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Abstract. We review recent results obtained at the intersection of the theory of quantum deformed
Calogero–Moser–Sutherland systems and the theory of Lie superalgebras. We begin with a definition
of admissible deformations of root systems of basic classical Lie superalgebras. For classical series, we
prove the existence of Lax pairs. Connections between infinite-dimensional Calogero–Moser–Sutherland
systems, deformed quantumCMS systems, and representation theory of Lie superalgebras are discussed.
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Introduction

The main goal of this survey is to present the main results obtained in the last 15 years at the
intersection of the theory quantum Calogero–Moser–Sutherland systems and the theory of Lie super-
algebras. The existence of some connections between these two theories was first observed in [12,
13], where a superanalog of the Calogero–Moser–Sutherland operator was constructed by using the
root system of the Lie superalgebra gl(n,m). It was also proved in [12] that for the particular case
m = 1, the constructed superanalog of the CMS operator coincides, up to change of variables and a
parameter k, with the operator constructed by A. Veselov, O. Chalykh, and M. Feigin in [3]. Another
result obtained in [12] states that for k = −1 and k = −1/2, the constructed superanalog of CMS
operator is the radial part of the Laplace operator for symmetric Lie superalgebras (gl ⊕ gl, gl) and
(gl, osp). These results showed that there should be connections between Lie superalgebras and de-
formed CMS system similar to the connections discovered by M. A. Olshanetski and A. M. Perelomov
in their classical paper [9]. The next important step in an investigation of deformed quantum CMS
systems and their connections to Lie superalgebras was taken in [14]. This paper set up a basis for a
systematic construction of the theory of the deformed quantum CMS systems. Namely, it was shown
that it is possible to construct a deformed CMS operator for any root system of a basic classical
Lie superalgebra. The main objects for future investigation were also introduced in the same paper:
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admissible deformations of generalized root systems and the corresponding second-order deformed
operator, and generalized invariant algebras and their difference analogs. The case of a generalized
root system of the type A(n,m) was considered in the differential case in [15] in more detail, and
the corresponding difference case was considered in [17]. As a by-product the paper [6], appeared, in
which Jack polynomials for some special parameters was discussed.

These papers showed that there are deep connections between quantum integrable systems and Lie
superalgebras, and these connections can be used to develop both these theories. Note that the main
difficulty in the theory of the deformed CMS systems is the absence of Dunkl operators, which play a
crucial role in the classical case. So we need to develop methods that are independent of the theory
of Dunkl operators: quantum Moser matrices and infinite-dimensional analogs of classical systems.
In particular, considering infinite-dimensional analogs of quantum integrable systems, it is easy to
explain the integrability of the deformed difference Macdonald–Ruijsenaars operator and differential
deformed operator of the type BC and to obtain explicit formulas for eigenfunctions (see [16, 17]).
These eigenfunctions depend on some parameters that can be specialized to some particular values,
and a natural question appears: “What is the meaning of the specializations from the point of view of
representation theory? It is well known that in the classical case Jacobi polynomials can be specialized
to the characters of irreducible finite-dimensional representations of Lie algebras or spherical functions
connected with finite-dimensional representations, and corresponding second-order operators can be
interpreted as radial parts of the Laplace operators. To date, the general picture is not clear in the
case of the deformed CMS systems. It should be connected with the fact that the representation
theory of finite-dimensional simple Lie superalgebras is not semi-simple. But partial results in this
direction can be found in [19, 20, 24]. In [19], it was shown that in the case of the deformed CMS
operator of the type BC, there exists a natural specialization of eigenfunctions to Euler characters,
and in [20], a description of Grothendieck rings of classical simple Lie superalgebras in terms of some
groupoid (which is natural from the point of view of integrable systems) is given. In the general case,
the spectral decomposition of the algebra of integrals of the deformed quantum CMS problem is not
semisimple. An interpretation of this fact in terms of the representation theory of Lie superalgebras
is given in [24]. In particular, it was proved in [24] that for k = −1/2 the generalized eigenspaces can
be naturally described in terms of projective covers of the irreducible finite-dimensional modules.

Connections between Lie superalgebras and deformed quantum Calogero–Moser–Sutherland sys-
tems lead to a natural infinite-dimensional generalization of the Jack classical symmetric functions.
Moreover, using some analogs of translation functors from representation theory, it is possible to de-
scribe the action of the algebra of integrals in the generalized eigenspaces for special values of the
parameters (see [21, 23]). In [22], Lax pairs were found for deformed CMS operators of the classical
type by means of infinite-dimensional Dunkl operators. It allowed one to obtain a simpler proof of
the integrability for the classical deformed CMS systems.

1. Generalized Root Systems and Their Admissible Deformations

1.1. Generalized root systems. We start with the definition of the generalized root systems due
to Serganova (see [10]). We mention that there are three slightly different definitions of generalized
root systems in [10], and we choose one of them which suits our purpose best for.

Let V be a finite-dimensional complex vector space with a symmetric, nondegenerate bilinear form
〈·, ·〉.
Definition 1.1. A finite set R ⊂ V \{0} is called a generalized root system if the following conditions
are fulfilled:

(1) R spans V and R = −R;
(2) if α, β ∈ R and 〈α,α〉 �= 0, then

2 〈α, β〉
〈α,α〉 ∈ Z, sα(β) = β − 2 〈α, β〉

〈α,α〉 α ∈ R;
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(3) if α ∈ R and 〈α,α〉 = 0, then for any β ∈ R such that 〈α, β〉 �= 0 at least one of the vectors β +α
or β − α belongs to R.

Introduce the following notation:

Rre = {α ∈ R :< α,α > �= 0} Riso = {α ∈ R :< α,α >= 0}
A generalized root system R is said to be reducible if it can be represented as the direct sum of two
nonempty generalized root systems R1 and R2, i.e., V = V1 ⊕ V2, where R1 ⊂ V1, R2 ⊂ V2, and
R = R1 ∪R2. Otherwise, the system is called irreducible.

Any generalized root system has a partial symmetry described by the finite group W0 generated by
reflections with respect to the real roots. The main result of Serganova’s paper [10] is a classification
theorem for irreducible generalized root systems. One can introduce the notion of positive and simple
root in the same manner as for ordinary root systems. Below, we present a list of all irreducible
generalized root systems according to [10].

Classical series.

1. Series A(n− 1,m− 1), n �= m. Let Vn,m = V1 ⊕ V2 be a vector space with a basis {e1, . . . , en+m}
such that {e1, . . . , en} is a basis of V1 and {en+1, . . . , en+m} is a basis of V2. Let e

i, i = 1, . . . , n +m,
denote the corresponding basis in the dual space V ∗

n,m.
Consider the following bilinear symmetric form on Vn,m:

B(u, v) =

n∑

i=1

uivi −
m∑

j=1

ujvj , (1)

where ui and vi are the coordinates of the vectors u and v in the basis ei.
Let us split the set of indices I = {1, . . . , n+m} into two groups, I = I1∪ I2, where I1 = {1, . . . , n}

and I2 = {n+ 1, . . . , n+m}, and rewrite the last formula as follows:

B =
∑

i∈I1
ei ⊗ ei −

∑

j∈I2
ej ⊗ ej , (2)

where B is now considered as an element of V ∗ ⊗ V ∗.
A generalized root system of the type A(n− 1,m− 1), n �= m, is defined as the set

R =
{
ei − ej , i �= j, i, j ∈ I

}
,

and the corresponding space V is a hyperplane in Vn,m generated by this set, with the induced bilinear
form. It is easy to see that in this case

Rre = An−1 ⊕Am−1, Rim =
{
± (ei − ej), i ∈ I1, j ∈ I2

}
.

The corresponding Lie superalgebra is sl(n,m).

2. Series A(n − 1, n − 1). In the case m = n, the restriction of the form B on the corresponding
hyperplane V is degenerate. Indeed, the vector

v =
∑

i∈I1
ei −

∑

i∈I2
ei

belongs to V and is orthogonal to all roots (and, therefore, to the whole space V ). In order to obtain
a proper generalization of the root system in this case, we consider the quotient V ′ = V/ 〈v〉 and the
corresponding set R′, which is the image of R after such a projection. This is the system of type
A(n− 1, n − 1). The corresponding Lie superalgebra is psl(n|n).
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3. Series B(n,m). In this case, V = Vn,m with the same bilinear form B and

R = BBB{±ei ± ej , i �= j, i, j ∈ I, ±ei, i ∈ I, ±2ei, i ∈ I2

}
.

The real and isotropic roots are

Rre = Bn ⊕BCm, Rim =
{
± ei ± ej , i ∈ I1, j ∈ I2

}
.

This is the root system of the Lie superalgebra osp(2n+ 1|2m).

4. Series D(n,m), n ≥ 2. Here V = Vn,m is the same as before, but R is the set

R =
{
± ei ± ej , i �= j, i, j ∈ I, ±2ei, i ∈ I2

}
.

We have

Rre = Dn ⊕ Cm, Rim =
{
± ei ± ej , i ∈ I1, j ∈ I2

}
.

This root system corresponds to the Lie superalgebra osp(2n|2m).

5. Series C(0,m). Here V = V1,m and

R =
{
± ei ± ej , i �= j, i, j ∈ I, ±2ei, i ∈ I2

}
.

In this case,

Rre = Cm, Rim =
{
± e1 ± ej , j ∈ I2

}
.

6. Series C(n,m). Here V = Vn,m and

R = {±ei ± ej , i �= j, i, j ∈ I, ±2ei, i ∈ I
}
,

so that

Rre = Cn ⊕ Cm, Rim =
{
± ei ± ej , i ∈ I1, j ∈ I2

}
.

In this and the following cases, there are no related Lie superalgebras, but there are symmetric
superspaces with such root systems.

7. Series BC(n,m). Here V = Vn,m and

R =
{
± ei ± ej , i �= j, i, j ∈ I, ±ei, ±2ei, i ∈ I

}
.

In this case,

Rre = BCn ⊕BCm, Rim =
{
± ei ± ej , i ∈ I1, j ∈ I2

}
.

8. Case AB(1, 3) (also known as F (4)). Here V = V1 ⊕ V2, where V1 is a three-dimensional space
with basis {e1, e2, e3} and V2 is a one-dimensional space generated by e4. The bilinear form is

B(u, v) = u1v1 + u2v2 + u3v3 − 3u4v4.

The root system R is the set

R =

{
±ei ± ej , i �= j, ±ei, i, j = 1, 2, 3,

1

2
(±e1 ± e2 ± e3 ± e4)

}
;

here

Rre = B3 ⊕A1, Rim =

{
1

2

(± e1 ± e2 ± e3 ± e4
)}

.
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9. Case G(1, 2) (also known as G(3)). Here V = V1 ⊕ V2, where V1 is a two-dimensional space
generated by vectors e1, e2, and e3 satisfying the condition e1+e2+e3 = 0, and V2 is a one-dimensional
space generated by a vector e4. The form B is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B(ei, ej) = −1, if i �= j,

B(ei, ei) = 2,

B(ei, e4) = 0,

B(e4, e4) = −2,

where i, j = 1, 2, 3. The root system is

R =
{
± ei, (ei − ej), ±e4, ±2e4, ±ei ± e4, i �= j, i, j ≤ 3

}
,

Rre = G2 ⊕BC1, Rim =
{
± ei ± e4, i = 1, 2, 3

}
.

