution \hat{u}_t , $\widehat{\chi}_t$ of the variational problem

$$
I_0[\widehat{u}_t, \widehat{\chi}_t, t] = \inf_{u \in \mathbb{H}, \chi \in \mathbb{Z}'} I_0[u, \chi, t], \qquad \widehat{u}_t \in \mathbb{H}, \quad \widehat{\chi}_t \in \mathbb{Z}'. \tag{1.4}
$$

The equilibrium state \hat{u}_t , $\hat{\chi}_t$ is said to be single-phase if $\hat{\chi}_t \equiv 0$ or $\hat{\chi}_t \equiv 1$, and two-phase otherwise. Obviously, for a single-phase equilibrium state \hat{u}_t , $\hat{\chi}_t$, the equilibrium displacement field equals zero, $\hat{u}_t \equiv 0$.

The above described approach to determine the equilibrium displacement field \hat{u}_t and the equilibrium phase distribution $\hat{\chi}_t$ is traditional, see [4]. An extensive literature is devoted to investigation of problem (1.4) and those close to it (see [1,7] and references therein). Our goal

[∗]St.Petersburg State University, St.Petersburg, Russia, e-mail: victor.osmolovskii@gmail.com.

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 459, 2017, pp. 66–82. Original article submitted July 3, 2017.

is to study some properties of the volume fraction of the phase with the index "+" in the equilibrium state, i.e., the quantity

$$
\widehat{Q}(t) = \frac{1}{|\Omega|} \int_{\Omega} \widehat{\chi}_t(x) dx \tag{1.5}
$$

(here and below, the module of a set in \mathbb{R}^m denotes its m-dimensional Lebesgue measure) computed on all the solutions \hat{u}_t , $\hat{\chi}_t$ of problem (1.4) for a fixed value t. For a better understanding of the nature of quantity (1.5), we make several preliminary remarks.

For problem (1.4), it is known that there exist temperatures t_{\pm} of phase transitions that are independent of the domain Ω and satisfy the relations

$$
t_- \le t^* \le t_+, \quad t^* = -[\langle A\zeta, \zeta \rangle] \tag{1.6}
$$

 $([\alpha] = \alpha_+ - \alpha_-$ is the jump taking two values α_{\pm} of the quantity α , in (1.6) both equalities, if they are, hold simultaneously), and are characterized by the following conditions [6]:

if $t < t_−$, then

only the single-phase equilibrium with $\hat{\chi}_t \equiv 1$ is realized,

if $t>t_+$, then

only the single-phase equilibrium with
$$
\hat{\chi}_t \equiv 0
$$
 is realized, (1.7)

if $t = t_{+}$, then

there are single-phase equilibriums with $\hat{\chi}_t \equiv 0$ and $\hat{\chi}_t \equiv 1$, respectively,

if $t \in (t_-, t_+),$ then there are no single-phase equilibriums.

For $t \in (t,t_+)$, solutions (of course, two-phase solutions) may exist or not depending on the parameters of the problem $[2, 5]$. From what said, it follows that for quantity (1.5) ,

$$
\widehat{Q}(t) = 1 \quad \text{if} \quad t < t_{-}, \qquad \widehat{Q}(t) = 0 \quad \text{if} \quad t > t_{+}.\tag{1.8}
$$

There is a criterion for the coincidence of the temperatures t_{\pm} [8],

$$
t_{\pm} = t^* \quad \text{if and only if} \quad [A\zeta] = 0. \tag{1.9}
$$

In the case $[A\zeta] = 0$, functional (1.2) is of the form

$$
I_0[u, \chi, t] = |\Omega| \langle A^- \zeta^-, \zeta^- \rangle
$$

+
$$
\int_{\Omega} \left\{ \chi \langle A^+ e(\nabla u), e(\nabla u) \rangle + (1 - \chi) \langle A^- e(\nabla u), e(\nabla u) \rangle + (t - t^*) \chi \right\} dx.
$$
 (1.10)

Therefore for $t_{+} = t_{-}$, the set of all the solutions of problem (1.4) is exhausted by the relations

$$
\begin{aligned}\n\widehat{u}_t &\equiv 0 \quad \text{for all} \quad t \in R, \\
\widehat{\chi}_t &\equiv 1 \quad \text{for} \quad t < t^*, \\
\widehat{\chi}_t &\equiv 0 \quad \text{for} \quad t > t^*, \\
\widehat{\chi}_{t^*} &\text{is an arbitrary element of} \quad \mathbb{Z}'.\n\end{aligned} \tag{1.11}
$$

Consequently in the case $t_{+} = t_{-}$,

$$
\begin{aligned}\n\widehat{Q}(t) &\equiv 1 \quad \text{for} \quad t < t^*, \\
\widehat{Q}(t) &\equiv 0 \quad \text{for} \quad t > t^*, \\
\widehat{Q}(t^*) &\text{is an arbitrary number from the interval } [0, 1].\n\end{aligned}
$$
\n(1.12)

From (1.7) , (1.8) , and (1.12) , it follows that function (1.5) does not have to be definite for all values of t, and under certain conditions it can turn out to be many-valued.

2. Formulation of results

We give the formulations of the results to be proved below and comment on them.

(1) *Independence of quantity* (1.5) *from the domain* Ω. Since the phase transition temperatures (1.6) do not depend on the domain Ω , function (1.5) takes values (1.8) for $t \notin (t_-, t_+)$ in any domain. The description (1.12) does not also depend on the domain Ω . Therefore the change of domain is reflected in the function (1.5) (if does) on the interval (t_{t+}) only. Recall that the domain Ω in (1.2) is always considered as bounded.

