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COMBINATION OF THE LAGUERRE TRANSFORM WITH THE BOUNDARY-  
ELEMENT METHOD FOR THE SOLUTION OF INTEGRAL  
EQUATIONS WITH RETARDED KERNEL 

S. V. Litynskyy,  Yu. А. Muzychuk,  and  А. О. Muzychuk  UDC 519.6 

We apply the Laguerre transform with respect to time to a time-dependent boundary-value integral equa-
tion encountered in the solution of three-dimensional Dirichlet initial-boundary-value problems for the 
homogeneous wave equation with homogeneous initial conditions by using the retarded potential of  
single layer.  The obtained system of boundary integral equations is reduced to a sequence of Fredholm 
integral equations of the first kind that differ solely by the recursively dependent right-hand sides.   
To find their numerical solution, we use the boundary-element method.  We establish an asymptotic es-
timate of the error of numerical solution and present the results of numerical simulations aimed at find-
ing the solutions of retarded-potential integral equations for model examples.  

The retarded-potential integral equations (RPIE) are encountered in modeling acoustic and electromagnetic 
fields with the use of the Kirchhoff formula or one of its components, namely, the retarded potentials of single 
(or double) layer.  Both these potentials are solutions of a homogeneous wave equation and satisfy homogeneous 
initial conditions for any densities obeying relatively simple restrictions [7, 18].  The specific form of the equa-
tion used to determine the unknown density depends on the limit properties of the applied potential and the 
boundary conditions.  

For the investigation of an RPIE, it is reasonable to use energy spaces of functions depending on the time 
variable and taking values in required Hilbert spaces (see, e.g., [16, Chap. XVIII]).  In particular, in [10, 11],  
the existence of the unique solution of integral equations equivalent to the Dirichlet and Neumann problems for 
the wave equation was proved for the first time in these spaces, and the Galerkin method for their numerical so-
lutions was justified.  At the same time, the complexity of realization of this method for nontrivial boundary sur-
faces caused by the specific dependence of the densities of potentials on the so-called “retardation”   t − x / c ,  
where t , x , and  c  denote, respectively, the time, point in the space, and the velocity of propagation of vibra-
tions in the environment, was indicated in [20]. 

The combination of discretization with respect to the space variables (e.g., with the help of boundary ele-
ments) with the solution of some intermediate problems aimed at taking into account the dependence of un-
known functions on time is one of the approaches used for the solution of the indicated problem.  In particular, 
this can be a family of convolution quadrature methods [24] based on the application of stable methods for the 
solution of ordinary differential equations. These methods are used in various applied problems and their survey 
can be found, e.g., in [12, 19].  

In the present work, we determine the time dependence of the solution of RPIE with the help of the  
Laguerre transform.  The properties of this transformation in the above-mentioned functional spaces were inves-
tigated in [3], where, in addition, the requirements to the boundary conditions guaranteeing the possibility of 
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application of the Laguerre transform to RPIE were established.  Moreover, this transform was used to reduce 
the original equation to an infinite sequence of boundary integral equations (BIE).  The obtained BIE differ only 
in the recursively dependent right-hand sides.  This circumstance makes it possible to construct efficient algo-
rithms for the successive determination of their solutions by the boundary-element method (BEM).  In the pre-
sent work, by an example of equation equivalent to the Dirichlet problem for the wave equation, we consider the 
computational aspects of this combined approach.  

Note that approaches based on the use of the Laguerre transform with respect to time are applicable  
(in some classes of functions) to arbitrary evolutionary problems linear in time.  Furthermore, different methods 
can be used for the solution of problems obtained in the space of transforms.  Thus, in [1, 9] (see also the bibli-
ography therein) devoted to the analysis of complex problems of mechanics, the Laguerre transform with respect 
to time is combined with other integral transformations with respect to space variables.  For the solution of these 
problems, it is necessary to perform the inverse transformation in a domain where we seek the unknown quanti-
ties.  From the viewpoint of numerical analysis, with the exception of separate cases, this is a quite complicated 
procedure.  This is why, in domains of the general form, the Laguerre transform is combined with some methods 
from the family of boundary-element methods.  A survey of these combined methods is presented in [4, 25], 
where the boundary-value problems obtained in the space of transforms are justified, and their solutions are con-
structed with the help of potentials of single and double layers. 

The structure of the work is as follows:  In Section 1, we first introduce required functional spaces and de-
fine Laguerre transforms with respect to their elements.  Then, by using this transform, we reduce an RPIE cor-
responding to the Dirichlet problem for the wave equation to an infinite triangular system of BIE.  Moreover,  
we establish the conditions under which it is possible to find the solution of the RPIE by applying the inverse 
Laguerre transform to the solution of the triangular system of BIE and show how to reduce the obtained system 
to a sequence of equations that differ solely by the recursively dependent right-hand sides.  In Section  2, we de-
duce basic relations of the BEM for the solution of the obtained sequence of BIE and establish asymptotic esti-
mates for the error of the numerical solution of the RPIE that depends on the discretization parameter of the 
boundary surface.  In Section 3, we present the results of a series of numerical experiments on the solution of  
the model RPIE. 

