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We study the behavior of radial solutions to the boundary value problem

−Δpu+ up−1 = |x|αuq−1 in B,
∂u

∂n
= 0 on ∂B, q > p,

in the unit ball B and prove the existence of nonradial positive solutions for some values

of parameters. We obtain multiplicity results which are new even in the case p = 2.
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1 Statement of the Problem

Let B be the unit ball in R
n, n � 2. Denote S = ∂B, p, q > 1, α > 0 and consider the problem

−Δpu+ up−1 = |x|αuq−1 in B,

u > 0 in B,

∂u

∂n
= 0 on S,

(1.1)

where x ∈ B, Δpu = div (|∇u|p−2∇u), and n is the outward unit normal to S. Solutions to the

problem (1.1) can be found by examining critical points of the functional

Qp,q,α(u) =

∫

B

(|∇u|p + |u|p)dx

( ∫

B

|x|α|u|qdx
)p/q

. (1.2)

For the functional Qp,q,α we write the Euler equation

−Δpu+ |u|p−2u = μ|x|α|u|q−2u in B,
∂u

∂n
= 0 on S,
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where μ is a Lagrange multiplier. If uα is a minimizer of the functional Qp,q,α, then uα is a

solution to the Euler equation with

μ = inf
u∈W 1

p (B), u�=0
Qp,q,α(u).

In the case q �= p, the change of variable uα → μ
1

q−puα transforms the Euler equation to the

boundary value problem (1.1), i.e., a minimizer of the functional Qp,q,α is a weak solution to

the problem (1.1).

We are interested in the question whether a minimizer of the functional Qp,q,α is radial or,

in other words, under what conditions on the parameters q and α a radial function is the least

energy solution to the problem (1.1).

This question is successfully studied for the Dirichlet problem (cf., for example, [1, 2] for

p = 2 and [3] for arbitrary p > 1). Under certain conditions on q and α, some results on

multiplicity of positive solutions to the Dirichlet problem in the ball are known (cf. [1] for p = 2

and [4] for arbitrary p > 1). Hereinafter, multiplicity of solutions means that it is possible

to construct any prescribed number of those solutions that are obtained from each other by

orthogonal transformations.

For the Neumann problem with p = 2 it is known [5] that positive solutions are unique

(thereby radial) for q close to 2 and sufficiently large α. Furthermore, there exist nonradial

solutions if q is close to the critical Sobolev embedding exponent. In this case, the behavior of

a radial minimizer is described in terms of Bessel functions. However, in the case p �= 2, this is

not the case and the analysis of the problem becomes more complicated.

Repeating the proof of Proposition 1.1 in [3], we obtain the following assertion.

Proposition 1.1. For q � p, on the set of positive functions in W 1
p (B), there exists a unique

(up to a multiplicative constant) critical point of the functional Qp,q,α. The problem (1.1) has a

unique solution, and this solution is radial.

In this paper, we study the behavior of radial solutions to the problem (1.1) in the case q > p

and show that for some values of the parameters there exist nonradial positive solutions. The

multiplicity results obtained in this paper are new even in the case p = 2.

We denote by p∗m and p∗∗m the critical exponents in the Sobolev embedding and trace embed-

ding in R
n−m+1 respectively:

1

p∗m
=

(1
p
− 1

n−m+ 1

)
+
,

1

p∗∗m
=

(1
p
− 1

n−m
+

1

p(n−m)

)
+
.

We write p∗ and p∗∗ instead of p∗1 and p∗∗1 for the sake of brevity. We note that p∗m > p∗ and

p∗∗m > p∗∗ if p < n and m � 2. Constants independent of α are denoted by c with subscripts.

2 Radial and (m, k)-Radial Solutions

Following [6], we consider the decomposition R
n = (Rm)l ⊕ R

k, where n = ml + k, m � 2,

k � m or k = 0. We denote by yj (j = 1, . . . , l) points in R
m and by z points in R

k. For

example, x = (y1, . . . , yl, z). The spherical coordinates of yj are denoted by (rj , θj), θj ∈ Sm

(hereinafter, Sm is the unit sphere in R
m), the spherical coordinates of z are denoted by (r0, θ0).