Theorem 1. (a) If for $t = t_0$ problem (1.4) has a solution in some domain $\Omega = \omega$ with $|\partial \omega| = 0$ and such that $\hat{Q}(t_0) = Q_0$, then for $t = t_0$ problem (1.4) is solvable in an arbitrary *domain* Ω *and has a solution such that* $\widehat{Q}(t_0) = Q_0$ *.*

(b) If for $t = t_0$ problem (1.4) has solutions $\hat{u}_{t_0}^{(i)}$, $\hat{\chi}_{t_0}^{(i)}$, $i = 1, 2$, in some domain Ω with $|\partial\Omega|=0$, and $\hat{Q}(t_0)=Q_i$, $Q_1 < Q_2$, then in this domain there exists a solution \hat{u}_{t_0} , $\hat{\chi}_{t_0}$ with $any \ Q(t_0) \in (Q_1, Q_2).$

Statement (a) of the theorem leads to the independence of function (1.5) from the domain Ω . Statement (b) says about the structure of the possible ambiguity of this function, which is confirmed by description (1.12) in the case $t_$ = t_+ . For the densities

$$
m = 1
$$
, $F^{\pm}(M) = a_{\pm}(M - c_{\pm})^2$, $a_{\pm}, c_{\pm} \in R$, $a_{\pm} > 0$, (2.1)

$$
m \ge 2, \quad F^{\pm}(M) = a \operatorname{tr}(e(M) - c_{\pm}i)^{2} + b_{\pm} \operatorname{tr}^{2}(e(M) - c_{\pm}i),
$$

\n
$$
a, b_{\pm}, c_{\pm} \in R, \quad a > 0, \quad b_{\pm} \ge 0,
$$

\n
$$
i = \operatorname{th} i \operatorname{d} \operatorname{tr}(e(M) - e_{\pm}i) + b_{\pm} \operatorname{trace}(e(M))
$$
 (2.2)

i is the identity matrix in the space R^m ,

function (1.5) was found in explicit form in [7]. It turns out that for $t_ - < t_+$, it is single-valued. The situation changes if one takes into account the surface energy of the phase boundary, proportional to its area, in the energy functional, by replacing functional (1.2) with

$$
I[u, \chi, t, \sigma] = I_0[u, \chi, t] + \sigma S[\chi],
$$
\n(2.3)

where $S[\chi]$ is the area of the phase boundary for $\chi \in \mathbb{Z} = \mathbb{Z}' \cap BV(\Omega)$. For problem (1.4) with functional (2.3), the temperatures of the phase transitions $t_{\pm} = t_{\pm}(\sigma)$ are also introduced. The points $t = t_{\pm}(\sigma)$ are the points of multivaluedness for the function $\hat{Q}(t, \sigma)$, but (in any case for densities (2.1)) the set of values $\hat{Q}(t_{\pm}(\sigma), \sigma)$ for each of the signs consists of only two points, and does not fill the interval between them. For details, we refer to [7].

(2) *The connection between the equilibrium displacement field* \hat{u}_t *and the equilibrium phase distribution* $\hat{\chi}_t$. The following theorem discusses the question of the unique determination of one component from the pair $\{\widehat{u}_t, \widehat{\chi}_t\}$ through another.

Theorem 2. (a) *For any t, the function* \hat{u}_t *is uniquely determined by the function* $\hat{\chi}_t$ *.* (b) If $t_-=t_+$, but $t \neq t^*$ or $t_- < t_+$, and

$$
[A\zeta] \notin \text{Im}[A],\tag{2.4}
$$

or

$$
[A\zeta] \in \text{Im}[A] \quad \text{and either } [A] \ge 0, \text{ or } [A] \le 0,
$$
\n
$$
(2.5)
$$

then $\hat{\chi}_t$ *is uniquely determined by* \hat{u}_t *.*

Since the function \hat{u}_t is the minimizer of the functional $J[u, t] = I_0[u, \hat{\chi}_t, t]$, $u \in \mathbb{H}$, the first statement of the theorem follows from the strict convexity of this functional. To explain the second one, we rewrite functional (1.2) in the form

$$
I_0[u, \chi, t] = \int_{\Omega} F^{-}(\nabla u) dx + \int_{\Omega} \chi(F^{+}(\nabla u) - F^{-}(\nabla u) + t) dx.
$$
 (2.6)

From (2.6), it follows that

$$
\widehat{\chi}_t(x) = \begin{cases}\n1 & \text{if } R(x,t) < 0, \\
0 & \text{if } R(x,t) > 0, \\
R(x,t) = F^+(\nabla \widehat{u}_t(x)) - F^-(\nabla \widehat{u}_t(x)) + t,\n\end{cases}
$$
\n(2.7)

 $\widehat{\chi}_t(x)$ is an arbitrary characteristic function

can is an arbitrary characteristic function
on the set $E_{\hat{u}_t} = \{x \in \Omega : R(x, t) = 0\}.$ (2.8)

Owing to (1.11), in the case $t_{+} = t_{-}$ the equality $R(x,t) = t - t^*$ holds. Therefore, $|E_{\hat{u}_t}| = 0$ Owing to (1.11), in the case $t_{+} = t_{-}$ the equality $R(x,t) = t - t^*$ holds. Therefore, $|E_{\hat{u}_t}| = 0$ for $t_{+} = t_{-}$ and $t \neq t^*$, and $E_{\hat{u}_t} = \Omega$ for $t_{+} = t_{-}$ and $t = t^*$. Hence to prove the theorem it remains to verify that if (2.4) or (2.5) holds and $t_{-} < t_{+}$, then $|E_{\hat{u}}|$

$$
\text{if (2.4) or (2.5) holds and } t_{-} < t_{+}, \quad \text{then } |E_{\widehat{u}_{t}}| = 0 \text{ for any } t. \tag{2.9}
$$

Thus if the conditions of the theorem are satisfied, then function (1.5) cannot have two different values for the pair $\{\hat{u}_t, \hat{\chi}_t\}$ with fixed first component. By virtue of (1.11) and (1.12), if the condition (b) of the theorem is violated (i.e., for $t_ - = t_+$ and $t = t^*$), then $\hat{u}_{t^*} \equiv 0$, but the values of function (1.5) at the point $t = t^*$ fill the interval [0, 1].