1.  Reduction of the Retarded-Potential Integral Equation to a Sequence of Boundary Integral Equations 

Consider a Lipschitz surface  Γ   bounding a domain   Ω ∈R3,   R+ := (0,∞) ,  and   Σ := Γ ×R+ .  If we seek 
the solution of the Dirichlet problem for the wave equation in the form of the retarded potential of single layer 

 
  
(Sµ)(x,t ) := 1

4π
µ(y,t − x − y )

x − y dΓ y
Γ
∫ , (x,t )∈Q , 

with unknown density   

  µ :Γ ×R → R ,   

then we get the following RPIE for its determination: 

 
 

1
4π

µ(y,t − x − y )
x − y dΓ y

Γ
∫ = g(x,t ), (x,t )∈Σ , (1) 

where   g:Γ ×R → R   is a given function.  
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We now introduce functional spaces required in what follows.  Let  L2 (Ω)  be the Lebesgue space of 
square-integrable functions   v:Ω→ R   with the inner product 

 (v,w)
L2 (Ω)

:= vwdx
Ω
∫ , v,w ∈L2 (Ω) , 

and the norm   

 v L2 (Ω) := (v,v)
L2 (Ω)

, 

and let  H 1(Ω)  be a Sobolev space of functions  v ∈L2 (Ω)   with generalized derivatives  vx1 ,  vx2 ,  and  vx3   

from  L2 (Ω)  with the inner product 

 (v,w)
H1(Ω)

:= (∇v∇w + vw)dx
Ω
∫ , v,w ∈H 1(Ω), 

and the norm   

 v H1(Ω) := (v,v)
H1(Ω)

,      v ∈H 1(Ω) .   

By   H
1/2 (Γ)   and  H −1/2 (Γ) := (H 1/2 (Γ) ′)   we denote, respectively, the space of traces of the elements  H 1(Ω)  

on the surface  Γ   and the dual space; the duality relation on   H −1/2 (Γ)× H 1/2 (Γ)  is denoted by  ⋅,⋅ Γ . 
Let  X   be a Hilbert space with the inner product  (⋅,⋅)X   and the norm  ⋅ X  generated by this product.   

Let  σ > 0   be an arbitrary number.  Denote by   Lσ
2 (R+ ;X )   a weighted Lebesgue space [16] with a weight   

 ρσ (t ) = e−σt ,   t ∈R+ ,   

whose elements are measurable functions   v:R+ → X   such that   

 v(t) X
2 e−σt dt

R+

∫ < ∞ , 

with the inner product 

 
  
(v,w)

Lσ
2 (!+ ;X )

= (v(t ),w(t ))X e
−σt dt

!+

∫ , v,w ∈Lσ
2 (R+ ;X ), 

and the norm 

 
  
v Lσ

2 (!+ ;X ) = (v,v)
Lσ
2 (!+ ;X )

, v ∈Lσ
2 (R+ ;X ). 

Note that the space   Lσ
2 (R+ ;X )   is complete [8].  Assume that the elements of the space   Lσ

2 (R+ ;X )   are ex-
tended by zero to nonpositive values of the argument. 



COMBINATION OF THE LAGUERRE TRANSFORM WITH THE BOUNDARY-ELEMENT METHOD  101 

For any   m ∈N   (where   N   is the set of natural numbers), we define a weighted Sobolev space 

    Hσ
m (R+ ;X ) := {v ∈Lσ

2 (R+ ;X ) v(k ) ∈Lσ
2 (R+ ;X ), k = 1,…,m} 

with the norm 

 
 
v Hσ

m (!+ ;X ) = v(k )
Lσ
2 (!+ ;X )

2

k=0

m

∑⎛
⎝⎜

⎞
⎠⎟

1/2

. 

Here, the derivatives  v(k ) ,   k ∈N , are understood in a sense of the space    ′D (R+ ;X )   whose elements are 
distributions with values in the space  X . 

We study the RPIE (1) in the weighted Lebesgue and Sobolev spaces.  Note that the existence and unique-
ness of solutions of these equations was proved for broader spaces in [10].  Moreover, in [3], additional condi-
tions were established for the function  g  to guarantee that the solution of Eq. (1) belongs to the weighted Sobo-
lev space.  As a consequence of the formulated assertions, we get the following proposition: 

Proposition 1 [3].  Let   g ∈Hσ0

m+2 (R+ ;H
1/2 (Γ))  for some  σ0 > 0   and     m ∈N0 := N ∪ {0} .  Then there 

exists a unique solution of the RPIE (1) from the space   Hσ0

m (R+ ;H
−1/2 (Γ)) .  Moreover, for any  σ ≥ σ0 ,   

the following estimate is true: 

 
 
µ Hσ

m (!+ ;H
−1/2 (Γ )) ≤ C g Hσ

m+2 (!+ ;H
1/2 (Γ )) , 

where  C > 0   is a constant independent of  g . 