The spherical coordinates of x are denoted by (r, θ), where r =
√

r21 + . . .+ r2l + r20, θ ∈ Sn.

361



A function u is said to be (m, k)-symmetric if u is invariant under all permutations of

y1, . . . , yl and (for k �= 0) depends only on r0. A function u is said to be (m, k)-radial if

u is (m, k)-symmetric and depends only on rj and r0. In particular, a radial function is an

(n, 0)-radial function. We note that nontrivial admissible decompositions exist only for n � 4.

Let W(m,k) be the subspace of (m, k)-radial functions in W 1
p (B). It is easy to see that the

functional Qp,q,α is well defined for all q ∈ (p; p∗). As is shown in [7, Theorem 1.1], the subspace

W(m,k) is compactly embedded into the weighted space Lq,α = Lq(B, |x|αdx) for all q > 1 such

that q < p∗m and q < p∗α = p∗ + pα/(n− p). Denote p̂ = min{p∗m, p∗α}. Then p̂ > p∗ for p < n.

Proposition 2.1. Assume that α > 0 and q ∈ (p; p̂). Then the functional Qp,q,α attains a

nonzero minimum on W(m,k) and the minimizing function vm,α (after multiplication by a suitable

constant) is a positive weak solution to the problem (1.1).

Proof. We note that the restriction of the functional Qp,q,α on W(m,k) is well defined for

all q < p̂. Since the functional Qp,q,α is homogeneous, it suffices to minimize over the set of

functions in W(m,k) with unit Lq,α-norm. This set is weakly closed in W(m,k), and a coercive

convex functional attains the minimum on this set.

By the principle of symmetric criticality [8], the first differential DQp,q,α(vm,α;h) of the

functional (1.2) vanishes not only at increments h ∈ W(m,k), but also at all h ∈ W 1
p (B).

We note that the Euler equation with a natural boundary condition for the functional Qp,q,α

coincides, after a suitable renormalization of vm,α, with the boundary value problem (1.1). Using

the Harnack inequality [9, Theorem 1.1], we conclude that vm,α are positive.

The following assertion is similar to Lemma 2.5 in [5].

Lemma 2.1. The following relation holds

(α+ n)

∫

B

|x|α|u|qdx =

∫

S

|u|qdθ + o(1), α → +∞,

1) uniformly on all bounded subsets of W 1
p (B) for q ∈ (p; p∗∗) and

2) uniformly on all bounded subsets of W(m,k) for q ∈ (p; p∗∗m ).

In particular, for radial functions this assertion is valid for all 1 < p < q < +∞.

Proof. We note that (α+ n)|x|α = div (|x|αx). Integrating by parts, we find

(α+ n)

∫

B

|u|q|x|αdx =

∫

B

|u|q div (|x|αx)dx =

∫

S

|u|q|x|α〈x,n〉dθ − q

∫

B

|u|q−2u|x|α〈∇u, x〉dx

=

∫

S

|u|qdθ − q

∫

B

|u|q−2u|x|α〈∇u, x〉dx.

We show that the last integral is of order o(1) as α → +∞. Indeed, by the Hölder inequality,

∣∣∣∣∣
∫

B

|u|q−2u|x|α〈∇u, x〉dx
∣∣∣∣∣ �

( ∫

B

|∇u|pdx
)1/p( ∫

B

|u|(q−1)p′ |x|(α+1)p′dx

)1/p′
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� ‖u‖W 1
p (B)

( ∫

B

|u|(q−1)p′ |x|(α+1)p′dx

)1/p′

,

where p′ = p/(p− 1) is the conjugate exponent.

If p < n and q ∈ (p; p∗∗), then

(q − 1)p′ <
(p(n− 1)

n− p
− 1

) p

p− 1
= p∗.