10. Case D(2, 1, λ). Here λ = (λ1, λ2, λ3) are parameters satisfying the relation λ1 + λ2 + λ3 = 0.
The space V is the direct sum V1 ⊕ V2 ⊕ V3 of three one-dimensional subspaces generated by e1, e2,
and e3. The form B is

B(u, v) = λ1u
1v1 + λ2u

2v2 + λ3u
3v3;

the root system is

R =
{
± 2e1, ±2e2, ±2e3, ±e1 ± e2 ± e3

}
,

Rre = A1 ⊕A1 ⊕A1, Rim =
{
± e1 ± e2 ± e3

}
.

1.2. Admissible deformations. In order to construct deformed CMS operators, we need the
notion of an admissible deformation introduced in [14]. Consider all possible triples R = (R,m,B),
where R is a generalized root system, m is a complex-valued function on R, and B is a symmetric
bilinear form on the space V . We can consider the initial root system as a particular triple of such a
form, wherem is identically equal to 1 and the form B is the same as in the definition of the generalized
root system R. For any triple R, consider two algebras Drat

R and Dtr
R (the rational and trigonometric

algebras). Let R be such a triple. We can consider elements from α ∈ R as the functions on V .
Namely, α(v) = B(α, v), and we will also consider the derivations defined by the rule ∂u(v) = B(u, v),
where u, v ∈ V .

Definition 1.2. Let C(V ) be the algebra of rational functions on the space V and EndC(C(V )) be the
algebra of its linear maps (considered as maps of a vector space). Let us denote by Drat

R its subalgebra
generated by multiplication operators by the functions 1/α, α ∈ R, and differentiations ∂v, v ∈ V .
Let us also denote by D(V ) the algebra generated by differentiations ∂v, v ∈ V .

Definition 1.3. A homomorphism ϕ : Drat
R,B → D(V ) such that ϕ(1/α) = 0, α ∈ R, is called a

Harish-Chandra homomorphism.

Definition 1.4. Let M(V ) be the algebra of meromorphic functions on the space V , and EndC(M(V ))
be its algebra of linear maps (considered as maps of a vector space). Let us denote by Dtr

R,B its

subalgebra generated by multiplication operators by the functions e−α and 1/(e−α − 1), α ∈ R+, and
differentiations ∂v, v ∈ V .

Definition 1.5. A homomorphism ϕ : Dtr
R,B → D(V ) such that ϕ(e−α) = 0, α ∈ R+, is called a

Harish-Chandra homomorphism.

We can identify the algebra D(V ) with the algebra of polynomial functions on V by the rule
∂v(u) = (v, u).
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Let us also introduce the following algebras:

Λrat
R =

{
p ∈ S(V )

∣∣∣ p(wu) = p(u), w ∈ W0, ∂α(p) ∈ (α), α ∈ Riso

}
, (3)

Λtr
R =

{
p ∈ S(V )

∣∣∣ p(wu) = p(u), w ∈ W0, p(u+ α/2) − p(u− α/2) ∈ (α), α ∈ Riso

}
, (4)

where (α) means the principal ideal generated by α, and Riso means the set of isotropic roots.
For any triple R, let us define two types of operators, which will be called the rational and trigono-

metric Calogero–Moser-Sutherlend operators (CMS):

Hrat
2 = ΔB −

∑

α∈R+

m(α)(m(α) + 1)(α,α)

α2
, (5)

Htr
2 = ΔB −

∑

α∈R+

m(α)
(
m(α) +m(2α) + 1

)
(α,α)

(
eα/2 − e−α/2

)2 (6)

or

Htr
2 = ΔB −

∑

α∈R+

m(α)
(
m(α) +m(2α) + 1

)
(α,α)

sinh2(α)
, (7)

where ΔB is the Laplace operator on V defined by the form B. We note that the last two operators
differ by the change of variables v → 2v.

Let us denote by Ψrat
R the function (called the ground state)

Ψrat
R =

∏

α∈R+

αm(α) (8)

in the rational case and

Ψtr
R =

∏

α∈R+

(
eα/2 − e−α/2

)m(α)
(9)

in the trigonometric case.
Let also C(H2) be the centralizer of the operatorH2 in the corresponding algebra. The main problem

is to describe this centralizer more or less explicitly. It turns out that in the cases under consideration,
the restriction of the Harish-Chandra homomorphism to the centralizer is an injection. Therefore, it
suffices to describe the image of the centralizer under the Harish-Chandra homomorphism.

Now let us indicate conditions that allow one to choose triplesR corresponding to integrable systems.

Definition 1.6. A triple R is called an admissible deformation if it satisfies the following conditions:

(1) the new form B and the multiplicities are W0-invariant;
(2) all isotropic roots have multiplicity 1;
(3) the following fundamental identity holds:

∑

α�∼β,
α,β∈R+

mαmβ(α, β)

αβ
≡ 0 (10)

in the rational case and
∑

α�∼β,
α,β∈R+

mαmβ(α, β)

(
1 + e−α

1− e−α
· 1 + e−β

1− e−β
+ 1

)
≡ 0 (11)

in the trigonometric case. Here α �∼ β means that α is not proportional to β (let us note that in
the case BC(n,m), there are proportional roots).

One can verify that conditions (3) are equivalent to the following condition:
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(3∗) the function (Ψrat
R )−1 is a formal eigenfunction of the rational CMS operator, and the function

(Ψtr
R)

−1) is a formal eigenfunction of the trigonometric CMS operator.

The theorem below describes all possible admissible deformations of generalized root systems. In
order to do so, one needs to use the fact that it suffices to verify the conditions (10) and (11) only
for two-dimensional subsystems of generalized root systems (cf. [4, 28]). It suffices to consider only
the classical root systems A(n,m) and BC(n,m) (from the point of view of deformations, the others
are simply special cases) and the exceptional root systems G(1, 2), AB(1, 3), and D(2, 1λ). The forms
B are obviously defined up to a multiple, so we will choose some normalization to avoid unnecessary
constants.

One of the main results of [14] is the following theorem.

Theorem 1.7. The following list is the complete set of admissible deformations of generalized root
systems.

In all cases, admissible forms depend on one parameter. We denote this parameter by k and choose
it in such a way that the value k = −1 corresponds to the case of Lie superalgebras.

Classical series.

Series A(n,m). The form B is equal to

B =
∑

i∈I1
ei ⊗ ei + k

∑

j∈I2
ej ⊗ ej , (12)

where k is an arbitrary parameter. The multiplicities mα = m(α) of nonisotropic roots

m(ei − ej) = k, i, j ∈ I1, m(ei − ej) = k−1, i, j ∈ I2

(recall that isotropic roots have multiplicity 1).
The corresponding one-parameter family of deformed CMS operators has the form

LA(n−1,m−1) =

(
∂2

∂x1
2 + · · · + ∂2

∂xn
2

)
+ k

(
∂2

∂y1
2 + · · · + ∂2

∂ym
2

)

−
∑

1≤i<j≤n

2k(k + 1)

sinh2(xi − xj)
−

∑

1≤i<j≤m

2(k−1 + 1)

sinh2(yi − yj)
−

∑

1≤i≤n

∑

1≤j≤m

2(k + 1)

sinh2(xi − yj)
. (13)

Note that in the case m = n, the vector

v =
∑

i∈I1
ei −

∑

i∈I2
ei

is not isotropic for the deformed form, so strictly speaking, we deform not the generalized system of
the type A(n − 1, n − 1) but its degenerate extension.

Series BC(n,m). The form B is the same as before, and the multiplicities are

m(ei ± ej) = k, m(ei) = p, m(2ei) = q, i, j ∈ I1,

m(ei ± ej) = k−1, m(ej) = r, m(2ej) = s, i, j ∈ I2,

where p, q, r, and s satisfy the relations

p = kr, 2q + 1 = k(2s+ 1).
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The corresponding deformed CMS operator deepens on three free parameters and can be given by
the formula

LBC(n,m) = −
(

∂2

∂x1
2 + · · ·+ ∂2

∂xn
2

)
− k

(
∂2

∂y1
2 + · · · + ∂2

∂ym
2

)

+
∑

1≤i<j≤n

(
2k(k + 1)

sinh2(xi − xj)
+

2k(k + 1)

sinh2(xi + xj)

)
+

∑

1≤i≤n

∑

1≤j≤m

2(k + 1)

sinh2(xi − yj)

+
∑

1≤i<j≤m

(
2(k−1 + 1)

sinh2(yi − yj)
+

2(k−1 + 1)

sinh2(yi + yj)

)
+

n∑

i=1

p(p+ 2q + 1)

sinh2 xi

+
n∑

i=1

4q(q + 1)

sinh2 2xi
+

m∑

j=1

kr(r + 2s + 1)

sinh2 yj
+

n∑

j=1

4ks(s+ 1)

sinh2 2yj
. (14)

Exceptional cases.

Case AB(1, 3).

B = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + 3ke4 ⊗ e4,

the multiplicities are given by

m(ei) = a =
3k + 1

2
, m(e4) = b =

1− k

2k
, m(ei ± ej) = c =

3k − 1

4
, i, j = 1, 2, 3.

The deformed CMS operator has the form

LAB(1,3) = −
(

∂2

∂x1
2 +

∂2

∂x2
2 +

∂2

∂x3
2

)
− 3k

∂2

∂y2
+

3∑

i=1

a(a+ 1)

sinh2 xi
+

3kb(b+ 1)

sinh2 y

+
∑

1≤i<j≤3

(
4c(c + 1)

sinh2(xi − xj)
+

4c(c + 1)

sinh2(xi + xj)

)
+

1

4

∑

±

(3k + 3)

sinh2 1
2(y ± x1 ± x2 ± x3)

, (15)

where the parameters a, b, and c are given in terms of the parameter k above, and the sum is taken
over all possible 8 combinations of signs. In this case, we have only one free parameter k.

Case G(1, 2). In the basis e1, e2, e4, the form B has the form

B = e1 ⊗ e1 + e2 ⊗ e2 − 1

2

(
e1 ⊗ e2 + e2 ⊗ e1

)
+ ke4 ⊗ e4.

The multiplicities are

m(ei) = a = 1 + 2k, m(ei − ej) = b =
2k − 1

3
, m(e4) = c =

1

k
+ 2,

m(2e4) = d =
1

2k
− 1

2
, i, j = 1, 2, 3.