In what follows, we represent the infinite sequences of elements of any set  X   in the form of a column vec-
tor    v := (v0 ,v1,…)⊤ .  Let  X   be a Hilbert space with the inner product  (⋅,⋅)X   and the norm  ⋅ X   generated by 
this product.  Consider a Hilbert space 

 
 

ℓ2 (X ) := v ∈X∞ v j X

2

j=0

∞

∑ < +∞
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

with the inner product  (v,w) = (v j ,wj )Xj=0
∞∑ ,   v,w ∈ℓ2 (X ),  and the norm 

 
 

v ℓ2 (X ) := v j X

2

j=0

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟

1/2

, v ∈ℓ2 (X ) . 

If   X = R ,  then we write    ℓ
2 := ℓ2 (R). 

We now consider in more detail the relationship between the spaces   Lσ
2 (R+ ;X )   and   ℓ

2 (X ) .  In the case 
where   X = R ,  the first of these spaces is the space   Lσ

2 (R+ )   in which the Laguerre polynomials    {Lk (σ⋅)}k∈N0
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form an orthogonal basis [23], i.e., an arbitrary function   f ∈Lσ
2 (R+ )  admits the expansion  

 
 
f (t ) = fk Lk (σt )

k=0

∞

∑ , t ∈R+ , 

where the coefficients   f0 , f1,…, fk ,…  are expressed in the same way by the formula  

 
  
fk := σ f (t )Lk (σt )e

−σt dt
R+

∫ , k ∈N0 . (2) 

A mapping     L: Lσ
2 (R+ )→ ℓ

2   that associates a sequence    f = ( f0 , f1,…, fk ,…)⊤  [whose components are 
given by relation (2)] with a function  f   is called the discrete Laguerre integral transform [2, 23].  The Laguerre 
transform   L  is a bijective mapping and the inverse transform     L

−1 : ℓ2 → Lσ
2 (R+ )   is given, for any   h ∈ℓ2 ,   

by the formula  

 
  
(L−1h)(t ) := hkLk (σt )

k=0

∞

∑ , t ∈R+ . (3) 

It is clear that, for any function   f ∈Lσ
2 (R+ ),  the following equality is true: 

  L
−1Lf = f . (4) 

In [3], the notion of Laguerre transform was generalized to the case of vector valued functions from  

 Lσ
2 (R+ ;X ) ,  i.e., the authors considered a mapping    L: Lσ

2 (R+ ;X )→ X∞  acting according to rule (2).  If  X   is  
a Hilbert space with the inner product  (⋅,⋅)X   and the norm  ⋅ X   generated by this product, then the following 
proposition is true:  

Proposition 2 [3].  A mapping    L: Lσ
2 (R+ ;X )→ X∞   that associates a sequence    f = ( f0 , f1,…, fk ,…)⊤   

with a function  f by relation (2) is injective, the space   ℓ
2 (X )   is its image and, in addition, 

 
 
f

Lσ
2 (!+ ;X )

2 = 1
σ fk X

2

k=0

∞

∑ . (5) 

Moreover, equality (4) is true for any function   f ∈Lσ
2 (R+ ;X ),  where    L

−1 : ℓ2 (X )→   Lσ
2 (R+ ;X )   is  

a mapping inverse to   L   that associates the function  h   with an arbitrary sequence  h = (h0 ,   h1,…, hk ,…)⊤    
by relation (3). 

Definition 1 [3].  Let  σ > 0   and let  X   be a Hilbert space.  The mappings  

    L: Lσ
2 (R+ ;X )→ ℓ

2 (X )      and         L
−1 : ℓ2 (X )→ Lσ

2 (R+ ;X ), 
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from Proposition 2 are called the direct and inverse Laguerre transforms, respectively, and relation (5) is called 
the Parseval equality. 

Consider a sequence  V   whose components are given by the formula  

 (Vkξ)(x) := ξ(y)ek (x − y)dΓ y
Γ
∫ , x ∈Γ , 

where  ξ  is an arbitrary function measurable on  Γ   and the functions  ek   for   z ∈R3  are defined as follows: 

   ek (z) := (4π z )−1ζk( z ), k ∈N0 , 

   (6) 
   ζ0 (z) := e−σ z , ζk (z) := e−σ z (Lk (σ z )− Lk−1(σ z )), k ∈N . 