By the Hölder inequality and embedding theorem,

∫

B

|u|(q−1)p′ |x|(α+1)p′dx �
( ∫

B

|u|p∗dx
) (q−1)p′

p∗
( ∫

B

|x|
(α+1)np

p(n−1)−q(n−p) dx

) p(n−1)−q(n−p)
n(p−1)

� c1(n, p)‖u‖(q−1)p′
W 1

p (B)
· o(1),

and the required assertion is proved.

If u ∈ W(m,k), p < n−m+1, and q ∈ (p; p∗∗m ), then (q− 1)p′ < p∗m. By the Hölder inequality,

∫

B

|u|(q−1)p′ |x|(α+1)p′dx �
( ∫

B

|u|p∗m |x|δdx
) (q−1)p′

p∗m
( ∫

B

|x|d1dx
)d2

, (2.1)

where d1 = d1(α, n, p, q, δ) � α as α → +∞ and d2 = d2(n, p, q, δ) is independent of α. We fix

δ >
1

q

(n
p
− n

q
− 1

)
+
.

By the weighted embedding theorem [7, Theorem 1.1],

( ∫

B

|u|p∗m |x|δdx
) (q−1)p′

p∗m
( ∫

B

|x|d1dx
)d2

� c2(n, p)‖u‖(q−1)p′
W 1

p (B)
· o(1),

and the required assertion is proved.

If p � n or u ∈ W(m,k), p � n−m+ 1, then for any q ∈ (p; +∞) we have (q − 1)p′ < p∗α for

sufficiently large α. Then (2.1) remains valid with p∗m replaced by p∗α and some fixed

δ >
p′

q′p∗α

(n
p
− n

q
− 1

)
+
.

Then we argue as above.

By Proposition 2.1, μq,m,α = min
v∈W(m,k), v �=0

Qp,q,α(v) > 0 is well defined for any α > 0 and q ∈
(p; p̂). Hence any (m, k)-radial minimizer vm,α of the functional Qp,q,α such that ‖vm,α‖W 1

p (B) =

1 is a solution to the problem

−Δpu+ up−1 = μq/p
q,m,α|x|αuq−1 in B,

∂u

∂n
= 0 on S.

(2.2)
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We consider (n, 0)-radial solutions (i.e., radial) in more detail. We introduce the auxiliary

problem (the generalized Steklov problem)

−Δpu+ |u|p−2u = 0 in B,

|∇u|p−2〈∇u;n〉 = λ|u|p−2u on S.

It is known [10] that the first nonzero eigenvalue λp of this problem is simple and is expressed

as

λp = inf
u∈W 1

p (B), u�=0

‖u‖p
W 1

p (B)

‖u‖pLp(S)

. (2.3)

The corresponding eigenfunction ϕ is positive and radial in B. We assume that ‖ϕ‖W 1
p (B) = 1.

The function ϕ(r) is a solution to the problem

− 1

rn−1
(rn−1(ϕ′)p−1)′ + ϕp−1 = 0, r ∈ (0; 1),

ϕ′(1) = λ
1

p−1
p ϕ(1).

(2.4)

From (2.4) it follows that the function ϕ in a neighborhood of zero has the structure

ϕ(r) = c3(n, p) + o(1), ϕ′(r) = c3n
− 1

p−1 r
1

p−1 + o(r
1

p−1 ), r → 0. (2.5)

Without loss of generality we assume that c3 = 1.

Theorem 2.1. Let q ∈ (p, p∗∗m ). Then

μq,m,α � c4(n,m, p, q)(α+ n)p/q (2.6)

as α → ∞. Furthermore, for m = n and q ∈ (p,+∞)

μq,n,α ∼ (mes S)1−p/qλp(α+ n)p/q, (2.7)

where λp is defined by (2.3).

Proof. By Lemma 2.1, for an arbitrary nonnegative (m, k)-radial function v ∈ W(m,k) such

that ‖v‖W 1
p (B) = 1 we have

Qp,q,α(v) · (α+ n)−p/q =

(
(α+ n)

∫

B

vq|x|αdx
)−p/q

=

( ∫

S

vqdθ + o(1)

)−p/q

=

( ∫

S

vqdθ

)−p/q

+ o(1)

as α → ∞ uniformly with respect to v. By the embedding theorem on the boundary for (m, k)-

radial functions [11, Proposition 2.1], we have

( ∫

S

vqdθ

)−p/q

= ‖v‖−p
Lq(S)

� c4(n,m, p, q)‖v‖−p
W 1

p (B)
= c4(n,m, p, q),
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i.e., Qp,q,α(v) � c4(α+ n)p/q, and (2.6) is proved.