The corresponding deformed operator has the following form:

LG(1,2) = −
(

∂2

∂x1
2 − ∂2

∂x1∂x2
+

∂2

∂x2
2

)
− k

∂2

∂y2
+

3∑

i=1

a(a+ 1)

sinh2 xi
+

∑

1≤i<j≤3

3b(b+ 1)

sinh2(xi − xj)
+

+
kc(c + 2d+ 1)

sinh2 y
+

4kd(d + 1)

sinh2 2y
+

3∑

i=1

(
2(k + 1)

sinh2(xi − y)
+

2(k + 1)

sinh2(xi + y)

)
, (16)

where the parameters a, b, c, and d are given in terms of the parameter k above. We again have the
one-parameter family.
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Case D(2, 1, λ) The form B is

B = λ1e
1 ⊗ e1 + λ2e

2 ⊗ e2 + λ3e
3 ⊗ e3,

where the parameters λi, i = 1, 2, 3, are arbitrary but nonzero. Let us introduce the parameter

k = λ1 + λ2 + λ3 − 1

such that for k = −1 we obtain a case of Lie superalgebras. The multiplicities are

m(2ei) = mi =
k + 1

2λi
− 1, i = 1, 2, 3.

The corresponding deformed CMS operator has the form

LD(2,1,λ) = λ1
∂2

∂x1
2 + λ2

∂2

∂x22
+ λ3

∂2

∂x3
2 +

3∑

i=1

4λimi(mi + 1)

sinh2 2xi
+

∑

±

2(k + 1)

sinh2(x1 ± x2 ± x3)
, (17)

where the last sum is taken over all possible combinations of signs (four signs in this case). This family
can be parametrized by points on the projective plane λ1 : λ2 : λ3. The case of Lie superalgebras
corresponds to the line λ1 + λ2 + λ3 = 0, so again we have a free parameter (say, k).

Everywhere above, the hyperbolic sine is defined by the usual formula sinhx = 1
2(e

x − e−x). More-
over, xi and yj are chosen as elements of dual space defined by the basis vectors and the form B. The
next theorem shows the meaning of Harish–Chandra homomorphism.

Theorem 1.8. Let A(n,m) and BC(n,m) be generalized root systems of the corresponding types, the
parameter k �= 0, and H2 be the corresponding rational or trigonometric deformed CMS operator.

Then the restriction of the Harish-Chandra homomorphism on the centralizer C(H2) is an injection
and its image is contained in the algebra Λrat

R or in the algebra Λtr
R, respectively.

The proof can be found in [14].

2. Integrability of Deformed Quantum CMS Systems

In this section, we will prove that the deformed quantum CMS systems related to classical gener-
alized root systems, i.e., the systems of the types A(n− 1,m− 1) and BC(n,m), are integrable. The
integrability of the rational deformed CMS operator for exceptional root systems has still not been
proved.

Quantum analogs of the Lax pairs for usual CMS systems were proposed in 1992 by Ujino, Hikami,
and Wadati in [27, 29] (see also [25]). We note that the quantum version of the Moser matrix L was
used in 1975 by Calogero, Marchioro, and Ragnisco (see [2]) in order to construct integrals of the CMS
system. A proof of the integrability of the usual CMS systems are based either on Dunkl operators
or on Lax pairs. It appears that, in the deformed case, there are no Dunkl operators. So we use
the Lax-pair method, which allows one to construct some elements from the centralizer of the given
operator.

2.1. Lax pair. The proof of integrability is based on the following Lax equation.

Theorem 2.1. Let A be an associative algebra and a ∈ A. Denote by E the identity (n× n)-matrix.
Let L and M be matrices of the same size with elements in A such that

[L, aE] = [L,M ]. (18)

Moreover, let e∗ and e be (1×n)- and (n× 1)-matrices with elements from A, respectively (i.e., a row
and a column) such that

e∗M = Me = 0, e∗a = ae∗, ea = ae. (19)

Then the elements
Lr = e∗Lre

commute with a.

764



Proof. The proof follows the ideas from [27, 29]. Equality (18) can be rewritten in the form [L, aE −
M ] = 0. Therefore, [Lr, aE −M ] = 0 and hence

e∗(aE −M)Lre = e∗Lr(aE −M)e.

Further, e∗aLre = e∗LraEe and, therefore, ae∗Lre = e∗Lrea. �

2.2. Rational case. We consider the rational deformed CMS operator of the type A(n− 1,m− 1).
It has the form

H2 =

n∑

i=1

∂2

∂x2i
+ k

m∑

i=1

∂2

∂y2i
−

n∑

i<j

2k(k + 1)

(xi − xj)2
−

m∑

i<j

2(k−1 + 1)

(yi − yj)2
−

n∑

i=1

m∑

j=1

2(k + 1)

(xi − yj)2
.

For the reader’s convenience, we introduce the new variables yj = xn+j, j = 1, . . . , n. Then the

algebra Drat
R can be described as the algebra generated by differentiations

∂

∂xi
, i = 1, . . . , n+m, and

multiplication operators by the functions
1

xi − xj
, i �= j. The algebra Λrat

R can be described as follows:

Λrat
R =

{
f ∈ C[ξ1, . . . , ξn+m]Sn×Sm

∣∣∣
∂f

∂ξi
− ∂f

∂ξn+j
∈ (ξi − kξn+j), 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

and the group Sn×Sm permutes the first n and the last m symbols. In this case, the Harish-Chandra
homomorphism can be described by the formulas

ϕ

(
∂

∂xi

)
= ξi, i = 1, ϕ

(
1

xi − xj

)
= 0, i, j = 1, . . . , n+m.

Theorem 2.2. The operator H2 is integrable. More precisely, let us define the (m+n)×(m+n)-matrix
L by the equalities

L =
(
Lij

)
, Lii = kp(i)

∂

∂xi
, Lij =

k1−p(j)

xi − xj
, i �= j.

Then the operators

Lr =
∑

ij

(Lr)ijk
−p(i) (20)

are differential operators of order r and they commute with each other, and we also have H2 = L2.

Proof. Let us write the Lax equation in this case. We set A = Drat
R , a = H2, and take the matrix

Mij =
2k1−p(j)

(xi − xj)2
, i �= j, Mii = −

∑

j �=i

2k1−p(j)

(xi − xj)2
.

as the matrix M . We also set

e∗ =
(
1, . . . ,

1

k
, . . . ,

1

k

)
(or e∗i = k−p(i), i = 1, . . . ,m+ n),

e = (1, . . . , 1) (or ei = 1, i = 1, . . . , n+m).

We verify that the element a and the matrices L, M , e∗, and e satisfy the conditions of Theorem 2.1.
It is clear that e∗M = Me = 0. Let us represent the matrix L in the form L = ∂ +A, where ∂ is the
diagonal matrix with elements

∂i = kp(i)
∂

∂xi
, i = 1, . . . , n+m,

and rewrite the element H2 in the form H2 = Δ− f , where f is a potential. Further, we have

[L, aE −M ] = −[∂, fE] + [A,ΔE]− [∂,M ] − [A,M ].
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We must show that the right-hand side is zero. Let us calculate the nondiagonal elements. Let
i, j ∈ {1, . . . , n+m}, i �= j. Then it is easy to verify that

[∂, fE]ij = 0,
(
[A,ΔE]− [∂,M ]

)
ij
=

2k1−p(j)

(xi − xj)3
(
kp(i) − kp(j)

)
,

[A,M ]ij =
2k1−p(j)

(xi − xj)3
(
k1−p(j) − k1−p(i)

)
,

and, therefore, [L, aE −M ]ij = 0. Similarly, we can check that [L, aE −M ]ii = 0, i = 1, . . . , n +m.
Therefore, the elements Lr, r = 1, 2, . . . , commute with H2. The Harish-Chandra theorem implies
that Lr, r = 1, 2, . . . , commute with each other. �

Corollary 2.3. For a general value of the parameter k, the centralizer C(H2) is generated by Lr,
r = 1, 2, . . . , and the restriction of the Harish-Chandra homomorphism to the centralizer is an iso-
morphism.

Proof. The image of the integral Lr under the Harish-Chandra homomorphism is

∑

i=1

ξri + kr−1
m∑

j=1

ηrj .

For a general value of the parameter k, such elements generate the whole algebra Λrat
R (see [14]). �

Now we consider the rational CMS operator of the type BCm,n. In this case, it has the form

H2 =

(
∂2

∂x1
2 + · · · + ∂2

∂xn
2

)
+ k

(
∂2

∂y1
2 + · · · + ∂2

∂ym
2

)
−

−
n∑

i<j

(
2k(k + 1)

(xi − xj)2
− 2k(k + 1)

(xi + xj)2

)
−

m∑

i<j

(
2(k−1 + 1)

(yi − yj)2
− 2(k−1 + 1)

(yi + yj)2

)

−
n∑

i=1

m∑

j=1

(
2(k + 1)

(xi − yj)2
+

2(k + 1)

(xi + yj)2

)
−

n∑

i=1

q(q + 1)

x2i
−

m∑

j=1

ks(s+ 1)

y2j
,

where the parameters k, q, and s satisfy the relations

2q + 1 = k(2s + 1). (21)

Again, we set yj = xn+j, j = 1, . . . , n. Then the algebra Drat
R can be described as the subalgebra

generated by differentiations
∂

∂xi
, i = 1, . . . , n + m, and multiplication operators by the functions

1

xi − xj
,

1

xi + xj
, i �= j, and

1

xi
. The algebra Λrat

R can be described as follows:

Λrat
R =

{
f ∈ C[ξ21 , . . . , ξ

2
n+m]Sn×Sm

∣∣∣
∂f

∂ξi
− ∂f

∂ξn+j
∈ (

ξi − kξn+j

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

and the Harish-Chandra homomorphism acts by the formulas

ϕ

(
∂

∂xi

)
= ξi, ϕ

(
1

xi − xj

)
= ϕ

(
1

xi + xj

)
= ϕ

(
1

xi

)
= 0, i, j = 1, . . . , n +m.

Theorem 2.4. The operator H2 is integrable. More precisely, let us define the 2(m+ n)× 2(m+ n)-
matrix L as follows:

L =

(
L0 L1

−L1 −L0

)
,
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where

(L0)ii = kp(i)
∂

∂xi
, (L1)ii =

kp(i)m(i)

xi
; (L0)ij =

k1−p(j)

xi − xj
, (L1)ij =

k1−p(j)

xi + xj
, i �= j.

Then
L2r = e∗L2re (22)

are differential operators of the order 2r and they commute with each other; moreover, H2 = L2.

Proof. In this case, the proof is similar to the previous case. Let us indicate the corresponding data for
the Lax pair. The matrix L is given above; e = (1, 1, . . . , 1)T ; e∗i = e∗n+m+i = k−p(i), i = 1, . . . , n+m;
m(i) = q for i = 1, . . . , n and m(i) = s for i = n + 1, . . . , n +m. Let us define the matrix M by the
following formulas:

M =

(
M0 M1

M1 M0

)
,

where

(M0)ii = −
∑ 2k1−p(j)

(xi − xj)2
−

∑ 2k1−p(j)

(xi − xj)2
−

∑ m(i)kp(i)

x2i
, (M1)ii =

kp(i)m(i)

x2i
,

(M0)ij =
2k1−p(j)

xi − xj
, (M1)ij =

2k1−p(j)

(xi + xj)2
, i �= j.