(3) *Smooth dependence on the temperature of the equilibrium energy and the point of singlevaluedness of function* (1.5). For a fixed domain Ω , we set

$$
i(t) = \inf_{u \in \mathbb{H}, \chi \in \mathbb{Z}'} I_0[u, \chi, t].
$$
\n(2.10)

Function (2.10) is called the equilibrium energy of functional (1.2). If for $t = t_0$ problem (1.4) is solvable, then $i(t_0) = I_0[\hat{u}_{t_0}, \hat{\chi}_{t_0}, t_0]$ for any of its solutions $\hat{u}_{t_0}, \hat{\chi}_{t_0}$. Owing to (1.7),

$$
i(t) = |\Omega|(t + \langle A^+\zeta^+, \zeta^+ \rangle) \quad \text{for} \quad t \le t_-,
$$

\n
$$
t(t) = |\Omega|\langle A^-\zeta^-, \zeta^- \rangle \quad \text{for} \quad t \ge t_+.
$$
\n(2.11)

In the case $t_{+} = t_{-}$, the relation (2.11) can be refined as follows:

$$
i(t) = |\Omega|(t + \langle A^+ \zeta^+, \zeta^+ \rangle) \quad \text{for} \quad t \le t^*,
$$

\n
$$
i(t) = |\Omega| \langle A^- \zeta^-, \zeta^- \rangle \quad \text{for} \quad t \ge t^*.
$$
\n(2.12)

From the definition (1.6) of the number t^* , the continuity of function (2.12) follows.

Theorem 3. (a) *There exists a set of full measure* $\mathcal{L} \subset R$ *such that function* (2.10) *has a* finite classical derivative i'(t) in the points of this set; this derivative is continuous on $\mathcal L$ and *decreases monotonically. In each point* $t \in R \setminus \mathcal{L}$, function (2.10) has finite one-sided classical $derivatives i'(t-0) > i'(t+0)$ *, and also*

$$
i'(t-0) = \lim_{\substack{\tau \in \mathcal{L}, \\ \tau < t, \tau \to t}} i'(\tau), \quad i'(t+0) = \lim_{\substack{\tau \in \mathcal{L}, \\ \tau > t, \tau \to t}} i'(\tau). \tag{2.13}
$$

(b) *If problem* (1.4) *is solvable for a given* $t = t_0$ *, then for all its solutions* \hat{u}_{t_0} *,* $\hat{\chi}_{t_0}$ *,*

$$
|\Omega|\widehat{Q}(t_0) = i'(t_0) \quad \text{for} \quad t_0 \in \mathcal{L},
$$

\n
$$
|\Omega|\widehat{Q}(t_0) \in [i'(t_0 + 0), i'(t_0 - 0)] \quad \text{for} \quad t_0 \in E \setminus \mathcal{L}.
$$
\n(2.14)

422

For arbitrary energy densities in the case $t_-=t_+$, from (2.12) it follows that

$$
\mathcal{L} = R \setminus \{t^*\}, \quad i'(t) = |\Omega| \quad \text{for} \quad t < t^*,
$$

\n
$$
i'(t) = 0 \quad \text{for} \quad t > t^*,
$$

\n
$$
i'(t^* - 0) = |\Omega|, \quad i'(t^* + 0) = 0.
$$
\n(2.15)

Relations (1.12) and (2.15) confirm the statement of the theorem. For densities (2.1) , (2.2) with $t_{-} < t_{+}$, the function $i(t)$ can be written out in explicit form, see [7]. For this function, $\mathcal{L} = R$. The same holds for the density,

$$
F^{\pm}(M) = a \operatorname{tr}(e(M) - c_{\pm}P^{(k)})^{2},
$$

\n
$$
M \in R^{m \times m}, \quad a, c_{\pm} \in R, \quad a > 0, \quad 1 \le k < m,
$$
\n(2.16)

where $P^{(k)}$ is an orthoprojector in R^m onto a k-dimensional subspace. However if $t \in (t,t_+),$ then problem (1.4) does not have solutions for these densities [8].

3. Proof of Theorem 1

(a) Given a domain ω , we construct a family of domains

$$
\omega_{\xi,\lambda} = \{ x \in R^m : x = \lambda \tilde{x} + \xi, \, \tilde{x} \in \omega \}, \quad \lambda > 0, \quad \xi \in R^m,
$$
\n(3.1)

obtained from ω by a stretching in λ times and a subsequent shift to the vector ξ . Let us define sets \mathbb{H}, \mathbb{Z}' and consider the domains of the functions u and χ as arguments of the functional I_0 . Given $u \in \mathbb{H}(\omega)$ and $\chi \in \mathbb{Z}'(\omega)$, we define the functions

$$
u^{\xi,\lambda}(x) = \lambda u(\tilde{x}), \quad \chi^{\xi,\lambda}(x) = \chi(\tilde{x}), \quad \tilde{x} \in \omega, \quad x = \lambda \tilde{x} + \xi \in \omega_{\xi,\lambda}.
$$
 (3.2)

Obviously, $u^{\xi,\lambda} \in \mathbb{H}(\omega_{\xi,\lambda}), \chi^{\xi,\lambda} \in \mathbb{Z}'(\omega_{\xi,\lambda})$, and every function from $\mathbb{H}(\omega_{\xi,\lambda})$ and $\mathbb{Z}'(\omega_{\xi,\lambda})$ is obtained with the help of procedure (3.2) from some function from $\mathbb{H}(\omega)$ and $\mathbb{Z}'(\omega)$, respectively.