Let v be a radial function. Then

( ∫

S

vqdθ

)p/q

= (mes S)p/q(v(1))p = (mes S)p/q−1

∫

S

vpdθ,

i.e.,

Qp,q,α(v) · (α+ n)−p/q = (mes S)1−p/q

( ∫

S

vpdθ

)−1

+ o(1).

Setting v = vn,α, we find

μp,q,α(α+ n)−p/q = Qp,q,α(vn,α) · (α+ n)−p/q =
(
mes S

)1−p/q

( ∫

S

vp
n,αdθ

)−1

+ o(1)

� (mes S)1−p/q · inf
v∈W 1

p (B), ‖v‖=1

‖v‖p
W 1

p (B)

‖v‖pLq(S)

+ o(1) = (mes S)1−p/qλp + o(1).

On the other hand,

μp,q,α(α+ n)−p/q = Qp,q,α(vn,α) · (α+ n)−p/q � Qp,q,α(ϕ) · (α+ n)−p/q

= (mes S)1−p/q

( ∫

S

ϕpdθ

)−p

+ o(1) = (mes S)1−p/qλp + o(1), (2.8)

where the inequality is valid since ϕ is a radial function. Thereby the relation (2.7) is proved.

Theorem 2.2. Assume that q ∈ (p; +∞) and vα such that ‖vα‖W 1
p (B) = 1 is a minimizer

of the functional Qp,q,α on the set of radial functions W(n,0). Then the following assertions hold

as α → ∞ :

1) vα → ϕ in W 1
p (B),

2) vα → ϕ in C(B),

3) vα are uniformly bounded in C1(B),

4) for any δ ∈ (0; 1) vα → ϕ in C1(Bδ), where Bδ is the ball with radius δ in R
n.

Proof. To prove the first assertion, we extract a subsequence vα that weakly converges in

W 1
p (B) to some function v ∈ W 1

p (B). This can be done because the functions vα are normalized.

Then vα(r) ⇁ v(r) in W 1
p ((1/2, 1)) since the weighted function is separated from zero. By the

compactness of one-dimensional embedding, we have vα(1) → v(1), i.e., vα → v in Lp(S).

Applying (2.8), we find

(mes S)1−p/q

( ∫

S

vp
αdθ

)−p

+ o(1) = (α+ n)−p/qQp,q,α(vα) � (mes S)1−p/qλp + o(1),
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i.e.,

‖v‖Lp(S) = ‖vα‖Lp(S) � λ−1/p
p + o(1) > 0, v �≡ 0.

On the other hand,

λp �
‖v‖p

W 1
p (B)

‖v‖pLp(S)

� 1

‖v‖pLp(S)

= lim
α→∞

1

‖vα‖pLp(S)

= (mes S)p/q−1 lim
α→∞((α+ n)−p/qQp,q,α(vα) + o(1)) = lim

α→∞
(mes S)p/q−1μp,q,α

(α+ n)p/q
= λp,

where the last equality is valid in view of (2.7). Hence ‖v‖W 1
p (B) = 1 and, consequently, v ≡ ϕ

since λp is a simple eigenvalue, i.e., vα ⇁ ϕ in W 1
p (B) and ‖vα‖W 1

p (B) → ‖ϕ‖W 1
p (B), which

implies the strong convergence in W 1
p (B) [12, Theorem 2.11]. Assertion 1) is proved.

