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ON THE ASYMPTOTIC PROPERTIES OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL
EQUATIONS WITH LINEARLY TRANSFORMED ARGUMENT

D. V. Bel’skii and G. P. Pelyukh UDC 517.929

We establish new properties the of solutions of functional-differential equation with linearly transformed
argument

In the present paper, we consider an equation

x0.t/ D ax.t/C bx.qt/C cx0.qt/; (1)

where fa; b; cg ⇢ R and 0 < q < 1: Special cases of this equation were studied by numerous mathematicians.
Thus, the asymptotic properties of solutions of the equation y0.x/ D ay.�x/Cby.x/ were investigated in [1], new
properties of solutions of the equation y0.x/ D ay.�x/ were obtained in [2], the conditions for the existence of
analytic almost periodic solutions of the equation y0.x/ D ay.�x/Cby.x/were established in [3], a representation
of the general solution of Eq. (1) for jcj > 1 was constructed in [4], a series of new results on the existence of
bounded and finite solutions of equations with linearly transformed argument was obtained in [5], the behavior
of solutions of Eq. (1) in a neighborhood of the point t D 0 was studied in [6], the existence of solutions of the
equation x0.t/ D F.x.2t//with periodic modulus was proved in [7], and Eq. (1) was investigated for a D 0 in [11]
and for a < 0 in [12]. Nevertheless, despite these results and extensive applications of the analyzed equations in
various fields of science and engineering (see [8] and the references therein), numerous problems of the theory of
the functional-differential equation (1) are studied quite poorly. First of all, this is true for the asymptotic properties
of solutions of this equation as t ! C1:

In what follows, we need the following particular solutions:

Example 1. If
ˇ̌
ˇ̌b
a

ˇ̌
ˇ̌ < 1; then one of the solutions of Eq. (1) has the form

x.t/ D
C1X

nD0

x
n

eaq
n
t ;

where x
0

D 1 and

x
n

D b C acqn�1

a .qn � 1/
x
n�1

; n � 1;

or, in the expanded form,

x.t/ D eat

º
1C

C1X

nD1

.�1/n .b C ac/.b C acq/ : : :
�
b C acqn�1

�

an.1 � q/
�
1 � q2

�
: : : .1 � qn/

e�a.1�q

n
/t

Ω
:
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Example 2. One more particular solution of Eq. (1) convergent for t > 0 is given by a series

x.t/ D
C1X

nD0

x
n

tv2Cn;

where the quantity v
2

is determined from the equality qv2 D q

c
and satisfies the condition v

2

¤ �n 8n 2 N;
x
0

D 1; and

x
nC1

D aC bqv2Cn

�
1 � cqv2Cn

�
.v

2

C nC 1/
x
n

; n � 0:

In the expanded form, we can write

x.t/ D tv2

8
ˆ̂<

ˆ̂:
1C

C1X

nD1

✓
aC b

c
q

◆✓
aC b

c
q2

◆
: : :

✓
aC b

c
qn

◆

.1 � q/
�
1 � q2

�
: : : .1 � qn/ .v

2

C 1/.v
2

C 2/ : : : .v
2

C n/
tn

9
>>=

>>;
:

By using methods proposed in [1], we prove the following theorem:

Theorem. Suppose that the following conditions are satisfied:

(i) a > 0; bc ¤ 0I

(ii) aC bqn ¤ 0 8n 2 N
Sf0g or c > 0; 1C ln c

ln q�1

¤ l 8l 2 ZI

(iii) the quantity v
1

2 C is determined from the equality aC bqv1 D 0I

(iv) for the parameters fj;mg ⇢ N
Sf0g; the inequalities

v
0

dfD
ln
⇣
jbj
a

⌘

ln q�1

D Re v
1

� vmin
dfD
ln
✓ˇ̌

cqj
ˇ̌
q�1 C jbqjCacq

j
q

�1j
a

◆

ln q�1

;

q�Rev1Cm

⇣ˇ̌
ˇ
q

c

ˇ̌
ˇC

ˇ̌
ˇ
a

b
C q

c

ˇ̌
ˇ
⌘
< 1 and

�ˇ̌
c�1

ˇ̌
C 2

ˇ̌
ac�1 C qbc�2

ˇ̌�
q�Rev1Cm < 1;

are true.