After changing coordinates, we have

$$
I_0[u^{\xi,\lambda}, \chi^{\xi,\lambda}, t, \omega_{\xi,\lambda}] = \lambda^m I_0[u, \chi, t, \omega].
$$
\n(3.3)

Since $|\omega_{\xi,\lambda}| = \lambda^m |\omega|$, from (3.3) it follows that

$$
\frac{1}{|\omega_{\xi,\lambda}|}I_0[u^{\xi,\lambda},\chi^{\xi,\lambda},t,\omega_{\xi,\lambda}] = \frac{1}{|\omega|}I_0[u,\chi,t,\omega].
$$
\n(3.4)

The quasi-convex hull $\mathcal{F}(M, t)$ of the function

$$
F_{\min}(M, t) = \min\{F^+(M) + t, F^-(M)\}
$$

does not depend on the domain ω and is defined by the equality

$$
\mathcal{F}(M,t) = \inf_{\substack{u \in \mathbb{H}(\omega), \\ \chi \in \mathbb{Z}'(\omega)}} \frac{1}{|\omega|} \int_{\omega} \left\{ \chi(F^+(M+\nabla u)+t) + (1-\chi)F^-(M+\nabla u) \right\} dx, \quad M \in \mathbb{R}^{m \times m},
$$
 (3.5)

see [3]. Then $\hat{u}_{t_0} \in \mathbb{H}(\omega)$, $\hat{\chi}_{t_0} \in \mathbb{Z}'(\omega)$ is a solution of problem (1.4) for the functional $I_0[u] \times I_0[\omega]$ if and only if $I_0[u, \chi, t_0, \omega]$ if and only if

$$
I_0[\widehat{u}_{t_0}, \widehat{\chi}_{t_0}, t_0, \omega] = |\omega| \mathcal{F}(0, t_0).
$$
\n(3.6)

In view of (3.4) ,

$$
I_0[\hat{u}_{t_0}^{\xi,\lambda}, \hat{\chi}_{t_0}^{\xi,\lambda}, \omega_{\xi,\lambda}] = |\omega_{\xi,\lambda}| \mathcal{F}(0, t_0). \tag{3.7}
$$

423

Therefore the pair $\widehat{u}_{t_0}^{\xi,\lambda} \in \mathbb{H}(\omega_{\xi,\lambda}), \widehat{\chi}_{t_0}^{\xi,\lambda} \in \mathbb{Z}'(\omega_{\xi,\lambda})$ is a solution of problem (1.4) for the functional $I_0[u, \chi, t_0, \psi_{\xi,\lambda}]$. Taking into account (3.1) and (3.2), we have functional $I_0[u, \chi, t_0, \omega_{\xi,\lambda}]$. Taking into account (3.1) and (3.2), we have

$$
\frac{1}{|\omega|} \int_{\omega} \widehat{\chi}_{t_0}(\widetilde{x}) d\widetilde{x} = \frac{1}{|\omega_{\xi,\lambda}|} \int_{\omega_{\xi,\lambda}} \widehat{\chi}_{t_0}^{\xi,\lambda}(x) dx,
$$
\n
$$
\int_{\omega_{\xi,\lambda}} |\nabla \widehat{u}_{t_0}^{\xi,\lambda}(x)|^2 dx = \lambda^m \int_{\omega} |\nabla \widehat{u}_{t_0}(\widetilde{x})|^2 d\widetilde{x} = \frac{|\omega_{\xi,\lambda}|}{|\omega|} \int_{\omega} |\nabla \widehat{u}_{t_0}(\widetilde{x})|^2 d\widetilde{x}.
$$
\n(3.8)

From the first relation of (3.8), it follows that quantity (1.5) for the solutions $\hat{u}_{t_0} \in \mathbb{H}(\omega)$,
 $\hat{u}_{t_0} \in \mathbb{H}(\omega)$ and $\hat{u}_{t_0} \in \mathbb{H}(\omega)$, $\hat{u}_{t_0} \in \mathbb{H}(\omega)$ is the same $\widehat{\chi}_{t_0} \in \mathbb{Z}'(\omega)$ and $\widehat{u}_{t_0}^{\xi,\lambda} \in \mathbb{H}(\omega_{\xi,\lambda}), \widehat{\chi}_{t_0}^{\xi,\lambda} \in \mathbb{Z}'(\omega_{\xi,\lambda})$ is the same.
From definition (3.1) of the domains ω , it follows that

From definition (3.1) of the domains $\omega_{\xi,\lambda}$, it follows that the sets $\bar{\omega}_{\xi,\lambda}$ satisfy all the requirements in [9, Chap. 4, Sec. 3] for constructing the Vitali cover of an arbitrary domain $\Omega \subset \mathbb{R}^m$: namely, there exist $\lambda = \lambda^i$, $\xi = \xi^i$, $i = 1, 2, \ldots$, for which $E^i = \bar{\omega}^i$ and $\omega^i = \omega_{\xi^i, \lambda^i}$ are such that

$$
E^i \subset \Omega, \qquad E^i \cap E^j = \varnothing \quad \text{for} \quad i \neq j, \qquad |\Omega \setminus \cup_i E^i| = 0. \tag{3.9}
$$

Since $|\partial \omega^i| = 0$, we have $|E^i| = |\omega^i|$ for all *i*. Therefore,

$$
|\Omega| = \Sigma_i |E^i| = \Sigma_i |\omega^i|.
$$
\n(3.10)

.

Set

$$
u^{(i)}(x) = \widehat{u}^{\xi^i, \lambda^i}_{t_0}(x), \quad \chi^{(i)}(x) = \widehat{\chi}^{\xi^i, \lambda^i}_{t_0}(x), \qquad x \in \omega^i
$$

Denote by $\bar{u}^{(1)}$, $\bar{\chi}^{(i)}$ the extension of these functions by zero to the domain Ω . Obviously, $\bar{u}^{(i)} \in \mathbb{H}(\Omega)$ and $\bar{\chi}^{(i)} \in \mathbb{Z}'(\Omega)$. From (3.8) and (3.10), it follows that the series

$$
\bar{u} = \Sigma_i \bar{u}^{(i)}, \quad \bar{\chi} = \Sigma_i \bar{\chi}^{(i)}
$$

converge in the spaces $\mathbb{H}(\Omega)$ and $L_1(\Omega)$, respectively. Consequently, $\bar{u} \in \mathbb{H}(\Omega)$ and $\bar{\chi} \in \mathbb{Z}'(\Omega)$. In view of (3.10) ,

$$
\frac{1}{|\Omega|} \int_{\Omega} \bar{\chi}(x) dx = \frac{1}{|\omega|} \int_{\omega} \widehat{\chi}_{t_0}(\widetilde{x}) d\widetilde{x}.
$$
 (3.11)