To prove assertions 2)–4), we first show that vα are uniformly bounded in L∞(B). We

fix δ ∈ (0; 1). Since ‖vα‖W 1
p (B) = 1 and vα are radial functions, the embedding theorem for

one-dimensional functions yields

‖vα‖L∞(B\Bδ) � c5(δ)‖vα‖W 1
p (B\Bδ) � c5. (2.9)

On the other hand, for any x ∈ B \ {0} (cf. [2])

|vα(x)| � c6
‖vα‖W 1

p (B)

|x|(n−p)/p
=

c6

|x|(n−p)/p
.

We set fp,q,α(x) = μ
q/p
p,q,α|x|αvq−1

α . From the obtained estimate and (2.7) it follows that

‖fp,q,α‖L∞(Bδ) � c7α|x|α · 1

|x|
(n−p)(q−1)

p

� c7α · δα−
(n−p)(q−1)

p = o(1) (2.10)

as α → +∞ uniformly with respect to α. By (2.2), (2.9), and (2.10), the function vα is a

solution to the problem
−Δpvα + vp−1

α = fp,q,α in Bδ,

vα � c5 on ∂Bδ,
(2.11)

where ‖fp,q,α‖L∞( 1
2
B) = o(1) as α → +∞. As is shown in [13], this means the uniform bound-

edness of vα in C1,β(Bδ) with some β(δ) ∈ (0; 1). Since C1,β is compactly embedded into C1,

we can assume that vα ⇒ ϕ in Bδ, i.e.,

vα(r) = ϕ(r) + o(1) (2.12)

as r → 0 uniformly with respect to α.

Let us show that

(v′
α)

p−1 = (ϕ′)p−1(1 + o(1)), r → 0. (2.13)

Setting (v′
α)

p−1 = (ϕ′)p−1uα and substituting into (2.11), we obtain the first order linear equa-

tion for uα

− 1

rn−1
(rn−1(ϕ′)p−1uα)

′ + vp−1
α = fp,q,α.
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We note that the solution ũ(r) =
1

rn−1(ϕ′)p−1
to the homogeneous equation is independent of α.

Then the general solution to the inhomogeneous equation can be found by the Lagrange formula

uα(r) =

r∫
tn−1(vp−1

α − fp,q,α)dt · ũ(r).

Taking into account (2.12), (2.5), and (2.10), we find

uα(r) =

r∫
tn−1(1 + o(1))dt · ũ(r) =

(rn
n
(1 + o(1)) + C

)
(nr−n + o(1))

uniformly in α. For C �= 0 the function uα does not satisfy the summability condition at zero,

which means uα(r) = 1 + o(1) and, consequently, (2.13) is proved. Hence v′
α ⇒ ϕ′ in Bδ and

assertion 4) is proved.

In view of (2.9), it remains to show that vα are bounded in C1(B \Bδ). We note that vα is

a solution to the equation

− 1

rn−1
(rn−1(v′

α)
p−1)′ + vp−1

α = μq/p
q,n,αr

αvq−1
α , v′

α(1) = 0.

Integrating this equation on r ∈ [s; 1], s � 1/2, we find

−
1∫

s

1

rn−1
(rn−1(v′

α)
p−1)′dr +

1∫

s

vp−1
α dr = μq/p

q,n,α

1∫

s

rαvq−1
α dr.

Integrating by parts in the first term, we get

(v′
α(s))

p−1 = (n− 1)

1∫

s

(v′
α(r))

p−1dr

r
−

1∫

s

vp−1
α dr + μq/p

q,n,α

1∫

s

rαvq−1
α dr,

which implies

|v′
α(s)|p−1 � (n− 1)

1∫

s

(v′
α(r))

p−1dr

r
+

1∫

s

vp−1
α dr + μq/p

q,n,α

1∫

s

rαvq−1
α dr

� 2n−2(n− 1)

1∫

s

rn−1
(
v′
α(r)

)p−1
dr + 2n−1

1∫

s

rn−1vp−1
α dr + c6α · cq−1

4 · rα+1

α+ 1

∣∣∣∣∣
1

s

� 2n−2(n− 1)‖∇vα‖p−1
Lp−1(B) + 2n−1‖vα‖p−1

Lp−1(B) + c8(n, p, q)

� 2n‖vα‖p−1
W 1

p (B)
+ c8(n, p, q) = 2n + c8(n, p, q)

in view of (2.9) and (2.7), which implies |v′
α(s)| � c8(n, p, q) for any s ∈ [1/2; 1], where the

constant c8 is independent of α.