Then any continuously differentiable solution of Eq. (1) possesses the property x.t/e�at ! L as t ! 1;

where L is a constant and, for any number L; there exists a solution with the indicated property and, in addition,
for bc < 0; the following assertions are true:

(i) for any m C 1 times continuously differentiable periodic function f
0

.u/ with period 1; there exists a
continuously differentiable solution of Eq. (1)

x
f

.t/ D tv1f
0

✓
ln t

ln q�1

◆
C tv1�1f

1

✓
ln t

ln q�1

◆
C : : :C tv1�mf

m

✓
ln t

ln q�1

◆
C

C1X

nD1

z
n

.t/; t > 0;
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where f
p

.u/; 1  p  m; are periodic functions with period 1 given by the recurrence formula

f
pC1

.u/ D
�
bqpC1 C ac

�

ba
�
qpC1 � 1

�
✓
.v

1

� p/f
p

.u/C 1

ln q�1

f 0
p

.u/

◆
; 0  p  m � 1;

z
1

.t/ D
�
bc�2q�v1CmC1 � bc�1

�

⇥ e�bc

�1
t

C1Z

t


uv1�mf

m

✓
lnu

ln q�1

◆
� tv1�mf

m

✓
ln t

ln q�1

◆�
ebc

�1
u du;

z
nC1

.t/ D c�1qz
n

�
q�1t

�
C

�
ac�1 C qbc�2

�
e�bc

�1
t

C1Z

t

z
n

�
q�1u

�
ebc

�1
u du; n D 1; 2; 3; : : : ;

the functional series
XC1

nD1

z
n

.t/ is continuously differentiable and has the asymptotic property

C1X

nD1

z
n

.t/ D O
�
tv1�m�1

�

as t ! C1I

(ii) every m C j C 4 times continuously differentiable solution x.t/ of Eq. (1) is identically equal to the
sum x.t/ D Lx

1

.t/ C x
f

.t/; where L is a constant, x
1

.t/ is a solution of Eq. (1) with the property
x
1

.t/e�at ! 1 as t ! 1; and x
f

.t/ is the solution from the previous item constructed on the basis of a
certain mC 1 times continuously differentiable periodic function f

0

.u/ with period 1I

for bc > 0; the following assertions are true:

(i) for any m C 1 times continuously differentiable periodic function f
0

.u/ with period 1; there exists a
continuously differentiable solution of Eq. (1)

x
f

.t/ D tv1f
0

✓
ln t

ln q�1

◆
C tv1�1f

1

✓
ln t

ln q�1

◆

C : : :C tv1�mf
m

✓
ln t

ln q�1

◆
C

C1X

nD1

z
n

.t/C � x⇤.t/; t � ⇢ > 0;

where ⇢ is a sufficiently large constant independent of the function f
0

.u/; f
p

.u/; 1  p  m; is a periodic
function with period 1 given by the recurrence formula

f
pC1

.u/ D
�
bqpC1 C ac

�

ba
�
qpC1 � 1

�
✓
.v

1

� p/f
p

.u/C 1

ln q�1

f 0
p

.u/

◆
; 0  p  m � 1;
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z
1

.t/ D
�
c�1q�v1CmC1 � 1

� 
e�bc

�1
.t�⇢/tv1�mf

m

✓
ln t

ln q�1

◆

�bc�1

tZ

⇢

e�bc

�1
.t�u/

º
uv1�mf

m

✓
lnu

ln q�1

◆
� tv1�mf

m

✓
ln t

ln q�1

◆»
du

3

5 ;

z
nC1

.t/ D c�1qz
n

�
q�1t

�

�
�
qbc�2 C ac�1

�
tZ

⇢

e�bc

�1
.t�u/z

n

�
q�1u

�
du; n D 1; 2; 3; : : : ;

the functional series
XC1

nD1

z
n

.t/ is continuously differentiable and has the asymptotic property

C1X

nD1

z
n

.t/ D O
�
tv1�m�1

�
; t ! C1;

and the function x⇤.t/ is a particular solution of Eq. (1) given by the formula

x⇤.t/ D
C1X

nD0

x
n

e�
b
c
q

�n
t ;

where

x
n

D ac C bq�nC1

bc .q�n � 1/
x
n�1

; n � 1; x
0

D 1;

and � is an arbitrary constant;