Note that, at the point  z = 0 ,  the function  e0   has an integrable singularity and, for any   k ∈N ,  the func-
tion  ek   (6) has a removable singularity.  This means  [14] that  V   can be interpreted as a sequence of boundary 
operators  Vk :H

−1/2 (Γ)→ H 1/2 (Γ),   k ∈N0 ,  such that  

 (Vkξ)(x) := ξ,ek (x − ⋅) Γ .  

Assume that   µµ = Lµ   for any   µ ∈Lσ0

2 (R+ ;H
−1/2 (Γ))   and some  σ0 > 0 .  We construct a sequence  w   

according to the rule 

 
 
wk = Vk−iµi

i=0

k

∑ , k ∈N0. 

The operation over sequences defined as indicated above is called  q -convolution [4], and we write   

 
 
w := V

H1/2 (Γ )
! µµ . 

In [3], it was shown that, as a result of the application of the Laguerre transform to the RPIE (1), we get the 
following infinite triangular system of BIE: 

 
 
V

H1/2 (Γ )
! µµ = g      in       ℓ

2 (H 1/2 (Γ)) , (7) 

where   g := Lg . 

Proposition 3 [3].  Let   g ∈Hσ0

2 (R+ ;H
1/2 (Γ))   for some  σ0 > 0 .  Then there exists a unique solution  

 µµ ∈ℓ2 (H −1/2 (Γ))  of the system of BIE (7), and the solution of the RPIE (1) is determined by the inverse  La-
guerre transform   µ := L−1µµ . 
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It is easy to see that system (7) can be represented in the form of a sequence of equations as follows:  

 (V0µ0 )(x) = g0 (x), 

  (V0µ1)(x) = !g1(x), 

 ………………………………, (8) 

   (V0µk )(x) = !gk (x), k ∈N, x ∈Γ , 

 ……………………………………………, 

where 

 
  
!gk (x) := gk (x)− (Vk−iµi )(x)

i=0

k−1

∑ , k ∈N . 

We choose a value of the parameter  N   from certain considerations and, as a result of solution of the BIE (8), 
successively determine the components   µ0 , µ1,…, µN .  Thus, according to Lemma 1 in [3], we can interpret  
a partial sum 

 
  
!µN (y,t − x − y ) = ζk−i (σ(x − y))µi (y)

i=0

k

∑⎛
⎝⎜

⎞
⎠⎟k=0

N

∑ Lk (σt ),       x, y ∈Γ, t ∈R+ , (9) 

as an approximate solution of the RPIE (1). 

2. Solution of the System of BIE by the Boundary Element Method   

We now consider the sequence of BIE (8) in more detail.  For any  k ∈N0 ,  the left-hand side of the k th 
equation is specified by the boundary operator  V0 ,  while the right-hand side depends on the corresponding el-
ement of the sequence  g   and on the solutions of equations with the previous numbers   i = 0,…,k −1.  It is 
known [14, 22] that the integral operator  V0 :H

−1/2 (Γ)→ H 1/2 (Γ)  is elliptic and bounded 

 V0η,η Γ ≥ c1 η
H −1/2 (Γ )
2 , 

 V0η H1/2 (Γ ) ≤ c2 η H −1/2 (Γ ) ∀η∈H −1/2 (Γ) . 

These properties are used not only to prove the existence and uniqueness of the solution of BIE 

 V0η = f       in      H 1/2 (Γ), (10) 

but also to find the approximate solution of this equation by the Bubnov–Galerkin method or its specific realiza-
tion by the boundary-element method [21].  We now deduce the main relations of this method for the investigat-
ed BIE. 
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Let  XM ⊂ H −1/2 (Γ),   M ∈N ,  be a sequence of finite-dimensional half spaces that are linear spans of the 
functions   {φi}i=1

M   which form a basis in  XM .  In each of these spaces, we approximate the solution of Eq. (10) 
by a linear combination 

 ηM := ηiφi
i=1

M

∑ ∈XM , 

obtained as a solution of the following variational problem: 

 V0η
M ,η

Γ
= f ,η Γ ∀η∈XM . (11) 

Thus, if we choose the basis functions  φ j   as test functions, then, for the unknown coefficients   

  ηη
[M ] := {ηi}i=1

M ∈  RM ,   

we get the following system of linear algebraic equations (SLAE): 

 V0
[M ]h[M ] = f [M ], (12) 

where   

 
 
V0
[M ][ j,i] := V0φi ,φ j Γ

,     f j
[M ] := f ,φ j Γ

,      i, j = 1,…,M . 

Note that, in view of the  H −1/2 (Γ) -ellipticity of the operator  V0 ,  the matrix of the obtained system is 
positive definite.  This is why, for any right-hand side, system (12) possesses a unique solution, i.e.,  ∀M ∈N , 
we obtain an approximate solution of Eq. (10).  According to the Céa lemma (see, e.g., [27]), this solution satis-
fies the inequality  

 ηM
H −1/2 (Γ )

≤ c1 f H1/2 (Γ ) 

and the value of its error can be estimated as follows: 

 η− ηM
H −1/2 (Γ )

≤
c2
c1 ξ∈XM

inf η− ξ H −1/2 (Γ ) . 