Taking into account (3.7) and (3.10), we obtain

 \overline{u}

$$
I_0[\bar{u}, \bar{\chi}, t_0, \Omega] = \Sigma_i I_0[u^{(i)}, \chi^{(i)}, t_0, \omega^i] = (\Sigma_i|\omega^i|)\mathcal{F}(0, t_0) = |\Omega|\mathcal{F}(0, t_0).
$$
 (3.12)

Therefore, the pair \bar{u} , $\bar{\chi}$ is a solution of problem (1.4) for the functional $I_0[u, \chi, t_0, \Omega]$. By (3.11), quantities (1.5) for this and initial functionals \hat{u}_{t_0} and $\hat{\chi}_{t_0}$, in the domains Ω and ω , respectively, coincide.

(b) For each $\nu \in R$, we divide the domain Ω by the hyperplane

$$
T_{e,\nu}=\{x\in R^m:\,x\cdot e=\nu\},\quad e\in R^m,\quad |e|=1
$$

into the two parts

$$
\Omega_+^{\nu} = \{ x \in \Omega : x \cdot e > \nu \}, \quad \Omega_-^{\nu} = \{ x \in \Omega : x \cdot e < \nu \}.
$$

Obviously, the Ω^{ν}_{\pm} are open sets, $|\Omega^{\nu}_{+}|$ depends on ν continuously, and $|\Omega| = |\Omega^{\nu}_{+}| + |\Omega^{\nu}_{-}|$. Then for any $\mu \in [0, 1]$, there exists ν such that $|\Omega^{\nu}_{+}| = \mu |\Omega|$ and $|\Omega^{\nu}_{-}| = (1 - \mu)| |\Omega|$.

In the sequel, we use the technique used in the proof of the part (a) of the theorem and the notation from the statement of the part (b) .

For each connected component ω_+^i of the set Ω_+^{ν} , we construct a solution \bar{u}_i^+ , $\bar{\chi}_i^+$ of problem (1.4) for the functional $I_0[u, \chi, t_0, \omega_+^i]$ with quantity (1.5) equal to Q_1 . For each connected component ω^i_- of the set Ω^{ν}_- , let \bar{u}_i^- , $\bar{\chi}^-_i$ be a solution of problem (1.4) for the functional $I_0[u, \chi, t_0, \omega^i]$ with quantity (1.5) equal to Q_2 . Analogously to (3.12), we arrive at the conclusion that the pair $\hat{u}_{t_0}^{(3)}$, $\hat{\chi}_{t_0}^{(3)}$ such that

$$
\begin{aligned}\n\widehat{u}_{t_0}^{(3)}(x) &= \bar{u}_i^+(x), \quad \widehat{\chi}_{t_0}^{(3)}(x) = &= \bar{\chi}_i^+(x) \quad \text{for} \quad x \in \omega_+^i, \\
\widehat{u}_{t_0}^{(3)}(x) &= \bar{u}_i^-(x), \quad \widehat{\chi}_{t_0}^{(3)}(x) = &= \bar{\chi}_i^-(x) \quad \text{for} \quad x \in \omega_-^i.\n\end{aligned}
$$

is a solution of problem (1.4) for the functional $I_0[u, \chi, t_0, \Omega]$ for which

$$
|\Omega|Q_3 = \int_{\Omega} \widehat{\chi}_{t_0}^{(3)} dx = \sum_{i} \int_{\omega_+^i} \bar{\chi}_i^+ dx + \sum_{i} \int_{\omega_-^i} \bar{\chi}_i^- dx = Q_1 \Sigma_i |\omega_+^i| + Q_2 \Sigma_i |\omega_-^i|
$$

= $Q_1 |\Omega_+^{\nu}| + Q_2 |\Omega_-^{\nu}| = |\Omega| (\mu Q_1 + (1 - \mu) Q_2).$

4. Proof of Theorem 2

As has already been established, only statement (2.9) needs justification. We divide the proof into a number of steps. For a number of step

(1) *For almost all* $x \in E_{\hat{u}_t}$,

$$
[A]e(\nabla \widehat{u}_t(x)) = [A\zeta].\tag{4.1}
$$

Let the pair \hat{u}_t , $\hat{\chi}_t$ minimize functional (1.2) rewritten in the form

$$
I_0[u, \chi, t] = \int_{\Omega} F^{-}(\nabla u) dx + \int_{\Omega \setminus E_{\widehat{u}_t}} \chi(F^{+}(\nabla u) - F^{-}(\nabla u) + t) dx
$$

+
$$
\int_{E_{\widehat{u}_t}} \chi(F^{+}(\nabla u) - F^{-}(\nabla u) + t) dx.
$$
 (4.2)

Then the pair \widehat{u}_t , $\widehat{\chi}'_t$,

Then the pair
$$
\hat{u}_t
$$
, $\hat{\chi}'_t$,
\n $\hat{\chi}'_t(x) = \hat{\chi}_t(x)$ for $x \in \Omega \setminus E_{\hat{u}_t}$, $\hat{\chi}'_t(x) = \psi(x)$ for $x \in E_{\hat{u}_t}$,
\nwith any measurable function ψ characteristic on $E_{\hat{u}_t}$ also minimizes this functional. Varying

functional (4.2) over u at the point \hat{u}_t , $\hat{\chi}'_t$, we arrive at the conclusion that for all $h \in \mathbb{H}$ (the subscript of F^{\pm} means the derivative with respect to the matrix argument M) subscript of F^{\pm} means the derivative with respect to the matrix argument M),

$$
\int_{\Omega} F_M^-(\nabla \widehat{u}_t) \nabla h \, dx + \int_{\Omega \setminus E_{\widehat{u}_t}} \widehat{\chi}_t(F_M^+(\nabla \widehat{u}_t) - F_M^-(\nabla \widehat{u}_t)) \nabla h \, dx
$$
\n
$$
= - \int_{E_{\widehat{u}_t}} \psi(F_M^+(\nabla \widehat{u}_t) - F_M^-(\nabla \widehat{u}_t)) \nabla h \, dx.
$$
\n(4.3)