(ii) every mC j C 4 times continuously differentiable solution x.t/ of Eq. (1) is identically equal to the sum
x.t/ D Lx

1

.t/Cx
f

.t/; whereL is a constant and x
f

.t/ is the solution from the previous item constructed
on the basis of a certain m C 1 times continuously differentiable periodic function f

0

.u/ with period 1

and a certain constant �:

Proof. We rewrite Eq. (1) in the form

d

dt

¶
e�atx.t/

·
D be�atx.qt/C ce�atx0.qt/

and integrate it:

e�atx.t/ D e�aq

�n

x
�
q�n

�
C cq�1

¸
e�a.1�q/te�aqtx.qt/ � e�aq

�n
.1�q/e�aq

�.n�1/

x
⇣
q�.n�1/

⌘π

C
�
b C acq�1

�
tZ

q

�n

e�a.1�q/se�aqsx.qs/ ds:
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We define

sup
t2Œq�nC1

;q

�nç

ˇ̌
e�atx.t/

ˇ̌ dfDM
n

:

Let q�n  t  q�n�1: Thus, we get

ˇ̌
e�atx.t/

ˇ̌

ˇ̌
ˇe�aq

�n

x
�
q�n

�ˇ̌
ˇC

ˇ̌
ˇ̌ c
q

ˇ̌
ˇ̌

⇥
¸
e�a.1�q/t

ˇ̌
e�aqtx.qt/

ˇ̌
C e�aq

�n
.1�q/

ˇ̌
ˇe�aq

�.n�1/

x
⇣
q�.n�1/

⌘ˇ̌
ˇ
π

C
ˇ̌
b C acq�1

ˇ̌
tZ

q

�n

e�a.1�q/s je�aqsx.qs/j ds

 M
n

C 2

ˇ̌
ˇ̌ c
q

ˇ̌
ˇ̌ e�a.1�q/q

�n

M
n

C
ˇ̌
b C acq�1

ˇ̌
M

n

e�a.1�q/q

�n

a.1 � q/

D M
n

º
1C

 
2

ˇ̌
ˇ̌ c
q

ˇ̌
ˇ̌C

ˇ̌
b C acq�1

ˇ̌

a.1 � q/

!
e�a.1�q/q

�n

Ω
:

This yields the inequality

M
nC1

 M
n

º
1C

 
2

ˇ̌
ˇ̌ c
q

ˇ̌
ˇ̌C

ˇ̌
b C acq�1

ˇ̌

a.1 � q/

!
e�a.1�q/q

�n

Ω

and the estimate x.t/ D O
�
eat

�
as t ! 1: By using the identity

e�at2x.t
2

/ � e�at1x.t
1

/ D cq�1

¸
e�a.1�q/t2e�aqt2x.qt

2

/ � e�a.1�q/t1e�aqt1x.qt
1

/
π

C
�
b C acq�1

�
t2Z

t1

e�a.1�q/se�aqsx.qs/ ds;

for some constantM such that

ˇ̌
e�atx.t/

ˇ̌
 M; t � q�nC1;

we arrive at the inequality

ˇ̌
e�at2x.t

2

/ � e�at1x.t
1

/
ˇ̌

 
jcjq�1

¸
e�a.1�q/t2 C e�a.1�q/t1

π



230 D. V. BEL’SKII AND G. P. PELYUKH

C
ˇ̌
b C acq�1

ˇ̌ e�a.1�q/t1 � e�a.1�q/t2

a.1 � q/

!
M:

By using the Cauchy principle, we conclude that the limit lim
t!1 e�atx.t/ 2 C exists.