This implies the convergence of the approximate solution   

 ηM → η∈H −1/2 (Γ)      as    M→∞    in    H −1/2 (Γ) ,   

where  η is the solution of the corresponding BIE in sequence (8). 
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We now specify the SLAE (12) by using the notation presented in [15, 27].  Let   

 
  
Γ !M = τℓℓ=1

!M∪  

be an approximation of the surface Γ   formed by   !M   triangular boundary elements     {τℓ}ℓ=1
!M   with vertices  

  {x
[ℓ1 ] ,   x

[ℓ 2 ], x[ℓ 3 ]} .  The quantity   

 
  
h :=

ℓ=1,…, !M
max ds

τℓ∫{ }1/2  

 is regarded as a parameter of approximation. 
We now construct a set of piecewise-constant functions linearly independent on   Γ !M     {ϕℓ

0}ℓ=1
M ,   M = !M : 

 

 

ϕℓ
0 (x) =

1, x ∈τℓ ,

0, x ∉τℓ .

⎧
⎨
⎪

⎩⎪
 

In finite-dimensional functional spaces   X
M = Sh

0 (Γ) := span{ϕℓ
0}ℓ=1

M ,  we consider Eq. (10) and assume that it 
corresponds to the k th equation in sequence (8).  Its numerical solution  µk

h   is sought in the form of a linear 
combination of the piecewise-constant functions  

 
  
µk
h = µk ,ℓ

h ϕℓ
0

ℓ=1

M

∑ ∈Sh
0 (Γ), k ∈N0 . (13) 

Here,     R
M ∍ {µk ,ℓ

h }ℓ=1
M = :µµ k

h   is the vector of unknown coefficients.  This vector is found from the  SLAE 

   V0
h µµ k

h = !gk
h , k ∈N0 . (14) 

The matrix  V0
h   is a specific realization of the matrix of system (12), and the integrals 

 
   

V0
h [i,ℓ] = e0 (x − y)dsy dsx

τℓ
∫

τi
∫ , i,ℓ = 1,…,M , 

are its elements.  The components of the vector on the right-hand side in system (14) have the form 

 
  

!gk
h [i] = gk (x)− (Vk− jµ j

h )(x)
j=0

k−1

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dsx

τi
∫ , j = 1,…,M . 

Thus, if we specify the values of the parameter  N ,  then we can find the approximate values of the densi-
ties  µk

h   on the cylinder  Σ   by using relation (13) as a result of the solution of system (14) for the successive 
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values   k = 0,…,N   and finding the vectors  µµ k
h.  The sequence    µµ

N ,h := (µ0
h , µ1

h ,…,µN
h , 0, 0,…)⊤   is an ap-

proximate solution of the system of BIE (7) and the sum 

 
   
!µN ,h(y,t − x − y ) = ζk−i(σ x − y )µi

h (y)
i=0

k

∑⎛
⎝⎜

⎞
⎠⎟k=0

N

∑ Lk (σt ), x, y ∈Γ, t ∈R+ , (15) 

is regarded as an approximate (numerical) solution of the RPIE (1). 
We now deduce an a priori estimate for the error of the numerical solution   !uN ,h   relative to the approxi-

mate solution   !uN   given by relation (9).  Assume that the surface  Γ   can be represented in the form of a union   

 Γ = Γ i
i=1

!N

∪  

of surfaces  Γ i  (such that   Γ i ∩ Γ j =∅,  i ≠ j )  each of which admits a sufficiently smooth parametrization 

    Γ i := {x ∈R3 : x = !χi (ξ), ξ ∈ !τi ⊂ R2} . 

By using a set of nonnegative functions   φi ∈C0
∞ (R3 )   such that 

 
 

φi (x)
i=1

!N

∑ = 1 ∀x ∈Γ, φi (x) = 0 ∀x ∈Γ \ Γ i , 

we can represent an arbitrary function  v   given on the surface  Γ   in the form 

 
 
v(x) = φi (x)v(x)

i=1

!N

∑ = vi (x)
i=1

!N

∑ ∀x ∈Γ , 

where  vi (x) := φi (x)v(x)  ∀x ∈Γ i .  For   s ∈(0,1],  we consider the spaces of the piecewise-smooth func-
tions [27] 

 
  
Hpw

s (Γ) := {v ∈L2 (Γ): v Γ i
∈H s (Γ i ), i = 1,…, !N} 

with the following norm and seminorm: 

 
  
v Hpw

s (Γ ) := ( v
L2 (Γ )
2 + v

Hpw
s (Γ )

2 )1/2 , v Hpw
s (Γ ) := v Γ i H s (Γ i )

2

i=1

!N

∑
⎛

⎝
⎜

⎞

⎠
⎟

1/2

, 

where the seminorms on the parts of  Γ   are specified with regard for the parametrization  

  vi ( !χi (ξ)) = : !vi (ξ)       for     ξ ∈ !τi , 
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!vi H1( !τi )
:= ∇ξ !vi (ξ)

2 dsξ
!τi
∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2

, 

 
 

!vi H s ( !τi )
:=

( !vi (ξ)− !vi (η))
2

ξ − η 2+2s dsξ dsη
!τi
∫

!τi
∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/2

,      s ∈(0,1). 