Taking the function $\psi = 0$ in (4.3), we see that the left-hand side of this relation is zero. Therefore for all ψ ,

$$
\int_{\Omega} \chi_{E_{\widehat{u}_t}} \psi(F_M^+(\nabla \widehat{u}_t) - F_M^-(\nabla \widehat{u}_t)) \nabla h \, dx = 0,\tag{4.4}
$$

 $\stackrel{\textit{J}}{\Omega} \textit{where $\chi_{E_{\widehat{u}_t}}$ is the characteristic function of $E_{\widehat{u}_t}$}.$

Fix $x^0 \in \Omega$ and set

$$
h(x) = \phi(x)Bx,
$$

\n
$$
\psi(x)
$$
 to be the characteristic function of $E_{\hat{u}_t} \cap B_r(x^0),$
\n
$$
\phi \in C_0^{\infty}(\Omega), \quad \phi(x) \equiv 1 \quad \text{in} \quad B_{\rho}(x^0), \quad B \in R_s^{m \times m}, \quad r \in (0, \rho).
$$

Since the matrix B is arbitrary, formula (4.4) implies that

$$
\int_{B_r(x^0)} \chi_{E_{\widehat{u}_t}}(F_M^+(\nabla \widehat{u}_t) - F_M^-(\nabla \widehat{u}_t)) dx = 0 \text{ for all } r \in (0, \rho).
$$

Therefore the integrand vanishes at each of its Lebesgue points x^0 . Consequently,

$$
F_M^+(\nabla \widehat{u}_t(x)) - F_M^-(\nabla \widehat{u}_t(x)) = 0
$$

 $F_M^+(\nabla \widehat{u}_t(x)) - F_M^-(\nabla \widehat{u}$ almost everywhere in $E_{\widehat{u}_t},$ which coincides with (4.1).

(2) *Proof of statement* (2.9) *under condition* (2.4). If condition (2.4) is satisfied, then equality (4.1) is satisfied almost everywhere on $E_{\hat{u}_t}$ if and only if $|E_{\hat{u}_t}| = 0$. ity (4.1) is satisfied almost everywhere on $E_{\hat{u}_t}$ if and only if $|E_{\hat{u}_t}| = 0$.

(3) *Determination of the value t for which equality* (4.1) *is possible in the case of* $[A\zeta] \in \text{Im}[A]$ (3) Determination of the value t for which equality (4.1) is possible in the case of $[A\zeta$ and $|E_{\hat{u}_t}| > 0$. From the quadraticity of the energy densities $F^{\pm}(M)$, it follows that

$$
\langle A^{\pm} \zeta^{\pm}, \zeta^{\pm} \rangle = F^{\pm}(0) = F^{\pm}(M - M) = F^{\pm}(M) - F^{\pm}_M(M)M + \frac{1}{2} F^{\pm}_{MM}(M, M).
$$

Then

$$
t - t^* = (F^+(M) - F^-(M) + t) - [F_M(M)]M + \frac{1}{2}[F_{MM}](M, M).
$$

Set $M = \nabla \hat{u}_t$. Taking into account definition (2.8) of the set $E_{\hat{u}_t}$ and equality (4.1), we obtain

$$
t - t^* = \frac{1}{2} [F_{MM}] (e(\nabla \widehat{u}_t), e(\nabla \widehat{u}_t))
$$

= $\langle [A] e(\nabla \widehat{u}_t), e(\nabla \widehat{u}_t) \rangle = \langle [A\zeta], e(\nabla \widehat{u}_t) \rangle$ almost everywhere on $E_{\widehat{u}_t}$. (4.5)

In some cases [2], the energy functional (1.2) can be simplified if the equality $\zeta^+ = \zeta^-$ holds true. When implementing this statement, we make use of the scheme proposed in [8].

Under our assumptions, there exists a solution $\xi \in R_s^{m \times m}$ of the linear equation

$$
[A]\xi = [A\zeta].\tag{4.6}
$$

The presence of this solution makes it possible to represent the functional (1.2) in the following way (the tensors of residual deformation are temporarily considered as its arguments):

$$
I_0[u, \chi, t, \zeta^{\pm}] = I_0[u, \chi, t', \xi] + |\Omega|(\langle A^- \zeta^-, \zeta^- \langle - \rangle A^- \xi, \xi \rangle),
$$

\n
$$
t' = t + [\langle A\zeta, \zeta \rangle] - \langle [A] \xi, \xi \rangle.
$$
\n(4.7)

Obviously, the set of minimizers \hat{u}_t , $\hat{\chi}_t$ of the functional $I_0[u, \chi, t', \xi]$ coincides with the set of minimizers \hat{u}_t , $\hat{\chi}_t$ of the functional $I_0[u, \chi, t', \xi]$ and minimizers \hat{u}_{t} , $\hat{\chi}_{t'}$ of the functional $I_0[u, \chi, t', \xi]$, and

izers
$$
\widehat{u}_{t'}
$$
, $\widehat{\chi}_{t'}$ of the functional $I_0[u, \chi, t', \xi]$, and
\n
$$
t^* + [\langle A\zeta, \zeta \rangle] - \langle [A]\xi, \xi \rangle = t'^* = -\langle [A]\xi, \xi \rangle, \quad t - t^* = t' - t'^*, \quad E_{\widehat{u}_t} = E_{\widehat{u}_{t'}}.
$$
\n(4.8)

Using (4.1) and (4.6) , we obtain

Using (4.1) and (4.6), we obtain
\n
$$
\langle [A\zeta], e(\nabla \hat{u}_t) \rangle = \langle [A]\xi, \xi \rangle \quad \text{almost everywhere on} \quad E_{\hat{u}_t}.
$$
\n(4.9)
\nIntegrating both sides of equalities (4.5) and (4.9) over the set $E_{\hat{u}_t}$, taking into account the

positivity of its measure and the second relation of (4.8), we come to the conclusion that $t'-t'^* = \langle [A]\xi, \xi \rangle$. Then by the second equality, from the first relation of (4.8), we have $t' = 0$.