Thus, v′
α(r) are uniformly bounded. Consequently, vα(r) are equicontinuous. By the Arzeli–

Ascoli theorem, vα ⇒ ϕ.
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3 Multiplicity of Solutions

Throughout the section, we assume that p < n.

Theorem 3.1. Let q ∈ (p∗∗; p∗). Then there exists α̂(p, q) > 0 such that for all α > α̂ the

(global) minimizer of the functional Qp,q,α is a nonradial function.

Remark 3.1. In the case p = 2, this assertion is proved in [5].

Proof of Theorem 3.1. We consider a nonnegative function v ∈ C∞
0 (B). We set xα =

(1− 1/α; 0; . . . ; 0) and vα(x) = v(α(x− xα)). Then supp vα ⊂ B1/α(xα) and

∫

B

vqα|x|αdx =

∫

B1/α(xα)

vqα|x|αdx �
(
1− 2

α

)α
∫

B1/α(xα)

vqαdx = α−n
(
1− 2

α

)α
∫

B

vqdx.

Therefore,

Qp,q,α(vα) �
αp−n‖∇v‖pLp(B) + α−n‖v‖pLp(B)

α−np/q(1− 2/α)pα/q‖v‖pLq(B)

� c9(p, q)α
p−n+np

q ,

i.e.,

inf
W 1

p (B)\{0}
Qp,q,α(u) � c9α

p−n+np
q .

On the other hand, from Theorem 2.1 we have

inf
W(n,0)\{0}

Qp,q,α(u) � α
p
q .

Since p− n+ np/q < p/q for q > p∗∗, we find

inf
W 1

p (B)\{0}
Qp,q,α(u) < inf

W(n,0)\{0}
Qp,q,α(u)

if α is sufficiently large.

Theorem 3.2. Let q ∈ (p∗∗;min{p∗, p∗∗m}). Then there exists α̂m(p, q) > 0 such that for all

α > α̂m the (global) minimizer of the functional Qp,q,α is not an (m, k)-radial function.

Proof. As was shown in Theorem 3.1, for q < p∗ we have

inf
W 1

p (B)\{0}
Qp,q,α(u) � c9α

p−n+np
q .

But (2.6) implies

inf
W(m,k)\{0}

Qp,q,α(u) � c10(n, p, q)α
p
q

for q < p∗∗m . Therefore, for q > p∗∗ and sufficiently large α

inf
W 1

p (B)\{0}
Qp,q,α(u) < inf

W(m,k)\{0}
Qp,q,α(u).

The theorem is proved.
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Lemma 3.1. Assume that m < n and q ∈ (p, p∗m). Then for sufficiently large α

Qp,q,α(vm,α) � c11α
np
q
−n+p+(m−1)

(
1− p

q

)
.

Proof. We note that Qp,q,α(vm,α) � Qp,q,α(u) for any u ∈ W(m,k). We consider a subset

of nonnegative functions u such that supp u ⊂ {r � 1 − 1/α}. We introduce the auxiliary

functional

Qp,q(u) =
‖u‖p

W 1
p (B)

‖u‖pLq(B)

.

Then

Qp,q,α(u) =
‖u‖p

W 1
p (B)( ∫

B

|x|αuqdx
)p/q

=
‖u‖p

W 1
p (B)( ∫

B\B1−1/α

|x|αuqdx
)p/q

�
‖u‖p

W 1
p (B)

‖u‖pLq(B)

·
(
1− 1

α

)−αp/q
� c12(p, q)Qp,q(u).

We make the similarity transformation B → αB and denote ξ = αx and ũ(ξ) = u(ξ/α). We

extend ũ along the radial variable as follows:

ṽ(|ξ|, θ) =
⎧⎨
⎩
ũ(|ξ|, θ), α− 1 � |ξ| � α,

ũ(2α− |ξ|, θ), α � |ξ| � α+ 1.