Lemma 1.  Let  µµ ∈(Hpw
s (Γ))∞   be a solution of the system of BIE (7) for some   s ∈(0,1]  and let the fol-

lowing inequality be true: 

 µ j Hpw
s (Γ )

j=0

∞

∑ < +∞ . (16) 

Then, for any value of the parameter   N ∈N0 ,  the numerical solution   !µ
N ,h   of the RPIE (1) admits the fol-

lowing asymptotic estimate:  

 
 
!µN (⋅,t )− !µN ,h (⋅,t )

H −1/2 (Γ )
≤ !CN ,T h

s+1/2 µk Hpw
s (Γ )

k=0

N

∑ , t ∈(0,T ), (17) 

where   T ∈R+   is an arbitrary fixed number and  CN ,T   and   
!Ck   are quantities independent of the parame-

ter h . 

Proof.  For arbitrary fixed   N ∈N0 ,   T ∈R+ ,  and  t ∈(0,T ),  we consider the quantity 

 
 

δN ,T := !µN (⋅,t )− !µN ,h (⋅,t )
H −1/2 (Γ )

= (µk (⋅)− µk
h (⋅))Lk (σt )

k=0

N

∑
H −1/2 (Γ )

. 

Denote  

 
 
CN ,T := max

t∈[0,T ],k=0,…,N
Lk (σt ) .  

Thus, we can write 

 δN ,T ≤ CN ,T µk − µk
h

H −1/2 (Γ)
k=0

N

∑ . (18) 

Note that, in the case where the solution of the system of BIE (7) satisfies inequality (16), the following es-
timate is true [27]: 

 
  
µk − µk

h
H −1/2 (Γ )

≤ !Ckh
s+1/2 µk Hpw

s (Γ ) , k ∈N0 , 
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where   
!Ck   are quantities that do not depend on the parameter  h .  By using this estimate in inequality (18) and 

introducing the notation   

 
  
!CN ,T := CN ,T max

k=0,…,N
{ !Ck },   

we get (17).  

3.  Results of the Numerical Experiments 

We now illustrate the numerical solution of the RPIE (1) by the considered combined method.  Assume that  
Γ   is the surface of the cube   

 Ω := (−1,1)× (−1,1)× (−1,1)    

and that the right-hand side of Eq. (1) has the form 

 g(x,t ) :=
f3(t − x +1)

x ,      (x,t )∈Σ , 

where  f3   is the so-called cubic beta-spline [6].  As the value of the parameter of Laguerre transform,  
we take  σ = 2 . 

We first present the results obtained for the components of the numerical solution  µµN ,h   of the system of 
BIE (7) for different values of the parameter  N .  For comparison, we also consider the numerical solution   

  ̂µµ
N ,h := (µ̂0

h , µ̂1
h ,…,    ̂µN

h , 0, 0,…)⊤   

of the same system obtained by a different method, namely, by the collocation method [5, 21, 26].  Despite the 
fact that, for a given class of integral equations, this method does not have appropriate justification (unlike 
the BEM constructed on the basis of the Bubnov–Galerkin method), it is used in practice for a long time.  Note 
that, in the case of application of the same finite-dimensional functional spaces  Sh

0 (Γ)  with piecewise-constant 
basis functions    {ϕℓ

0}ℓ=1
M   in the collocation method, the elements of the matrices  Vk

h   and the vector of the 
right-hand side in the SLAE (14) have the form  

 

  

Vk
h [i,ℓ] = ek (xi − y)dsy

τℓ

∫ , 

 
   