426

Thus,

for
$$
[A\zeta] \in \text{Im}[A]
$$
 the inequality $|E_{\hat{u}_{t'}}| > 0$ can be true only for $t' = 0$. (4.10)

(4) *Calculation of the minimizers of the functional* $I_0[u, \chi, 0, \xi]$. We write $I_0[u, \chi, 0, \xi]$ in two different ways

$$
I_0[u, \chi, 0, \xi] = \int_{\Omega} \left\{ F^{-}(\nabla u) + \chi(F^{+}(\nabla u) - F^{-}(\nabla u) \right\} dx
$$

=
$$
\int_{\Omega} \left\{ F^{+}(\nabla u) - (1 - \chi)(F^{+}(\nabla u) - F^{-}(\nabla u) \right\} dx.
$$

Then

$$
I_0[u, \chi, 0, \xi] - |\Omega| \langle A^- \xi, \xi \rangle
$$

= $\int_{\Omega} \langle A^- e(\nabla u), e(\nabla u) \rangle + \int_{\Omega} \chi \{ \langle [A]e(\nabla u), e(\nabla u) \rangle - 2 \langle [A] \xi, e(\nabla u) \rangle + \langle [A] \xi, \xi \rangle \} dx,$

$$
I_0[u, \chi, 0, \xi] - |\Omega| \langle A^+ \xi, \xi \rangle
$$

= $\int_{\Omega} \langle A^+ e(\nabla u), e(\nabla u) \rangle - \int_{\Omega} (1 - \chi) \{ \langle [A]e(\nabla u), e(\nabla u) \rangle - 2 \langle [A] \xi, e(\nabla u) \rangle + \langle [A] \xi, \xi \rangle \} dx.$

Therefore,

$$
I_0[u, \chi, 0, \xi] - |\Omega| \langle A^- \xi, \xi \rangle
$$

=
$$
\int_{\Omega} {\{\langle A^- e(\nabla u), e(\nabla u) \rangle + \chi |[A]^{1/2} (e(\nabla u) - \xi)|^2 \} dx \text{ for } [A] \ge 0,
$$

$$
I_0[u, \chi, 0, \xi] - |\Omega| \langle A^+ \xi, \xi \rangle
$$

=
$$
\int_{\Omega} {\{\langle A^+ e(\nabla u), e(\nabla u) \rangle + (1 - \chi)|[-A]^{1/2} (e(\nabla u) - \xi)|^2 \} dx \text{ for } [A] \le 0.
$$

Consequently, the minimizers of the functional $I_0[u, \chi, 0, \xi]$, i.e., the functions \hat{u}_0 , $\hat{\chi}_0$, have the form

$$
\widehat{u}_0 \equiv 0, \ \widehat{\chi}_0 \equiv 0 \quad \text{for} \quad [A] \ge 0 \quad \text{and} \quad [A]^{1/2} \xi \ne 0,
$$

\n $\widehat{u}_0 \equiv 0, \ \widehat{\chi}_0 \equiv 1 \quad \text{for} \quad [A] \le 0 \quad \text{and} \quad [-A]^{1/2} \xi \ne 0.$ \n(4.11)

(5) *Proof of statement* (2.9) *under condition* (2.5). Since $t- < t_+$, from (1.9) it follows that the matrix $[A]\xi$ is nonzero on the solution of problem (4.6). By symmetry and assumptions on the sign of the mappings [A], the quantity $\langle [A] \xi, \xi \rangle$ is nonzero, which proves the inequalities in (4.11). Then the functional $I_0[u, \chi, 0, \xi]$ has a unique (one for each of the signs of mapping [A]) minimizer (4.11). Consequently, the function $R(x, 0) = \langle [A] \xi, \xi \rangle$, defined in (2.7), is nonzero, which makes the realization of (4.10) impossible.

5. Proof of Theorem 3

(a) For fixed u and χ , the function $I_0[u, \chi, t]$ is linear in $t \in R$. Consequently, function (2.10), as the infimum of the family of concave functions, is concave. From the concavity and (2.11), it follows that it is uniform Lipschitz. Therefore, $i(.) \in W^1_{\infty,loc}(R)$ and is locally absolutely continuous. It has the Sobolev derivative $Di(t)$, and for almost all $t \in R$, the classical derivative $i'(t)$, and also $i'(t) = Di(t)$ almost everywhere on R.

Further arguments are traditional and are based only on the properties of concave functions. For the sake of completeness, we discuss them briefly.

We fix a representative of the function $Di(t)$ with a uniformly bounded module. Denote by \mathcal{L}' the set of all Lebesgue points of this representative, i.e., the set of points $t \in \mathbb{R}$ for which

$$
\frac{1}{2h} \int\limits_{t-h}^{t+h} |Di(\xi) - Di(t)| d\xi \to 0 \quad \text{as} \quad h \to 0.
$$

Averaging preserves the concavity property. Therefore, $i_{\rho}(t)$ is a smooth concave function. Hence, $(i_\rho)'(t_2) \leq (i_\rho)'(t_1)$ as $t_1 < t_2$. Since $D(i_\rho) = (Di)_\rho$ and $(Di)_\rho(t) \to Di(t)$ as $\rho \to 0$ and $t \in \mathcal{L}'$, we arrive at the monotonicity of the Sobolev derivative,

> $Di(t_2) \leq Di(t_1)$, for $t_1 < t_2$, $t_1, t_2 \in \mathcal{L}'$. (5.1)

In view of the absolute continuity of the function $i(t)$,

$$
\frac{i(t+h)-i(t)}{h} = \frac{1}{h} \int_{t}^{t+h} Di(\xi) d\xi.
$$

Then as $h \to 0$, for any $t \in \mathcal{L}'$ we have

$$
\left|\frac{i(t+h)-i(t)}{h}-Di(t)\right|\leq 2\frac{1}{2|h|}\int\limits_{|t-\xi|<|h|}|Di(\xi)-Di(t)|\,dx\to 0.
$$

Consequently, at each point $t \in \mathcal{L}'$ there exists a finite classical derivative and the equality $i'(t) = Di(t)$ is fulfilled.