Let us verify that the element a and the matrices L, M , e∗, and e satisfy the conditions of Theorem 2.1.
It is clear that e∗M = Me = 0. As before, we represent the matrix L in the form

L =

(
∂ 0
0 −∂

)
−

(
A0 A1

−A1 −A0

)
,

where ∂ is the diagonal matrix with elements

∂i = kp(i)
∂

∂xi
, i = 1, . . . , n+m,

and write the element H2 in the form H2 = Δ− f , where f is a potential. Again, as before, we have

[L, aE −M ] = −[∂, fE] + [A,ΔE]− [∂,M ] − [A,M ].

We must show that the right-hand side is zero. This is equivalent to the following two equations:

−[∂, fE] + [A0,ΔE]− [∂,M0]− [A0,M0]− {A1,M1} = 0,

[A1,ΔE]− {∂,M1} − [A1,M0]− {A0,M1} = 0,

where the brackets { , } mean the anticommutator. Let us check the first equation. Calculate the
nondiagonal elements. Let i, j ∈ {1, . . . , n+m}, i �= j. Then

[∂, fE]ij = 0,
(
[A0,ΔE]− [∂,M0]

)
ij
=

2k1−p(j)

(xi − xj)3
(
kp(i) − kp(j)

)
,

(
[A0,M0] + {A1,M1}

)
ij
=

=
2k1−p(j)

(xi − xj)3
(
k1−p(j) − k1−p(i)

)
+

2k1−p(j)

(xi − xj)(xi + xj)2
(
k1−p(j) − k1−p(i)

)
+

+
k1−p(j)

xi − xj

(
m(i)kp(i)

x2i
− m(j)kp(j)

x2j

)
+

2k1−p(j)

(xi + xj)2

(
m(i)kp(i)

xi
+

m(j)kp(j)

xj

)
+

+
k1−p(j)

(xi + xj)

(
m(i)kp(i)

x2i
+

m(j)kp(j)

x2j

)
.
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Therefore, in the first equation all nondiagonal elements are zeros. Similarly, we can prove that all
diagonal elements in the first equation are zeros. The second equation can be verified in the same
way. Therefore, the elements Lr, r = 1, 2, . . . , commute with H2. Moreover, it is easy to check that
L2r+1 = 0, and Theorem 1.8 implies that the operators Lr, r = 1, 2, . . . , commute with each other. �

Corollary 2.5. For a general value of the parameter k, the centralizer C(H2) is generated by operators
Lr, r = 1, 2, . . . , and the restriction of the Harish-Chandra homomorphism to the centralizer is an
isomorphism.

Proof. The image of the integral Lr under the Harish-Chandra homomorphism is

∑

i=1

ξ2ri + k2r−1
m∑

j=1

η2rj .

For a general value of the parameter k, these elements generate the algebra Λrat
R . �

2.3. Trigonometric case. In this section, we prove the integrability of trigonometric deformed
quantum CMS systems corresponding to the classical series of the generalized root systems A(n,m)
and BC(n,m). The integrability of the deformed CMS operator is still not proved in the case of the
exceptional generalized root systems.

First, consider the trigonometric quantum deformed CMS operator of the type A(n,m). Let us
introduce the new variables by the formulas xi = eεi , i = 1, . . . , n, and yj = eδj , j = 1, . . . ,m. Then
the operator takes the form

H2 =
n∑

i=1

(
xi

∂

∂xi

)2

+ k
m∑

j=1

(
yj

∂

∂yj

)2

−

−
n∑

i<j

2k(k + 1)xixj
(xi − xj)2

−
m∑

i<j

2(k−1 + 1)yiyj
(yi − yj)2

−
n∑

i=1

m∑

j=1

2(k + 1)xiyj
(xi − yj)2

. (23)

Define yj = xn+j, j = 1, . . . , n; then the algebra Dtr
R can be described as the algebra generated by

differentiations xi
∂

∂xi
, i = 1, . . . , n+m, and multiplication operators by the functions

xi + xj
xi − xj

, i �= j.

The algebra Λtr
R can be described as follows:

Λtr
R =

{
f ∈ C[ξ1, . . . , ξn+m]Sn×Sm

∣∣∣∣∣

f

(
ξi − 1

2
, ξn+j +

1

2

)
− f

(
ξi +

1

2
, ξn+j − 1

2

)
∈ (ξi − kξn+j),

1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

and the Harish-Chandra homomorphism acts by the formulas

ϕ

(
xi

∂

∂xi

)
= ξi, ϕ

(
xi + xj
xi − xj

)
= 1, i, j = 1, . . . , n+m, i < j.

Theorem 2.6. The operator H2 is integrable. Define the (m+n)× (m+n)-matrix L by the formulas

L =
(
Lij

)
, Lii = kp(i)xi

∂

∂xi
, Lij =

1

2
k1−p(j)xi + xj

xi − xj
, i �= j.
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Then

Lr =
∑

i,j

(Lr)ijk
−p(i) (24)

are differential operators of the order r; they commute with each other and

H2 = L2 +B(ρ, ρ), ρ =
1

2

∑

α∈R+

m(α)α.

Proof. The proof is the same as above. Let us indicate the corresponding data for the Lax pair:
a = H2;

Mij =
2k1−p(j)xixj
(xi − xj)2

, i �= j, Mii = −
∑

j �=i

2k1−p(j)xixj
(xi − xj)2

;

e = (1, . . . , 1)T ; e∗i = k−p(i), i = 1, . . . , n + m. Similarly to the rational case, we can check that
[L, aE −M ] = 0, and by Theorem 2.1 the element Lr commutes with H2. Theorem 1.8 shows that
that the elements Lr, r = 1, 2, . . . , commute with each other. �

Corollary 2.7. For a general value of the parameter k, the centralizer is generated by the elements
Lr, r = 1, 2, . . . , and the restriction of the Harish-Chandra homomorphism is an isomorphism.

Proof. The highest term of the image of the integral Lr under the Harish-Chandra homomorphism
has the form

n∑

i=1

ξri + kr−1
n∑

j=1

ηrj .

Therefore, for a general value of the parameter k, the images of the integrals generate the algebra Λtr
R.

�
Now we consider the trigonometric CMS operator of the type BCm,n. As in the previous case, we

define xi = eεi , i = 1, . . . , n, and yj = eδj , j = 1, . . . ,m. Then the operator can be rewritten in the
form

H2 =
n∑

i=1

(
xi

∂

∂xi

)2

+ k
m∑

j=1

(
yj

∂

∂yj

)2

−
n∑

i<j

(
8k(k + 1)xixj
(xi − xj)2

+
8k(k + 1)xixj
(xixj − 1)2

)
−

−
m∑

i<j

(
8(k−1 + 1)yiyj

(yi − yj)2
+

8(k−1 + 1)yiyj
(yiyj − 1)2

)
−

n∑

i=1

m∑

j=1

8(k + 1)xiyj
(xi − yj)2

−

−
n∑

i=1

(
4p(p + 2q + 1)xi

(xi − 1)2
+

16q(q + 1)x2i
(x2i − 1)2

)
−

m∑

j=1

(
4kr(r + 2s+ 1)yj

(yj − 1)2
+

16ks(s + 1)y2j
(y2j − 1)2

)
, (25)

where the parameters satisfy the relations

p = kr, 2q + 1 = k(2s+ 1).

If we define yj = xn+j, j = 1, . . . , n, then the algebra Dtr
R can be described as the algebra generated

by differentiations xi
∂

∂xi
, i = 1, . . . , n + m, and multiplication operators by the functions

xi + xj
xi − xj

,
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xixj + 1

xixj − 1
, i �= j,

xi + 1

xi − 1
, and

x2i + 1

x2i − 1
. In this case, the algebra Λtr

R can be described as follows:

Λtr
R =

{
f ∈ C[ξ21 , . . . , ξ

2
n+m]Sn×Sm

∣∣∣∣∣

f

(
ξi − 1

2
, ξn+j +

1

2

)
− f

(
ξi +

1

2
, ξn+j − 1

2

)
∈ (ξi − kξn+j),

1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

and we have the following action of the Harish-Chandra homomorphism:

ϕ

(
∂

∂xi

)
= ξi, ϕ

(
xi + xj
xi − xj

)
= 1, i < j, ϕ

(
xixj + 1

xixj − 1

)
= 1,

ϕ

(
xi + 1

xi − 1

)
= 1,

(
x2i + 1

x2i − 1

)
= 1, i, j = 1, . . . , n +m.

Theorem 2.8. The operator H2 is integrable. In other words, let us define the 2(m+n)× 2(m+n)-
matrix L by the rule

L =

(
L0 L1

−L1 −L0

)
,

where

(L0)ii = kp(i)xi
∂

∂xi
, (L1)ii =

kp(i)μ(i)(xi + 1)

2(xi − 1)
+

kp(i)ν(i)(x2i + 1)

x2i − 1
,

(L0)ij =
k1−p(j)(xi + xj)

2(xi − xj)
, (L1)ij =

k1−p(j)(xixj + 1)

2(xixj − 1)
, i �= j.

and μ(i) = p, ν(i) = q, i = 1, . . . , n, μ(i) = r, ν(i) = s, i = 1, . . . , n+ 1, n +m, and e∗ and e are the
same as in the rational BC case. Then

L2r = e∗L2re

are differential operators of the order 2r and they commute with each other. We also have the equality

H2 = L2 +B(ρ, ρ), ρ =
1

2

∑

α∈R+

m(α)α.

As far as the author knows, the matrix M has never been calculated before, although there is no
doubt of its existence. But we will prove this theorem in the next section.

Corollary 2.9. For a general value of the parameter k, the centralizer is generated by the elements
L2r, r = 1, 2, . . . , and the restriction of the Harish-Chandra homomorphism onto centralizer is an
isomorphism.

Proof. The highest term in the image of the integral L2r under the Harish-Chandra homomorphism is

n∑

i=1

ξ2ri + kr−1
n∑

j=1

η2rj .

Therefore, for a general value of the parameter k, the images of such integral generate the algebra Λtr
R.

�
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3. Infinite-Dimensional Quantum CMS Systems

In this section, we define infinite-dimensional analogs of the CMS systems and show their connections
to the deformed CMS systems. Under infinite-dimensional operators we mean differential operators
on the algebra of symmetric functions.

In this situation, our main tool is the Dunkl operator at infinity. This approach actually does not
allow one to get Dunkl operators for deformed CMS systems, but it allows us to explain naturally the
appearance of the quantum Moser matrix in the deformed case.

In this section, we also obtain new formulas for quantum integrals at infinity for rational and
trigonometric cases of the type A and BC. We note that the same type of approach was used recently
in the trigonometric A-case by M. Nazarov and E. Sklynin in [8].