The particular solution of the first example exists for

ˇ̌
ˇ̌b
a

ˇ̌
ˇ̌ < 1:

We differentiate Eq. (1) p times to guarantee that the inequality jbqpj < a is true. As a result we obtain

x.pC1/.t/ D ax.p/.t/C bqpx.p/.qt/C cqpx.pC1/.qt/:

By y
p

.t/ we denote the solution of the equation

y0
p

.t/ D ay
p

.t/C bqpy
p

.qt/C cqpy0
p

.qt/ (2)

with the property y
p

.t/e�at ! ap; t ! 1: This is a solution of Eq. (2) for from first example multiplied by ap:

We define a function

y
p�1

.t/ D
tZ

1

y
p

.u/ duC h
p

and integrate Eq. (2) over the segment Œ1; t ç W

y0
p�1

.t/ D ay
p�1

.t/C bqp�1y
p�1

.qt/C cqp�1y0
p�1

.qt/ � h
p

�
aC bqp�1

�

C bqp�1

1Z

q

y
p

.u/ du � cqp�1y
p

.q/C y
p

.1/:

If aC bqp�1 ¤ 0; then, selecting the corresponding h
p

; we obtain

y0
p�1

.t/ D ay
p�1

.t/C bqp�1y
p�1

.qt/C cqp�1y0
p�1

.qt/:

It is easy to see that y
p�1

.t/e�at ! ap�1 as t ! 1: Repeating these arguments several times, we get

x.t/e�at D y
0

.t/e�at ! 1; t ! 1:

Assume that aC bqn D 0; n 2 N
Sf0g; but c > 0 and

1C ln c
ln q�1

¤ l 8l 2 Z:
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Thus, as a result of replacement of the coefficients b and c by the quantities bqn and cqn; the solution from the
second example becomes the unbounded infinitely differentiable solution x

2

.t/ of the equation

x.nC1/.t/ D ax.n/.t/C bqnx.n/.qt/C cqnx.nC1/.qt/:

In what follows, we show that the assumption x.n/.t/ D o
�
eat

�
as t ! 1 for a sufficiently smooth solution

implies the estimate x.n/.t/ D O.1/ as t ! 1: Hence, x
2

.t/e�at ! h ¤ 0 as t ! 1: Multiplying the last
expression by the corresponding quantity, we arrive at a solution with the property y

n

.t/e�at ! an as t ! 1:

The subsequent reasoning is similar to the previous arguments. The first part of the theorem is proved.
Assume that x.t/ D o

�
eat

�
as t ! 1: In the identity

e�at1x.t
1

/ � e�atx.t/ D cq�1

¸
e�a.1�q/t1e�aqt1x.qt

1

/ � e�a.1�q/te�aqtx.qt/
π

C
�
b C acq�1

�
t1Z

t

e�a.1�q/se�aqsx.qs/ ds

we pass to the limit as the argument t
1

tends to1: This yields

x.t/ D cq�1x.qt/ �
�
b C acq�1

�
eat

C1Z

t

e�a.1�q/se�aqsx.qs/ ds:

If

jx.t/j  Meat ; t � U;

whereM and U are constants, then, for t � q�1U; the inequality

jx.t/j  jcjq�1jx.qt/j C
ˇ̌
b C acq�1

ˇ̌
eat

C1Z

t

e�a.1�q/se�aqsjx.qs/jds

 jcjq�1Meaqt C
ˇ̌
b C acq�1

ˇ̌
eat

C1Z

t

e�a.1�q/sM ds

D M

º
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a.1 � q/

Ω
eaqt

is true. Repeating the process, for t � q�nU; we obtain

jx.t/j  M

º
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a.1 � q/

Ωº
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a
�
1 � q2

�
Ω
: : :

º
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a .1 � qn/

Ω
eaq

n
t :
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Thus, in the intermediate segment q�nU  t  q�n�1U; we get

jx.t/j  M

º
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a.1 � q/

Ωº
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a
�
1 � q2

�
Ω

: : :