!gk
h [i] = gk (xi )− (Vk− jµ j

h )(xi )
j=0

k−1

∑ , i,ℓ = 1,…,M , 

where every collocation point  xi   is taken at the center-of-mass of the corresponding triangle  τi . 
We apply both mentioned methods to the first BIE in sequence (8). Since, in this stage, the parameter of 

discretization h  is the main parameter, we consider different partitions  Γ !M  of the boundary surface by decreasing  
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Table 1  

x2  

 !M  

300 588 972 1452 2700 

0 3.09064⋅10−1  
2.96648⋅10−1  

3.05025⋅10−1  
2.98582⋅10−1  

3.02762⋅10−1  
2.98911⋅10−1  

3.01466⋅10−1  
2.98932⋅10−1  

3.00211⋅10−1  
2.98837⋅10−1  

0.2 3.09064⋅10−1  
2.96648⋅10−1  

2.69065⋅10−1  
2.64675⋅10−1  

2.80764⋅10−1  
2.77803⋅10−1  

2.70912⋅10−1  
2.68793⋅10−1  

2.83511⋅10−1  
2.82207⋅10−1  

0.5 1.83769⋅10−1  
1.79747⋅10−1  

1.62174⋅10−1  
1.61857⋅10−1  

1.75864⋅10−1  
1.74803⋅10−1  

1.64615⋅10−1  
1.64473⋅10−1  

1.65704⋅10−1  
1.65664⋅10−1  

Table 2  

k  

 !M  

300 588 972 1452 2700 

0 3.09064⋅10−1  
2.96648⋅10−1  

3.05025⋅10−1  
2.98582⋅10−1  

3.02762⋅10−1  
2.98911⋅10−1  

3.01466⋅10−1  
2.98932⋅10−1  

3.00211⋅10−1  
2.98837⋅10−1  

10 – 7.27805⋅10−2  
– 6.93435⋅10−2  

– 7.12230⋅10−2  
– 6.94413⋅10−2  

– 7.04907⋅10−2  
– 6.94286⋅10−2  

– 7.02050⋅10−2  
– 6.94037⋅10−2  

– 6.98376⋅10−2  
– 6.93674⋅10−2  

15 3.41835⋅10−2  
3.20066⋅10−2  

3.28953⋅10−2  
3.19480⋅10−2  

3.24581⋅10−2  
3.18885⋅10−2  

3.21571⋅10−2  
3.18604⋅10−2  

3.21783⋅10−2  
3.18375⋅10−2  

20 – 1.23603⋅10−2  
– 1.22545⋅10−2  

– 1.22948⋅10−2  
– 1.21227⋅10−2  

– 1.22314⋅10−2  
– 1.21263⋅10−2  

– 1.19848⋅10−2  
– 1.21325⋅10−2  

– 1.21693⋅10−2  
– 1.21354⋅10−2  

the value of  h .  In Table 1, we present the values of the numerical solutions  µ0
h (x)  and  µ̂0

h (x)  (the upper  
and lower rows, respectively) of the BIE (8) for  k = 0   and  σ = 2   on the sequence of partitions   Γ !M   at the 
point  x = (1, x2 , 0)   on one of the lateral faces of the cube.  It is easy to see that the values of the solutions ob-
tained by different numerical methods are close at all points of observation with different locations on the faces 
of the cube. 

The values of the numerical solutions  µk
h (x)  and  µ̂0

h (x)  (the upper and lower rows, respectively) of the 
BIE (8) for a fixed observation point  x = (1, 0, 0)  and various values of the parameter  k   and for  σ = 2   on the 
same sequence of partitions   Γ !M   are presented in Table 2.  It is easy to see that the difference between the val-
ues of the solutions obtained by different methods at different points is insignificant, and the behaviors of these 
solutions as the value of the parameter  h   decreases for different numbers  k   are identical. 
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Fig. 1 

At the same time, we note that the results obtained by both methods are sensitive to the errors of evaluation 
of elements of the matrices  Vk

h ,  k = 0,…,N ,  in formation of the SLAE (14), which have the form of double 
(collocation method) or quadruple (BEM) integrals.  This is especially important for the matrix  V0

h because 
(as indicated above) the function  e0 (x − y)   has an integrable singularity in the case where the points  x   and  y   
coincide.  In finding numerical solutions of the analyzed model problems, we used the additive subtraction of 
these singularities (for similar problems, this procedure was described in [5]).  With an aim to simplify the algo-
rithms of realization, these methods were applied only to the cases where the points  x   and  y   belong to the 
same boundary element, i.e., only on the principal diagonal of the matrix. For too fine boundary elements, it is 
necessary to use a special procedure of integration also in the cases where the analyzed points are located  
in neighboring boundary elements [5, 13, 17].  Otherwise, one may observe an instability of the behavior of nu-
merical solutions, which can be observed for some values of the solutions and for   !M = 2700   in the tables pre-
sented above. 