In order to construct infinite-dimensional analogs, we must rewrite the deformed CMS operators in
the radial form. This means that instead of the operator L2 we will use the operator L2 = ΨRL2Ψ

−1
R .

The next proposition can be verified by direct calculations.

Prposition 3.1. In the rational case, the following equalities hold :

L2 = Ψrat
R L2

(
Ψrat

R
)−1

= Δ−
∑

α∈R+

2m(α)

α
∂α.

In the trigonometric case, the following equalities hold :

L2 = Ψtr
RL2

(
Ψtr

R
)−1

= Δ−
∑

α∈R+

m(α)
1 + e−α

1 − e−α
∂α

We also change the matrix L and the integrals by the formulas

L = ΨRL(ΨR)−1, Lr = ΨRLr(ΨR)−1.

Recall that the algebra of the symmetric function Λ by definition is the inverse limit of the algebras
of the symmetric polynomials (see [7]). This algebra is isomorphic to the algebra of polynomials in
infinitely many variables Λ = C[p1, p2, . . . ], where p1, p2, . . . are infinite-dimensional power sums. Let
us add to this algebra one additional variable p0 (infinite sum of zero powers) and denote this algebra
by Λ̄. We will also consider the algebras Λ̄[x] and Λ̄[x, x−1], which are the algebras of polynomials and
Laurent polynomials in one variable. We need the algebras generated by the deformed power sums as
well.

Definition 3.2. Denote by Λn,m the subalgebra in the algebra C[x1, . . . , xn+m] generated by the
deformed power sums

pr(x) =
n+m∑

i=1

k−p(i)xri =
n∑

i=1

xri +
1

k

n+m∑

i=n+1

xri , r ∈ Z≥0.

In the same way, denote by Λ±
n,m the subalgebra in the algebra C[x±1

1 , . . . , x±1
n+m] generated by the

deformed power sums

pr(x) =

n+m∑

i=1

k−p(i)xri =

n∑

i=1

xri +
1

k

n+m∑

i=n+1

xri , r ∈ Z.

3.1. Rational operator of the type A.

Definition 3.3. An infinite-dimensional Dunkl operator of the type A is the linear operator on the
algebra Λ̄[x] defined by the formula

D = ∂ − kΔ,
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where ∂ is a differentiation such that

∂(x) = 1, ∂(pl) = lxl−1,

Δ(xl) = xl−1p0 + xl−2p1 + · · ·+ xpl−2 + pl−1l − lxl−1, Δ(xlf) = Δ(xl)f,

where f ∈ Λ.

Introduce a linear operator by the formula

E : Λ̄[x] → Λ̄, E(xlf) = plf, f ∈ Λ̄, l ∈ Z≥0, (26)

and also the operators

L∞
r : Λ̄ → Λ̄, L∞

r = ResE ◦Dr, r ∈ Z+, (27)

where Res means the restriction to Λ̄. We also define the homomorphisms

ϕ(i)
n,m : Λ̄[x] → C[x1, . . . , xn+m], ϕ(i)

n,m(x) = xi, ϕ(i)
n,m(pl) = pl(x) ∀l ∈ Z≥0.

By F we denote the column

F =
(
ϕ(1)
n,m, ϕ(2)

n,m, . . . , ϕ(n+m)
n,m

)T
.

Prposition 3.4. On Λ̄[x], the following relation holds:

F ◦D = LF. (28)

Proof. It suffices to prove that

ϕ(i)
n,m ◦D = kp(i)

∂

∂xi
◦ ϕ(i)

n,m −
∑

j �=i

k1−p(j)

xi − xj
(ϕ(i)

n,m − ϕ(j)
n,m). (29)

For any f ∈ Λ̄ we have

ϕ(i)
n,m ◦ (∂ − kΔ)(xlf) =

= ϕ(i)
n,m(lxl−1f + xl∂f − k(lxl−1p0 + xl−2p1 + · · ·+ xpl−2 + pl−1 − lxl−1)f) =

= lxl−1
i (1 + k)ϕn,m(f) + xliϕn,m(∂f)− k(xl−1

i p0 + xl−2
i p1 + · · ·+ xipl−2 + pl−1)ϕ

(i)
n,m(f).

On the other hand, we have

kp(i)
∂

∂xi
◦ ϕ(i)

n,m(xlf)−
∑

j �=i

k1−p(j)

xi − xj

(
ϕ(i)
n,m − ϕ(j)

n,m

)
(xlf) =

= kp(i)lxl−1
i ϕ(i)

n,m(f) + xlik
p(i)∂i

(
ϕ(i)
n,m(f)

)− (xl−1
i (kn+m)−

− k
(
xl−2
i p1 + · · · + xipl−2 + pl−1 − k−p(i)lxl−1

i

)
ϕ(i)
n,m(f) =

=

(
k(p(i) + k1−p(i))lxl−1

i ϕ(i)
n,m(f) + kp(i)xli∂i

(
ϕ(i)
n,m(f)

)−
− k

(
xli(n+ k−1m) + xl−2

i p1 + · · ·+ xipl−2 + pl−1

))
ϕ(i)
n,m(f).

Since kp(i) + k1−p(i) = 1 + k for all i = 1, . . . , n+m, it remains to prove that

ϕ(i)
n,m(∂f) = kp(i)∂iϕ

(i)
n,m(f). (30)

Since both ∂ and ∂i are differentiations, it suffices to verify the last equality for f = pl; this verification
is easy. �

The assertion below explains the name and the formulas for infinite-dimensional Dunkl operators.
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Corollary 3.5. Let m = 0. Then the following diagram is commutative:

Λ̄[x]
D−−−−→ Λ̄[x]

ϕ
(i)
n,0

⏐⏐�
⏐⏐�ϕ

(i)
n,0

Λn,0[xi]
Di−−−−→ Λn,0[xi]

,

where Di are the Dunkl operators

Di =
∂

∂xi
− k

∑

j �=i

1

xi − xj
(1− sij),

and sij is a transposition.

Proof. Let m = 0; then the formula 29 can be represented in the form

ϕ
(i)
n,0 ◦D =

∂

∂xi
◦ ϕ(i)

n,0 − k
∑

j �=i

1

xi − xj
(1− sij) ◦ ϕ(i)

n,0. (31)

�
Now we are ready to formulate the main result.

Theorem 3.6. Differential operators L∞
r commute with each other :

[L∞
r ,L∞

s ] = 0,

and the operator L∞
2 has the following form:

L∞
2 =

∑

a,b≥1

pa+b−2∂a∂b − k
∑

a,b≥0

papb∂a+b+2 + (1 + k)
∑

a≥2

(a− 1)pa−2∂a, (32)

where ∂a = a∂/∂pa,.

Proof. In order to show that L∞
r are differential operators of order ≤r, recall that M is a differ-

ential operator on Λ̄ of order ≤r if ad(f)r+1M = 0 for any f ∈ Λ̄. Since E and Δ commute with
multiplication by f , we have

ad(f)r+1
(L∞

r

)
= ResE ◦ ad(f)r+1(Dr).

Since
ad(f)(D) = ad(f)(∂) = −∂f,

we have ad(f)2(D) = 0 and, therefore, ad(f)r+1(Dr) = 0. In order to prove the commutativity in
the infinite-dimensional situation, let us reduce the proof to the finite-dimensional case. We have the
following commutative diagram:

Λ̄
L∞
r−−−−→ Λ̄

ϕn,m

⏐⏐�
⏐⏐�ϕn,m

Λn,m
Lr−−−−→ Λn,m

(33)

where ϕn,m(pr) = pr(x). Indeed, it is easy to verify that e∗F = ϕn,m ◦ E, and after the restriction to
Λ̄ we have the equality F = eϕn,m. Therefore, F ◦Dr = LrF and after the restriction to Λ̄ we have

e∗F ◦Dr = ϕn,m ◦E ◦Dr = e∗Lreϕn,m.

This proves the commutativity. Since the integrals commute, we have

ϕn,m

([L∞
r ,L∞

s

]
(f)

)
=

[Lr,Ls

]
(ϕn,m(f)) = 0,

In order to to complete the proof, we need the following Lemma.
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Lemma 3.7. Let f ∈ Λ̄. If ϕN,0(f) = 0 for all N , then f = 0.

Proof. By definition, f is a polynomial in a finite number of variables pr, 1 ≤ r ≤ M , for some natural
number M , and the coefficients of f polynomially depend on p0.

Take N greater than M . Since ϕN,0(pr) are algebraically independant for 1 ≤ r ≤ M in ΛN,0 and
ϕN,0(f) = 0, all coefficients of f are zeros for p0 = N . Since this holds for all N > M , the coefficients
are identically zeros. Therefore, f = 0. This proves the lemma. �

Now, applying Lemma 3.7, we obtain the commutativity. �

3.2. Rational operator of the type B. The proofs in this case are the same as in the case A and
so we omit them.

Let us define an infinite-dimensional Dunkl operator of the type BC as the operator

D : Λ̄[x] → Λ̄[x], D = ∂ − 2kΔ − q

x
(1− τ). (34)

Here the differentiation ∂ in Λ̄[x] are defined by the formulas

∂(x) = 1, ∂(pl) = 2lx2l−1, l ∈ Z≥0,

and the operator Δ : Λ̄[x] → Λ̄[x] is defined by the formula

Δ(xlf) = Δ(xl)f, Δ(1) = 0, f ∈ Λ̄, l ∈ Z≥0,

where

Δ(x2l) = x2l−1p0 + x2l−3p1 + · · ·+ x3pl−2 + xpl−1 − lx2l−1,

Δ(x2l−1) = x2l−2p0 + x2l−4p1 + · · ·+ x2pl−2 + pl−1 − lx2l−2, l > 0;

the involution τ can be defined by the formula

τ(xlf) = (−x)lf, f ∈ Λ̄.

Introduce also the linear operator

E : Λ̄[x] → Λ̄E(x2lf) = plf, E(x2l+1f) = 0, f ∈ Λ̄, l ∈ Z≥0,

and the operators

L∞
r : Λ̄ → Λ̄, r ∈ Z+, L∞

r = ResE ◦D2r, (35)

where, as above, Res means the restriction to Λ̄. In this case, the homomorphisms ϕ
(i)
n,m : Λ̄[x] →

C[x1, . . . , xn+m] act by the rule

ϕ(i)
n,m(x) = xi, ϕ(i)

n,m(pr) = p2r(x) ∀r ∈ Z≥0.

In this case, the column F has the form

F =
(
ϕ(1)
n,m, . . . , ϕ(n+m)

n,m , τ1ϕ
(1)
n,m, . . . , τn+mϕ(n+m)

n,m

)T
,

where τi changes the sign of the variables xi.