Let $t \in \hat{R}$ and $\tau \in \mathcal{L}'$. From (5.1), it follows that the limits below exist and are finite:

$$
\lim_{\tau \to t, \tau < t} Di(\tau) = \alpha_-, \quad \lim_{\tau \to t, \tau > t} Di(\tau) = \alpha_+, \quad \alpha_- \ge \alpha_+.\tag{5.2}
$$

Since for $\zeta \in R$, $\zeta \neq t$,

$$
\frac{i(t) - i(\zeta)}{t - \zeta} - \alpha_{-} = \frac{1}{t - \zeta} \int_{\zeta}^{t} (Di(\xi) - \alpha_{-}) d\xi \quad \text{for} \quad \zeta < t,
$$

$$
\alpha_{+} - \frac{i(t) - i(\zeta)}{t - \zeta} = \frac{1}{\zeta - t} \int_{t}^{\zeta} (\alpha_{+} - Di(\xi)) d\xi \quad \text{for} \quad \zeta > t,
$$
 (5.3)

relations (5.2) imply the existence of the limits

$$
i'(t-0) = \lim_{\zeta \to t, \zeta < t} \frac{i(t) - i(\zeta)}{t - \zeta} = \alpha_-,
$$
\n
$$
i'(t+0) = \lim_{\zeta \to t, \zeta > t} \frac{i(t) - i(\zeta)}{t - \zeta} = \alpha_+.
$$
\n
$$
(5.4)
$$

If $\alpha_-=\alpha_+ = \alpha$, then at the point t there exists a finite classical derivative $i'(t) = \alpha$. We redefine the function $Di(t)$ at these points by setting $Di(t) = i'(t)$. Obviously, the set \mathcal{L}' contains only Lebesgue points of the redefined function. By virtue of the sign-definiteness almost everywhere on the integration intervals of the integrands in (5.3) , the points t, for which $\alpha_+ = \alpha$, are also Lebesgue points of the redefined function. Denote by $\mathcal L$ the union of \mathcal{L}' with these points. From (5.3), it follows that the points of $R \setminus \mathcal{L}$ are not Lebesgue points for it.

For $\alpha_+ = \alpha_-$, relations (5.2) mean the continuity of the function $i'(t)$ on the set \mathcal{L} , and for $\alpha_+ < \alpha_-,$ they express the validity of (2.13).

Thus, the set $\mathcal L$ from Theorem 3(a) is the set of all Lebesgue points of a special representative of the function $Di(t)$.

(b) For an arbitrary $t \in R$ and any solution \hat{u}_{t_0} , $\hat{\chi}_{t_0}$ of problem (1.4), for the functional $I[u, \chi, t_0]$ we have

 $i(t) \leq I_0[\hat{u}_{t_0}, \hat{\chi}_{t_0}, t] = I_0[\hat{u}_{t_0}, \hat{\chi}_{t_0}, t_0] + (t - t_0)|\Omega|\hat{Q}(t_0) = i(t_0) + (t - t_0)|\Omega|\hat{Q}(t_0).$

Consequently,

$$
\frac{t(t) - i(t_0)}{t - t_0} \leq |\Omega|\widehat{Q}(t_0) \quad \text{for} \quad t > t_0,
$$

$$
\frac{i(t) - i(t_0)}{t - t_0} \geq |\Omega|\widehat{Q}(t_0)| \quad \text{for} \quad t < t_0.
$$

For $t_0 \in \mathcal{L}$, the left-hand sides of the last inequalities have the same limit $i'(t_0)$. For $t_0 \in R \setminus \mathcal{L}$, these limits coincide with $i'(t_0 \pm 0)$, respectively.

This research was supported by the RFBR grant No. 17-01-00678.

Translated by I. Ponomarenko.

REFERENCES

- 1. G. Allaire, *Shape Optimization by the Homogenization Method*, Springer-Verlag, New York (2002).
- 2. G. Allaire and V. Lods, "Minimizers for double-well problem with affine boundary conditions," *Proc. Roy. Soc. Edinburgh Sect.*, **129A**, No. 3, 439–466 (1999).
- 3. B. Dacorogna, *Direct Methods in the Calculus of Variations*, Springer-Verlag, Berlin (1989).
- 4. M. A. Grinfeld, *Methods of Continuum Mechanics in the Theory of Phase Transitions* [in Russian], Nauka, Moscow (1990).
- 5. V. G. Osmolovskii, "Exact solutions to the variational problem of the phase transition theory in continuum mechanics," *J. Math. Sci.*, **120**, 1167–1190 (2004).
- 6. V. G. Osmolovskii, "Independence of temperature of phase transitions of the domain occupied by a two-phase elastic medium," *J. Math. Sci.*, **186**, No. 2, 302–306 (2012).
- 7. V. G. Osmolovskii, "Mathematical problems of the theory of phase transitions in a mechanics of continua," *St. Petersburg Mathematical Society Preprint*, No. 4 (2014), http: //www. mathsoc. spb.ru /preprint /2014/ index.html.
- 8. V. G. Osmolovskii, "Computation of phase transition temperatures for anisotropic model of a two-phase elastic medium," *J. Math. Sci.*, **216**, No. 2, 313–324 (2016).
- 9. S. Saks, *Theory of the Integral*, Hafner Publ. Co, New York (1938).