º
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a .1 � qn/

Ω
eaq

�1
U

 Meaq
�1

U

 
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a

!
n

nY

kD1

⇣
1C Lqk

⌘

 Meaq
�1

U

C1Y

kD1

⇣
1C Lqk

⌘ 
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a

!
n

;

where L is a constant. It follows from the condition q�nU  t  q�n�1U that

ln t
ln q�1

� 1 � lnU
ln q�1

 n  ln t
ln q�1

� lnU
ln q�1

:

Then the estimate for jx.t/j can be continued as follows:

jx.t/j  L
1

 
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a

! ln t
lnq�1

D L
1

t

ln
✓
jcjq�1 C jbCacq

�1j
a

◆

ln q�1

for a constant L
1

: The function on the right-hand side of the last inequality is independent of n:
For the sake of brevity, we define

ln

 
jcjq�1 C

ˇ̌
b C acq�1

ˇ̌

a

!

ln q�1

dfD v;

and establish an approximate (qualitative) estimate of the derivative x0.t/:We rewrite Eq. (1) in the following form:

x0.t/ D cx0.qt/C ax.t/C bx.qt/
dfD cx0.qt/C f .t/:

For the inhomogeneity, the following equality is true: f .t/ D O .tv/ as t ! 1: We perform the change of
variables x0.t/ D tv3y.t/; v

3

> v:

y.t/ D cqv3y.qt/C t�v3f .t/:

We estimate the coefficient c
1

dfD cqv3 and the inhomogeneity t�v3f .t/
dfDg.t/ as follows:

jc
1

j D jcjqv3 < jcjqv < q < 1; jg.t/j < M < C1
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for a constantM: Then

y.t/ D c
1

y.qt/C g.t/

and, for q�n�1  t  T; we obtain

jy.t/j  jc
1

j jy.qt/j CM  jc
1

j sup
q

�n�1tT

jy.qt/j CM D jc
1

j sup
q

�ntqT

jy.t/j CM

 jc
1

j sup
q

�ntT

jy.t/j CM D jc
1

jmax

º
sup

q

�ntq

�n�1

jy.t/j; sup
q

�n�1tT

jy.t/j
Ω
CM

 jc
1

j sup
q

�ntq

�n�1

jy.t/j C jc
1

j sup
q

�n�1tT

jy.t/j CM;

whence it follows that

sup
q

�n�1tT

jy.t/j  jc
1

j sup
q

�ntq

�n�1

jy.t/j C jc
1

j sup
q

�n�1tT

jy.t/j CM;

sup
q

�n�1tT

jy.t/j  .1 � jc
1

j/�1

 
jc

1

j sup
q

�ntq

�n�1

jy.t/j CM

!
:

Since T is an arbitrary number, we get

jy.t/j  .1 � jc
1

j/�1

 
jc

1

j sup
q

�ntq

�n�1

jy.t/j CM

!
8t � q�n�1;

i.e.,

x0.t/ D tv3y.t/ D O
�
tv3

�
; t ! 1

Differentiating Eq. (1) and successively using the above-mentioned reasoning, we conclude that

x.m/.t/ D O
�
tvmC2

�
; t ! 1;

where v < v
3

< : : : < v
mC1

< v
mC2

; i.e., all derivatives are o
�
eat

�
as t ! 1:

Differentiating Eq. (1) j times, we get

x.jC1/.t/ D ax.j /.t/C bqjx.j /.qt/C cqjx.jC1/.qt/:

As in the case of the function x.t/; we arrive at the estimate x.j /.t/ D O .tvmin/ as t ! 1; from the condition
x.j /.t/ D o

�
eat

�
; t ! 1: In the equation

x.j /.t/ D ax.j�1/.t/C bqj�1x.j�1/.qt/C cqj�1x.j /.qt/;
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x.j�1/.t/ D �b

a
qj�1 x.j�1/.qt/ � c

a
qj�1x.j /.qt/C 1

a
x.j /.t/

dfD�b

a
qj�1 x.j�1/.qt/C f .t/;

we perform the change of variables x.j�1/.t/ D tv⇤y.t/; where v⇤ � vmin and

v⇤ >

ln

 ˇ̌
bqj�1

ˇ̌

a

!