Prposition 3.8. On Λ̄[x], the following relation holds:

F ◦D = LF. (36)

Corollary 3.9. Let m = 0. Then the following diagram is commutative:

Λ̄[x]
D−−−−→ Λ̄[x]

ϕ
(i)
n,0

⏐⏐�
⏐⏐�ϕ

(i)
n,0V

Λn,0[xi]
Di−−−−→ Λn,0[xi]

,
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where Di are the Dunkl operators,

∂

∂xi
−

∑

j �=i

1

xi − xj
(1− sij)

∑

j �=i

1

xi − xj

(
1− τiτjsij

)− p

xi
(1− τi),

sij is a transposition, and τi changes the sign of xi.

Proof. The relation (36) can be rewritten in the form

ϕ(i)
n,m ◦D∞ = kp(i)

∂

∂xi
◦ ϕ(i)

n,m − kp(i)m(i)

xi
(1− τi)ϕ

(i)
n,m−

−
∑

j �=i

k1−p(j)

xi − xj

(
ϕ(i)
n,m − ϕ(j)

n,m

)
−

∑

j �=i

k1−p(j)

xi + xj

(
ϕ(i)
n,m − τjϕ

(j)
n,m

)
.

If m = 0, then the previous formula can be represented in the form

ϕ(i)
n ◦D =

⎛

⎝ ∂

∂xi
−

∑

j �=i

1

xi − xj
(1− sij)

∑

j �=i

1

xi − xj

(
1− τiτjsij

)− p

xi
(1− τi)

⎞

⎠ ◦ ϕ(i)
n,m.

�
As above, we have the following main result.

Theorem 3.10. Differential operators L∞
r commute with each other :
[
L∞
r , L∞

s

]
= 0.

and the operator L∞
2 has the following explicit form:

L∞
2 = 8

∑

a,b≥1

pa+b−1∂a∂b − 4k
∑

a,b≥0

papb∂a+b+1 + 4k
∑

a≥0

(a+ 1)pa∂a+1+

+ 2
∑

a≥0

(2a+ 1)pa∂a+1 − 4q
∑

a≥0

pa∂a+1, (37)

where ∂a = a∂/∂pa.

3.3. Trigonometric operator of the type A. It is easy to verify that

L2 =

n∑

i=1

(
xi

∂

∂xi

)2

+ k

m∑

j=1

(
yj

∂

∂yj

)2

− k
∑

1≤i<j≤n

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
−

−
∑

1≤i<j≤m

yi + yj
yi − yj

(
yi

∂

∂yi
− yj

∂

∂yj

)
−

n∑

i=1

m∑

j=1

xi + yj
xi − yj

(
xi

∂

∂xi
− kyj

∂

∂yj

)
.

Definition 3.11. Let us define an infinite-dimensional trigonometric Dunkl operator of the type A
by the formula

D = ∂ − 1

2
kΔ,

where ∂ is a differential operator such that

∂(x) = x, ∂(pr) = rxr,

and

Δ(xl) = xlp0 + 2xl−1p1 + · · ·+ 2xpl−1 + pll − 2lxl, Δ(xlf) = Δ(xl)f, Δ(1) = 0,

where f ∈ Λ.
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The operator E : Λ̄[x] → Λ̄ can be defined by the formula

E(xlf) = plf, f ∈ Λ̄, l ∈ Z≥0, (38)

and the operators L∞
r : Λ̄ → Λ̄, r ∈ Z+, by the formulas

L∞
r = ResE ◦Dr, (39)

where Res means the restriction to Λ̄. The homomorphisms ϕ
(i)
n,m and the column F are defined exactly

as in the rational case of the type A.

Prposition 3.12. We have the following relation on Λ̄[x]:

F ◦D = LF. (40)

Corollary 3.13. Let m = 0. Then the following diagram is commutative:

Λ̄[x]
D−−−−→ Λ̄[x]

ϕ
(i)
n,0

⏐⏐�
⏐⏐�ϕ

(i)
n,0

Λn,0[xi]
Di−−−−→ Λn,0[xi],

where Di are the Dunkl–Heckman operators

Di = xi
∂

∂xi
− 1

2
k
∑

j �=i

xi + xj
xi − xj

(1− sij)

and sij is a transposition.

Theorem 3.14 (see [1, 23, 26]). The differential operators L(r) commute with each other :
[L∞

r , L∞
s

]
= 0.

The operator L∞
2 has the following explicit form:

L∞
2 =

∑

a,b>0

pa+b∂a∂b − k
∑

a,b>0

papb∂a+b + (1 + k)
∑

a>0

apa∂a − kp0
∑

a>0

pa∂a, (41)

where ∂a = a∂/∂pa.

3.4. Trigonometric operator of the type B. In this case,

L(n,m)
2 =

n∑

i=1

∂2
i + k

m∑

α=1

∂2
α − k

n∑

i<j

(
xi + xj
xi − xj

(
∂i − ∂j

)
+

xixj + 1

xixj − 1

(
∂i + ∂j

))−

−
m∑

α<β

(
yα + yβ
yα − yβ

(
∂α − ∂β

)
+

yαyβ + 1

yαyβ − 1

(
∂α + ∂β

))−
n∑

i=1

(
p
xi + 1

xi − 1
+ 2q

x2i + 1

x2i − 1

)
∂i−

− k
m∑

α=1

(
r
yα + 1

yα − 1
+ 2s

n∑

α=1

y2α + 1

y2α − 1

)
∂α −

n∑

i=1

m∑

α=1

(
xi + yα
xi − yα

(
∂i − k∂α

)
+

xiyα + 1

xiyα − 1

(
∂i + k∂α)

)
.

Definition 3.15. Let us define the infinite-dimensional trigonometric Dunkl operator of the type B
by the formula

D = ∂ − 1

2
kΔ− 1

2
p
x+ 1

x− 1
(1− θ)− 1

2
p
x2 + 1

x2 − 1
(1− θ),

where ∂ is a differential operator such that

∂(x) = x, ∂(pr) = r(xr − x−r), r ∈ Z≥0,
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and the homomorphisms Δ and θ of the Λ̄-modules are defined by the formulas Δ(1) = 0,

Δ(xl) = xr(p0 − 2r − 1)− 2
r−1∑

j=1

xr−2j − x−r + 2
r−1∑

j=1

pjx
r−j + pr,

Δ(x−r) = x−r(p0 − 2r − 1) + 2
r−1∑

j=1

xr−2j + xr − 2
r−1∑

j=1

pjx
−r+j − pr,

where r > 0 and

θ(x) = x−1, θ(pr) = pr.

We also introduce the linear operator E : Λ̄[x] → Λ̄ by the formula

E(xrf) = p|r|f, f ∈ Λ̄, r ∈ Z, (42)

and define the operators

L∞
r : Λ̄ → Λ̄, L∞

r = ResE ◦D2r, r ∈ Z+, (43)

where Res means the restriction to Λ̄. We also define the homomorphisms

ϕ(i)
n,m : Λ̄[x] → C[x±1

1 , . . . , x±1
n+m]

by the rule

ϕ(i)
n,m(x) = xi, ϕ(i)

n,m(pr) = pr(x) + p−r(x) ∀r ∈ Z≥0.

The column F has the same form as in the rational BC case:

F =
(
ϕ(1)
n,m, ϕ(2)

n,m, . . . , ϕ(n+m)
n,m , τ1ϕ

(1)
n,m, τ2ϕ

(2)
n,m, . . . , τn+mϕ(n+m)

n,m

)T
.

Prposition 3.16. On Λ̄[x], the following relation holds:

F ◦D = LF. (44)

The following assertion explains the name and formulas for the infinite-dimensional Dunkl operators.

Corollary 3.17. Let m = 0. Then the following diagram is commutative:

Λ̄[x, x−1]
D−−−−→ Λ̄[x, x−1]

ϕ
(i)
n,0

⏐⏐�
⏐⏐�ϕ

(i)
n,0

Λn,0[xi, x
−1
i ]

Di−−−−→ Λn,0[xi, x
−1
i ],

where Di are trigonometric Dunkl-Heckman operators of the type BC:

Di = ∂i − 1

2
k

N∑

j �=i

(
xi + xj
xi − xj

(
1− s+ij

)
+

xixj + 1

xixj − 1

(
1− s−ij

))− 1

2
p
xi + 1

xi − 1
(1− ti)− q

x2i + 1

x2i − 1
(1− ti);

here sij is a transposition, ti(xi) = x−1
i , and ti(xj) = xj , j �= i.

Proof. The proof easily follows from the explicit formula for the Lax matrix. �

Theorem 3.18. The differential operators L∞
r commute with each other :

[L∞
r , L∞

s

]
= 0,
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The operator L∞2 has the following explicit form:

L∞
2 = 4

∑

a,b≥1

(pa+b − pa−b)∂a∂b + 2
∑

a≥1

(ak + a+ k + h)pa∂a+

+ 2(k − q)
∑

a≥2

⎛

⎝
a−1∑

j=1

pa−2j

⎞

⎠ ∂a − p
∑

a≥2

⎛

⎝
2a−1∑

j=1

pa−j

⎞

⎠ ∂a − 2k
∑

a≥2

⎛

⎝
a−1∑

j=1

pjpa−j

⎞

⎠ ∂a.

4. Algebras of Integrals and Spectral Decomposition

4.1. Trigonometric operator of the type A. In this section, we examine the action of the
trigonometric algebra of integrals of the deformed quantum CMS problem. We mainly follow the
paper [24].

Assume that k is a nonzero complex number. Denote by Dn,m the subalgebra in the algebra Dtr
R

generated by the integrals Lr, r = 1, 2, . . . .
We examine the action of the algebra Dn,m on the algebra An,m of (Sn × Sm)-invariant Laurent

polynomials

f ∈ C
[
x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

m

]Sn×Sm

and satisfying the quasi-invariance condition

xi
∂f

∂xi
− kyj

∂f

∂yj
∈ (xi − yj), i = 1, . . . , n, j = 1, . . . ,m. (45)

For any Laurent polynomial

f =
∑

μ∈Xn,m

cμx
μ, Xn,m = Z

n ⊕ Z
m,

consider the set M(f) consisting of μ such that cμ �= 0 and define the support S(f) as the intersection
of convex hull of M(f) with Xn,m. It turns out that the algebra Dn,m maps the algebra An,m into
itself.

Theorem 4.1. The operators Lp, p = 1, 2, . . . , preserve the algebra An,m and the support : for any
D ∈ Dn,m and f ∈ An,m,

S(Df) ⊆ S(f).

Corollary 4.2. Denote by A+
n,m the subalgebra in the algebra An,m consisting of ordinary polynomials.

Then the operators Lp, p = 1, 2, . . . , map the algebra A+
n,m into itself.

In order to study the structure of An,m and A+
n,m as modules over Dn,m, we need the following

partial order on the set of weights λ ∈ Xn,m = Z
n+m. We say that μ � λ if and only if

μ1 ≤ λ1, μ1 + μ2 ≤ λ1 + λ2, . . . , μ1 + · · ·+ μn+m ≤ λ1 + · · ·+ λn+m. (46)

Prposition 4.3. Let f ∈ An,m and λ be a maximal element of M(f) with respect to partial order.
Then for any D ∈ Dn,m, there is no μ from M(D(f)), μ �= λ, such that λ � μ.