Having a collection of the components  µk
h ,   k = 0,…,N ,  we can compute the values of the numerical solu-

tion (15) of the RPIE (1) on  Σ .  In Fig. 1, we present the plots of the solutions   !µ
h,N   at the observation point  

x = (1, 0, 0)  for  y = (1, y2 , 0),  N = 40   and   !M = 972 .  If we consider    !µ
h,N (y,t − x − y )  on a sequence of the 

values of the parameter  N ,  then we can observe its point-by-point convergence in time on a certain inter-
val   [0,T ]  that becomes larger as N   increases.  We mention the following clear reproduction of the effect of 
retardation:  The value of the solution    !µ

h,N (y,t − x − y )  that characterizes the influence of the source located 
at a point  y   on the perturbation at a point  x   is close to zero for   t ∈[0, x − y ].  Note that the plots of the nu-
merical solution of Eq. (1) determined by substituting the coefficients  µ̂k

h (x),   k = 0,…,N , obtained by the col-
location method in expansion (15) exhibit no visual difference with the previous plots in Fig. 1. 

We now consider a sequence

 
   
v := (v0 , v1,…, vk ,…)⊤ , vk (x) =

eσζk (x)
x , k ∈N0 . (19) 

To within the coefficients, this sequence coincides with the fundamental solution of the infinite triangular system  
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Table 3 

 
x1 

k  
 

0 10 20 

1.5 

uk
h (x) 2.45961⋅10−1  8.91296⋅10−2  – 7.76775⋅10−2  

ûk
h (x) 2.45157⋅10−1  8.88135⋅10−2  – 7.65805⋅10−2  

vk (x)  2.45253⋅10−1  8.85703⋅10−2  – 7.66715⋅10−2  

2.0 

uk
h (x) 6.78263⋅10−2  5.70383⋅10−2  4.13326⋅10−2  

ûk
h (x) 6.76731⋅10−2  5.65699⋅10−2  4.09090⋅10−2  

vk (x)  6.76676⋅10−2  5.65019⋅10−2  4.07837⋅10−2  

2.5 

uk
h (x) 1.99574⋅10−2  – 1.86551⋅10−2  – 3.81745⋅10−3  

ûk
h (x) 1.99229⋅10−2  – 1.86508⋅10−2  – 3.84610⋅10−3  

vk (x)  1.99148⋅10−2  – 1.86297⋅10−2  – 3.80306⋅10−3  

3.0 

uk
h (x) 6.11747⋅10−3  – 1.97795⋅10−2  – 1.06752⋅10−2  

ûk
h (x) 6.10901⋅10−3  – 1.97095⋅10−2  – 1.05927⋅10−2  

vk (x)  6.10521⋅10−3  – 1.96762⋅10−2  – 1.05491⋅10−2  

3.5 

uk
h (x) 1.92886⋅10−3  – 2.61027⋅10−3  3.34234⋅10−3  

ûk
h (x) 1.92660⋅10−3  – 2.59210⋅10−3  3.33455⋅10−3  

vk (x)  1.92513⋅10−3  – 2.57739⋅10−3  3.33181⋅10−3  

of elliptic equations obtained as a result of the application of the Laguerre transform to the wave equation [3].  
This is why sequence (19) can be regarded as an analytic solution of the Dirichlet problem for this infinite sys-
tem with the boundary value  gk = vk ,   k ∈N0   on  Γ .  Moreover, it is known [25] that the sequence of BIE (8) 
is equivalent, in a certain sense, to the analyzed boundary-value problem.  In particular, this means that the se-
quence   

 
 
uh := V

H1/2 (Γ )
! µµh  

constructed on the basis of the numerical solution of the BIE (8)  

   µµ
h := (µ0

h , µ1
h ,…, µk

h ,…)⊤  

is a solution of this boundary-value problem if its trace coincides with the sequence    v := (v0 , v1,…, vk ,…)⊤    
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on  Γ .  We use this fact to estimate the error of the numerical solution of the sequence of BIE (8) because we do 
not know its analytic solution. 

Hence, we assume that, in the sequence of BIE (8), the right-hand side is specified by using the se-
quence  v   (19).  We find (as earlier, by two methods)  N   components of the numerical solutions  µk

h   and  
µ̂k
h (x),   k = 0,…,N ,  and compute, by using these components, the values of the corresponding solutions  uk

h (x)  
and  ûk

h (x),   k = 0,…,N ,  of the indicated Dirichlet boundary-value problem on the set of points  x   lying out-
side the cube. The results of evaluation of the solutions  uk

h (x),  ûk
h (x),  and  vk (x)   are presented in Table 3.  

It is easy to see that the components of both numerical solutions are close at all points to the corresponding 
components of the analytic solution.  For the analyzed model example, this is an indirect confirmation of the fact 
that, for a given number of boundary elements   ( !M = 1452),  the numerical solutions of the BIE are also found 
with satisfactory accuracy.  

CONCLUSIONS 

The combination of the method of Laguerre transform with the boundary-element method makes it possible 
to efficiently determine the numerical solutions of the retarded-potential integral equations.  It is clear that this 
approach can be extended to other time-dependent integral equations encountered in the solution of the initial-
boundary-value problems with different boundary conditions and also in the case where the solution is repre-
sented in terms of the retarded potential of double layer or by the Kirchhoff formula. 
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