ln q�1

D v
0

� .j � 1/:

This yields

y.t/ D �b

a
qj�1 qv⇤y.qt/C t�v⇤f .t/:

We redefine the auxiliary coefficient

c
1

dfD�b

a
qj�1 qv⇤

and the inhomogeneity g.t/ dfD t�v⇤f .t/ and estimate them in view of the choice of v⇤:

jg.t/j D O
�
tvmin�v⇤

�
< M < C1; t ! 1;

for a constantM;

jc
1

j D exp

8
ˆ̂̂
<

ˆ̂̂
:

0

BBB@

ln
ˇ̌
ˇ̌bq

j�1

a

ˇ̌
ˇ̌

ln q�1

� v⇤

1

CCCA
ln q�1

9
>>>=

>>>;
< 1:

By applying the previous reasoning to the equation y.t/ D c
1

y.qt/C g.t/; we establish the boundedness of
jy.t/j and the property

x.j�1/.t/ D O
�
tv⇤

�
D O

⇣
tmaxfvmin;v0�.j�1/C"g

⌘
as t ! 1;

where " > 0 is an arbitrary number. Repeating this process, we find

x.j�2/.t/ D O
⇣
tmaxfv0�.j�2/C"Imaxfvmin;v0�.j�1/C"gg

⌘
D O

⇣
tmaxfv0�.j�2/C";vming

⌘
; t ! :

Further, after several steps (by the condition of the theorem, v
0

� vmin), we get

x.t/ D O
⇣
tmaxfv0C";vming

⌘
D O

�
tv0C"

�
; t ! 1:

Similarly, the derivative admits the following estimate: x0.t/ D O
�
tv0�1C"

�
; t ! 1:

We rewrite Eq. (1) in the form

x.t/ D �b

a
x.qt/C 1

a
x0.t/ � c

a
x0.qt/ dfD�b

a
x.qt/C f .t/
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and perform the change of variables x.t/ D tv1�"y.t/:

y.t/ D �b

a
qv1�"y.qt/C t�.v1�"/f .t/ D q�"y.qt/C t�.v1�"/f .t/:

We now estimate the inhomogeneity g.t/
dfD t�.v1�"/f .t/:

jg.t/j D t�.v1�"/O
�
tv1�1C"

�
D O

�
t�1C2"

�
D O.1/; t ! 1;

for small " and jg.t/j < M < C1; t � 1; for some constant M: We now rewrite the identity in the form

y.t/ D q�"y.qt/C g.t/

D : : : D q�n"y
�
qnt

�
C q�.n�1/"g

�
qn�1t

�

C : : :C q�2"g
�
q2t

�
C q�"g.qt/C g.t/

and select n such that the inequality qt
0

 qnt  t
0

is true. Thus, we get

jy.t/j  q�n"

¸ˇ̌
y
�
qnt

�ˇ̌
C q"M C : : :C q.n�2/"M C q.n�1/"M C qn"M

π

 q�n"

º
sup

qt0ut0

jy.u/j C M

q�" � 1

Ω
:

The condition qt
0

 qnt  t
0

implies the inequality

n  ln t
ln q�1

C 1C ln t
0

ln q
:

Hence, extending the estimate for jy.t/j; we get

jy.t/j  t"
�
q�"

�
1C ln t0

lnq

º
sup

qt0ut0

jy.u/j C M

q�" � 1

Ω
;

x.t/ D tv1�"y.t/ D tv1�"O
�
t"
�
D O

�
tv1

�
; t ! 1:

Repeating these reasoning for the derivative, we obtain x0.t/ D O
�
tv1�1

�
as t ! 1:

Performing the change

x.t/ D tv1y

✓
ln t

ln q�1

◆

in Eq. (1) and using the estimate deduced for the derivative x0.t/; we get

y

✓
ln t

ln q�1

◆
� y

✓
ln t

ln q�1

� 1

◆
D O

�
t�1

�
D O

✓
e
� lnq�1 ln t

lnq�1

◆
; t ! 1:
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Denote s dfD ln t
ln q�1

and l dfD ln q�1 > 0;

y.s/ � y.s C 1/ D O
⇣
e�ls

⌘
; s ! 1:

This implies that the sequence y.s C n/ is fundamental and, hence, convergent. We denote its limit by g.s/: This
is a periodic function with period 1 satisfying the equality

y.s/ � g.s/ D O
⇣
e�ls

⌘
; s ! 1:

In view of the uniform convergence of continuous functions to g.s/; this function is continuous. Returning to
the required function, we get

x.t/ D tv1
¶
g.s/CO

�
t�1

�·
; t ! 1:

For themC j C 4 times continuous differentiable solution x.t/ D o
�
eat

�
; t ! 1; of Eq. (1), we repeat this

process for the derivatives and arrive at the equalities

x.k/.t/ D tv1�k

¶
f
k;0

.s/CO
�
t�1

�·
; t ! 1;

where 0  k  m C 1; f
k;0

.s/ are continuous periodic functions with period 1: Further, by using the same
reasoning as in the proof of Theorem 5 in [9] (Sec. 2 ) or in [10], we obtain the representation

x.t/ D tv1f
0

✓
ln t

ln q�1

◆
C tv1�1f

1

✓
ln t

ln q�1

◆
C tv1�2f

2

✓
ln t

ln q�1

◆

C : : :C tv1�mC1f
m�1

✓
ln t

ln q�1

◆
C tv1�mf

m

✓
ln t

ln q�1

◆

C tv1�m�1d
mC1

✓
ln t

ln q�1

◆
; t � 1; (3)

where f
p

.u/; 0  p  m; are periodic functions with period 1 such that f
0

.u/ 2 CmC1.R/;

f
pC1

.u/ D bqpC1 C ac

ba
�
qpC1 � 1

�
✓
.v

1

� p/f
p

.u/C 1

ln q�1

f 0
p

.u/

◆
; 0  p  m � 1I

and d
mC1

.u/ is a continuously differentiable bounded function. Thus, rewriting Eq. (1) as an advance equation

x0.t/ D �bc�1x.t/ � ac�1x
�
q�1t

�
C c�1x0 �q�1t

�

and applying the reasoning used in the proof of the theorem in [12] to this equation, we obtain the equalities
x.t/ D x

f

.t/; where the functions x
f

.t/ are given in the condition of the theorem.
Since any solution has the property x.t/e�at ! L 2 C; t ! 1; the difference x.t/ � Lx

1

.t/ D o
�
eat

�

as t ! 1; where the function x
1

.t/ is defined in the condition of the theorem. Thus, for a sufficiently smooth
solution x.t/; we obtain the identities x.t/ � Lx

1

.t/ D x
f

.t/:
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The theorem is proved.

In the proof of the theorem, the construction of the solution x
1

.t/ for a C bqn D 0; n 2 N
Sf0g; was based

on the solution from the second example. If it does not exist, then we can try to construct, as in [1], or again find
an unbounded particular solution of the equation

x.nC1/.t/ D ax.n/.t/C bqnx.n/.qt/C cqnx.nC1/.qt/:

This solution, e.g., y.t/; has the property y.t/e�at ! h ¤ 0; t ! 1; and can be regarded as a starting point in
the construction of the solution x

1

.t/:

For sufficiently smooth solutions with the property x.t/ D o
�
eat

�
as t ! 1; representation (3) was obtained

from the formal solution

x
�

.t/ D tv1f
0

✓
ln t

ln q�1

◆
C tv1�1f

1

✓
ln t

ln q�1

◆
C tv1�2f

2

✓
ln t

ln q�1

◆
C : : : ;

where f
0

.u/ is an arbitrary periodic function with period 1;

f
pC1

.u/ D bqpC1 C ac

ba
�
qpC1 � 1

�
✓
.v

1

� p/ f
p

.u/C 1

ln q�1

f 0
p

.u/

◆
; p � 0:

This solution is a divergent power series for f
0

.u/ ⌘ const ¤ 0:
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