The coefficient of xλ in D(f) is ϕ(D)(λ)cλ, where cλ is the coefficient of xλ in f .
If λ is the unique maximal element of M(f), then μ � λ for any μ from M(D(f)).

Let χ : Dn,m → C be a homomorphism. Define the corresponding generalized eigenspace An,m(χ) as
the set of all f ∈ An,m such that for every D ∈ Dn,m, there exists N ∈ N such that (D−χ(D))N (f) = 0.
If the dimension of An,m(χ) is finite, then such N can be chosen independent of f .

Prposition 4.4. The algebra An,m as a module over the algebra Dn,m can be decomposed in the direct
sum of generalized eigenspaces

An,m = ⊕χAn,m(χ), (47)

where the sum is taken over the set of some homomorphisms χ (explicitly described below).
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Proof. Let f ∈ An,m. We define the vector space

V (f) =
{
g ∈ An,m

∣∣∣ S(g) ⊆ S(f)
}
.

By Theorem 4.1, V (f) is a finite-dimensional module over Dn,m. Since the proposition is valid, the
claim is also valid for all finite-dimensional modules. �

Now we describe all homomorphisms χ such that An,m(χ) �= 0. We say that the integral weight
λ ∈ Xn,m ∈ Z

n+m is dominant if

λ1 ≥ λ2 ≥ · · · ≥ λn, λn+1 ≥ λn+2 ≥ · · · ≥ λn+m.

The set of dominant weights is denoted X+
n,m. For every λ ∈ X+

n,m, we define the homomorphism

χλ : DR → C, χλ(D) = ϕ(D)(λ), D ∈ DR,

where ϕ is the Harish-Chandra homomorphism.

Prposition 4.5.

(1) For any λ ∈ X+
n,m, there exists χ and f ∈ An,m(χ), which has a unique maximal term xλ.

(2) An,m(χ) �= 0 if and only if there exists λ ∈ X+
n,m such that χ = χλ.

(3) If An,m(χ) is finite-dimensional, then its dimension is equal to the number of λ ∈ X+
n,m such that

χλ = χ.

Proof. Let μ1 = λ1, . . . , μn = λn, ν1 = λn+1, . . . , νm = λn+m. Consider the Laurent polynomial

g(x, y) = sμ(x)sν(y)
∏

i,j

(
1− yj

xi

)2

,

where sμ(x) and sν(y) are the Schur polynomials (see [7]). It is easy to verify that g belongs to the
algebra An,m and has a unique maximal weight λ. By Proposition 4.4, we can write g = g1+ · · ·+ gN ,
where gi belong to different generalized eigenspaces. Therefore, there exists i such that λ ∈ M(gi).
Since gi can be obtained from g by some element from the algebra An,m (which is the projector to the
corresponding generalized eigenspace in some finite-dimensional subspace containing g), then λ is the
only maximal element of M(gi) by Proposition 4.3. This proves the first part.

Let An,m(χ) �= 0. Take a nonzero element f from this subspace and choose some maximal element

λ(1) from M(f) and an operator D ∈ Dn,m. Then, according to Proposition 4.3, the element xλ
(1)

does not belong in f1 = (D − χλ(1)(D))(f) and S(f1) ⊂ S(f). Repeating this procedure, we obtain
a sequence of nonzero elements f0 = f , f1, . . . , fN and numbers a1 = χλ(1)(D), . . . , aN = χλ(N)(D)
such that

fi = (D − ai)fi−1, i = 1, . . . , N, (D − aN )fN−1 = 0.

Therefore,

P (t) =
N∏

i=1

(t− ai)

is a minimal polynomial for D in the subspace 〈f0, . . . , fN−1〉. But this subspace lies in An,m(χ).
Therefore, this polynomial is a power of t − χ(D) and hence a1 = a2 = · · · = aN = χ(D). In

particular, this implies that χ(D) = a1 = χλ(1)(D) for some λ(1) ∈ X+
n,r, as required.

Conversely, let λ ∈ X+
n,m. According to the first part, there exists χ and f ∈ An,m(χ) such that λ is

its maximal weight. Therefore, the previous considerations show that χ = χλ and thus An,m(χλ) �= 0.

To prove the third part, assume that An,m(χ) is finite-dimensional and λ(1), . . . , λ(N) are all different
elements from X+

n,m such that χλ(i) = χ, i = 1, . . . , N . According to the first two parts, there

exists fi ∈ An,m(χ) with a unique maximal weight λ(i). It is easy to see that f1, . . . , fN are linearly
independent. To show that they form a basis, we consider any f ∈ An,m(χ) and take a maximal
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weight μ from M(f). According to Proposition 4.3, χμ = χ and thus μ must coincide with one of λ(i).
Subtracting from f a suitable multiple of fi and using induction, we arrive at the required result. �

Corollary 4.6.

(1) The set of homomorphisms in Proposition 4.4 consists of χ = χλ, λ ∈ X+
n,m.

(2) For a general value of k, we have

A+
n,m = ⊕χA

+
n,m(χ), (48)

where the sum is taken over the subset χλ such that

λ1 ≥ . . . λn ≥ 0, λn+1 ≥ . . . λn+m ≥ 0, λn ≤ ∣∣{i | λn+i > 0}∣∣
and all the corresponding eigenspaces are one-dimensional.

The eigenfunctions from Corollary 4.6 are called Jack superpolynomials (see [15]). In the general
case of the algebra An,m, the corresponding eigenfunctions are called Jack–Laurent superpolynomials.

Consider several examples.

Example 4.7. Let n = m = 1,

A1,1 =
{
f ∈ C[x±1, y±1]

∣∣∣ ∂xf − k∂yf ∈ (x− y)
}
.

For integers (λ, μ), we set

Pλ,μ = xλyμ − λ− kμ

λ− 1− k(μ + 1)
xλ−1yμ+1, (λ, μ) �= (0, 0), (1,−1),

P0,0 = 1, P1,−1 =
x

y
+

y

x
.

So we have the decomposition into generalized eigenspaces

A1,1 =
⊕

(λ,μ)�=(0,0),(1,1)

〈Pλ,μ〉 ⊕
〈
P(0,0), P(1−1)

〉
.

It is difficult to verify that the image of the algebra of integrals in generalized eigenspace〈
P(0,0),¶(1−1)

〉
is the algebra of dual numbers C[ε], ε2 = 0.

If k ∈ Q, the decomposition may have another form.

Example 4.8. Let k = −1; then

A1,1 =
{
f ∈ C[x±1, y±1]

∣∣∣ ∂xf + ∂yf ∈ (x− y)
}
.

This is a particular case of the algebra of supersymmetric polynomials. In this case,

A1,1 =
⊕

λ+μ�=0

〈Pλ,μ〉 ⊕
〈
xa

ya
, a ∈ Z

〉
,

and all generalized eigenspaces are simply eigenspaces. One of them is infinite-dimensional and all the
other are one-dimensional.

Example 4.9. Let k = −1/2. Then

A1,1 =

{
f ∈ C[x±1, y±1]

∣∣∣ ∂xf +
1

2
∂yf ∈ (x− y)

}
.

In this case, we have

A1,1 =
⊕

2λ+μ�=0,1

〈Pλ,μ〉 ⊕
⊕

a∈Z

〈
xa

y2a
,

xa

y2a

(
x

y
+

y

x

)〉
,

Thereby, this decomposition has the same form as in the general case.
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4.2. Trigonometric operator of the type B. In this section, we examine the action of the
trigonometric algebra of the integrals of the type B (we follow [15]). Assume hat k is general. Let us
denote by Dn,m the subalgebra in the algerba Dtr

R generated by the integrals Lr, r = 1, 2, . . . .
Now we consider the algebra An,m consisting of W0 = (Sn � Z

n
2 ) × (Sm � Z

m
2 )-invariant Laurent

polynomials f ∈ C[x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

m ]W0 that satisfy the quasi-invariance conditions

xi
∂f

∂xi
− kyj

∂f

∂yj
∈ (xi − yj), i = 1, . . . , n, j = 1, . . . ,m. (49)

It turns out that the algebra Dn,m maps the algebra An,m into itself.

Prposition 4.10. The operators Lp map the algebra An,m into itself for all p = 1, 2, . . . and they
preserve the support : if f ∈ An,m then

S(Df) ⊆ S(f).

We say that an integral weight λ ∈ Xn,m ∈ Z
n+m is dominant if

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λn+1 ≥ λn+2 ≥ · · · ≥ λn+m ≥ 0, λn ≤ ∣∣{i | λn+i > 0}∣∣.
Denote by X+

n,m the set of dominant weights. For any λ ∈ X+
n,m, we define the homomorphism

χλ : DR → C, χλ(D) = ϕ(D)(λ), D ∈ DR,

where ϕ is the Harish-Chandra homomorphism.

Theorem 4.11. The algebra An,m as a odule over the algebra Dn,m for a general value of k can be
decomposed into the direct sum of one dimensional eigenspaces

An,m =
⊕

χ

An,m(χ), (50)

where the sum is taken over the set of homomorphisms χ = χλ, λ ∈ X+.

Definition 4.12. An eigenfunction SJλ corresponding to the homomorphism χλ is called a Jacobi
superpolynomial. It is easy to verify that the highest term in the lexicographic order is equal to

cλx
λ1
1 . . . xλn

n y
λn+1

1 . . . y
λn+m
m .

5. Representation Theory and Quantum CMS Systems

In the case of finite-dimensional semi-simple Lie algebras (i.e., m = 0), eigenfunctions of the quan-
tum trigonometric CMS operators for an appropriate specialization of parameters yield either charac-
ters of irreducible finite-dimensional representations or spherical functions corresponding to symmetric
Lie algebras (see [7]). Connections between quantum CMS systems and representation theory of Lie
superalgebras are much more complicated. A general picture is not still clear. Partial results in this
directions are given below.

5.1. Representations of the Lie superalgebra gl(n,m) and CMS systems. First, we consider
the case of polynomial representations. Recall that a representation of the Lie superalgebra gl(n,m)
is said to be polynomial if it is a subrepresentation of the tensor algebra of the identical representation.
It is known (see [11]) that the tensor algebra of the identical representation is completely reducible as
a module over the Lie superalgebra gl(n,m), and the corresponding irreducible representations can be
labelled by partitions λ such that λn+1 ≤ m. We denote the category of polynomial representations
by F+. In the general case, we denote by F the category of all finite-dimensional representations over
the Lie superalgebra gl(n,m).
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Definition 5.1. The Grothendieck algebra over the field C of the category F (respectively, F+) is
the algebra generated by classes of simple modules subject to the following relations:

[V ] = [V1] + [V2] 0 → V1 → V → V2 → 0,
[
V1 ⊗ V2

]
= [V1][V2].

We denote these algebras K(F) and K(F+), respectively. It is easy to verify that the algebras
K(F) and K(F+) considered as vector spaces have the basis consisting of the classes of irreducible
modules.

Definition 5.2. Let V be a module from the category F or from the category F+. Assume that it
can be represented as the direct sum of one-dimensional irreducible h-modules

V =
⊕

λ∈(f)∗
V (λ).

Then the function
sch(V ) =

∑

λ

sdim
(
V (λ)

)
xλ

is called the supercharacter of V , where

sdimV (λ.μ) = dimV (λ.μ)0 − dimV (λ.μ)1.

Let U(gl(n,m)) be its universal enveloping algebra and Z(gl(n,m)) be the center of U(gl(n,m)).
Any element from Z(gl(n,m)) acts as a scalar operator in each irreducible module. Therefore, we
have a natural action Z(gl(n,m)) on K(F). Now we can formulate the following theorem.

Theorem 5.3. The supercharater map

sch : K(F) → An,m

is an algebra isomorphism and translates the action of Z(gl(n,m)) to the action of Dn,m for k = −1.
Its restriction to K(F+) is the isomorphism

sch : K(F+) → A+
n,m

and translates the action of Z(gl(n,m)) to the action of Dn,m for k = −1, and under this isomorphism
the irreducible modules go to the Schur superfunctions (see [11]).

Now let us consider the case of the symmetric Lie superalgebra (gl(2n + 1, 2m), θ), where θ is an
involutive authomorphism such that the orthosymplectic Lie superalgebra osp(2n+1, 2m) is its fixed
subalgebra. There exists a natural surjective homomorphism

ψ : Z(gl(2n+ 1, 2m)) → Dn,m,

which is called the homomorphism of the radial part.
Therefore, we can consider the algebra An,m as a module over the algebra Z(gl(2n + 1, 2m)). In

this case, the main result can formulated as follows (see [24]).

Theorem 5.4. Let Dn,m be the algebra of the deformed quantum operators CMS with the param-
eter k = −1/2, which acts naturally on the algebra An,m of deformed Laurent polynomials with the
parameter k = −1/2, and let

An,m =
⊕

χ

An,m(χ)

be its decomposition into the direct sum of generalized eigenspaces. Then for any finite-dimensional
generalized eigenspace An,m(χ), there exists a unique projective indecomposable module P over gl(2n+
1, 2m) and the natural map

ψ : (P ∗)b → An,m(χ),

which is an isomorphism of vector spaces and Z(gl(2n+ 1, 2m)-modules.
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5.2. Orthosymplectic Lie superalgebras and CMS systems. Consider the case of the or-
thosymplectic Lie superalgebra osp(2m + 1, 2n) (the case of the superalgebra osp(2m, 2n) can be
considered similarly). We briefly present two main results that show some connections of the repre-
sentation theory of the Lie superalgebra osp(2m+1, 2n) and the corresponding CMS system. The first
result describes the Grothendieck algebra as an integrable system. Let K(F) be the Grothendieck
algebra of the category of finite-dimensional representations of the superalgebra osp(2m+1, 2n) with
the action of the center defined above, and An,m and Dn,m be the same as in Theorem 4.11 with the
parameters k = p = −1 and q = 0.

Theorem 5.5. The supercharacter map

sch : K(F) → An,m

is an isomorphism of algebras; it translates the action of the center Z(gl(n,m)) to the action of the
algebra Dn,m.

The proof follows from the results of [20]. The second result shows possible specializations of Jacobi
superpolynomials. For any parabolic subalgebra p ⊂ g and any finite-dimensional module M over
p, one can defined the Euler character Ep(M) according to the superversion of the Borel–Weyl–Bott
construction. By the general result of Serganova (see [5])

Ep(M) =
∑

w∈W0

w

⎛

⎜⎜⎝
D eρ schM∏

α∈Rp∩R+
1

(
1− e−α

)

⎞

⎟⎟⎠ , (51)

where

D =

∏

α∈R+
1

(
eα/2 − e−α/2

)

∏

α∈R+
0

(
eα/2 − e−α/2

) .

Here ρ is the half-sum of even positive roots minus the half-sum of odd positive roots, and Rp is the
set of roots α such that g±α ⊂ p.

The main result of [19] can be formulated as follows.

Theorem 5.6. If we take the limit of Jacobi superpolynomials SJλ as k → −1 and then the limit as
(p, q) → (−1, 0), then the result is well defined and coincides with the Euler character Ep(λ)(χ) for the
Lie superalgebra osp(2m+ 1, 2n), where p(λ) is some parabolic subalgebra (depending on λ), and χ is
a one-dimensional representation of it.

6. Infinite-Dimensional Versions of Eigenfunctions of CMS Operators

Infinite-dimensional versions of quantum integrals and corresponding eigenfunctions play an impor-
tant role in the theory of the deformed CMS systems. These systems have an additional parameter
(an analog of the dimension) and they also have some additional symmetries (see [16, 21, 23]). As
was shown in Sec. 3, integrals of the deformed CMS problem can be obtained by reduction from
infinite-dimensional integrals. This was first noted in [15] in the case of the trigonometric deformed
CMS system of the type A. Moreover, the question what integrable systems can also be obtained from
infinite-dimensional CMS systems by the same procedure was examined in [15]. Below, we mainly
follow the papers [21, 23].

In order to define Jack–Laurent symmetric functions, we introduce the Laurent version of the algebra
of symmetric functions. By definition, this is the algebra Λ± freely generated by “infinite power sums”
pi, i ∈ Z \ {0}. We also consider infinite “zero power sum” p0 as an additional parameter.
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Let Λ±[x, x−1] be the algebra of Laurent polynomials in the variable x over the algebra Λ±. Define
the differentiation ∂ in Λ±[x, x−1] by the formula

∂(x) = x, ∂(pl) = lxl,

and the operators

Δ : Λ±[x, x−1] → Λ±[x, x−1], Δ(xlf) = Δ(xl)f, Δ(1) = 0, f ∈ Λ±, l ∈ Z,

Δ(xl) = xlp0 + 2xl−1p1 + · · · + 2xpl−1 + pl − 2lxl, l > 0,

Δ(xl) = −(Δ(x−l))∗, l < 0, x∗ = x−1.

Introduce the infinite-dimensional analogs Dunk–Heckman operators

D : Λ±[x, x−1] → Λ±[x, x−1], D = ∂ − 1

2
kΔ (52)

and the linear operator

E : Λ±[x, x−1] → Λ±, E(xlf) = plf, f ∈ Λ, l ∈ Z, (53)

and also the operators

L∞
r : Λ± → Λ±, L∞

r = E ◦Dr, r ∈ Z+ (54)

where the action on the right-hand side is restricted to the algebra Λ±. We claim that these operators
give the Laurent version of the quantum integrals at infinity.

Theorem 6.1. The operator L∞
r is a differential operator of order r polynomially depending on p0.

Moreover, the operator L∞
2 has the following explicit form:

L∞
2 =

∑

a,b∈Z
pa+b∂a∂b − k

⎡

⎣
∑

a,b>0

papb∂a+b −
∑

a,b<0

papb∂a+b

⎤

⎦−

− kp0

[
∑

a>0

pa∂a −
∑

a<0

pa∂a

]
+ (1 + k)

∑

a∈Z
apa∂a, (55)

where ∂a = a∂/∂pa, and this operator is the Laurent version of the CMS operator at infinity.
The operators L∞

r commute with each other :
[L∞

r , L∞
s

]
= 0.

Let P be the set of all partitions (or Young diagrams). By bipartition we mean a pair of partitions
α = (λ, μ) ∈ P ×P. Define the length of a bipartition α = (λ, μ) by l(α) := l(λ)+ l(μ). Let l(α) ≤ N ;
then we define

χN (α) =
(
λ1, . . . , λr, 0, . . . , 0, μs, . . . , −μ1︸ ︷︷ ︸

N

)
. (56)

and the symmetric polynomial

PχN (α)(x1, . . . , xN ) = (x1 . . . xN )−aPν(x1, . . . , xN ),

where a is a nonnegative integer such that ν = χ+ a is a partition and Pν(x1, . . . , xN ) is an ordinary
Jack polynomial. Consider the algebra Λ±(p0) of rational functions in p0 with coefficients in Λ±
and the homomorphism ϕN : Λ±(p0) → Λ±

N defined by ϕN (pi) = xi1 + · · · + xiN , i ∈ Z, with the
spacialization p0 = N .

Now we can define Jack–Lautrent symmetric functions Pα ∈ Λ±(p0) by the following theorem.
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Theorem 6.2. If k /∈ Q and p0 �= n + k−1m for any m,n ∈ Z>0, then for any bipartition α there
exists a unique element Pα ∈ Λ±(p0) (called the Jack–Laurent symmetric function) such that, for any
N ∈ N,

ϕN (Pα) =

{
PχN (α)(x1, . . . , xN ), if l(α) ≤ N ,

0, if l(α) > N.
(57)

It can be easily verified that for a general value of the parameter p0, these symmetric functions are
eigenfunctions for infinite-dimensional operators from Theorem 6.1. We note that for special values of
p0 this assertion does not hold. It turns out that the function Pα is not well defined for such p0 and,
in general, instead of eigenfunctions we need to consider generalized eigenspaces.

Consider the case where p0 = n + k−1m, n,m ∈ Z>0. Denote by π(n,m) the rectangular Young
diagram of size n ×m and consider the corresponding bipartition π = (π(n,m), π(n,m)). Define the
central symmetry θ acting on (ij) ∈ π(n,m) by the formula θ(ij) = (n− i+ 1,m− j + 1). Introduce
the equivalence relation on the pairs of bipartitions. Below, the set-theoretic operations on partitions
are understood as the operations on Young diagrams.

Definition 6.3. We say that a bipartition α = (λ, μ) is equivalent to a bipartition α̃ = (λ̃, μ̃) if

α \ π = α̃ \ π and θ(λ \ λ̃) = μ \ μ̃, θ(λ̃ \ λ) = μ̃ \ μ. (58)

It turns out that every equivalence class E consists of 2r elements, where the number r depends on
the class E.

Let D∞ be the algebra generated by the integrals L∞
r , r = 1, 2, . . . . The following theorem de-

scribes the structure of Λ± as a module over D∞, and also describes the action of D∞ in generalized
eigenspaces.

Theorem 6.4.

(1) The algebra Λ± as a module over the algebra D∞ can be decomposed into the direct sum of gener-
alized eigenspaces

Λ± =
⊕

E

Λ±(E),

where the sum is taken over all equivalence classes.
(2) If a class E contains 2r elements and k is not an algebraic number, then the image of the algebra

D∞ in the algebra End(Λ±(E)) is isomorphic to the tensor product of r copies of the algebra of
dual numbers

C[ε1, ε2, . . . , εr]/(ε
2
1, ε

2
2, . . . , ε

2
r).
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