Then

Qp,q(u) =

α
np
q
−n+p

∫

αB

(|∇ũ|p + α−pũp)dξ

( ∫

αB

ũqdξ

)p/q
� c13(p, q)α

np
q
−n+p

∫

Bα+1\Bα−1

|∇ṽ|pdξ

( ∫

Bα+1\Bα−1

ṽqdξ

)p/q
.

Since ṽ is an (m, k)-radial function supported in the annulus Bα+1 \ Bα−1, Lemma 1.5 in [6]

yields the estimate ∫

Bα+1\Bα−1

|∇ṽ|pdξ

( ∫

Bα+1\Bα−1

ṽqdξ

)p/q
� c14(p, q)α

(m−1)(1−p/q).

Finally,

Qp,q,α(vm,α) � Qp,q,α(u) � c11(n,m, p, q)α
np
q
−n+p+(m−1)

(
1− p

q

)
.

The theorem is proved.
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Theorem 3.3. Assume that p < n−m+1 and q ∈ (p∗∗m ; p∗m). Then there exists α̃m(p, q) > 0

such that for all α > α̃m the (m, k)-minimizer of the functional Qp,q,α is not radial.

Proof. We assume that v(m,k) is a radial function. By Theorem 2.1,

Qp,q,α(v(m,k)) � α
p
q .

On the other hand, by Lemma 3.1,

Qp,q,α(v(m,k)) � c11α
np
q
−n+p+(m−1)

(
1− p

q

)
.

However, for q ∈ (p∗∗m ; p∗m) we have np/q − n+ p+ (m− 1)(1− p/q) < p/q.

It is easy to see that p∗∗m � p∗ for pm � n and p∗∗m > p∗ for pm > n. Furthermore, in the

case pm � n, we have n −m + 1 − p � n −m + 1 − n/m = [(n −m)(m − 1)]/m > 0, i.e., p∗∗m
and p∗m are finite.

As was mentioned in Section 1, renormalized minimizers over different subspaces W(m,k) are

solutions to the problem (1.1). Theorems 3.1 and 3.2 provide sufficient nonuniqueness conditions

for this problem. A radial solution exists for all 1 < p < q < +∞. Figures 1 and 2 show intervals

of values of q and α where nonradial solutions exist. It is important to note that the intervals

in Figures 1 and 2 depend on m.

non-(m, k)-radial solution for α > α̂m

(m, k)-radial solution for α > α̃m

Figure 1. Case pm � n.

non-(m, k)-radial solution for α > α̂m

(m, k)-radial solution for α > α̃m

Figure 2. Case pm > n.

For n � 4 we consider the decomposition R
n = R

2 ⊕ R
n−2, i.e., m = 2, k = n − 2. Let

G be a finite subgroup of O(2). We denote by vG a function minimizing the functional Qp,q,α

over the subspace WG of all (2, n− 2)-symmetric functions in W 1
p (B) that are G-invariant with

respect to y. Repeating the proof of Proposition 2.1, we find that all vG are solutions to the

problem (1.1).

Proposition 3.1. For q ∈ (p∗∗,min{p∗, p∗∗2 }) the function vG is not (2, n− 2)-radial.
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Proof. We consider a nonnegative (2, n − 2)-symmetric function v ∈ C∞
0 (B) such that

supp v ⊂ {x ∈ B, |x| � 1− 1/α}. We define

u(y1, r0) =
∑
g∈G

vg(y1, r0),

where vg(y1, r0) = v((r1, θ1) − (1, gθ0), r0), θ
0 is a point of S2. Then u ∈ WG. Repeating the

proof of Theorem 3.1, we find

Qp,q,α(u) � c15(p, q,G)αp−n+np/q.

Therefore,

Qp,q,α(vG) � c15(p, q,G)αp−n+np
q . (3.1)

However, if vG is a (2, n− 2)-radial function, then

Qp,q,α(vG) � c10α
p/q

in view of Theorem 2.1, which contradicts the inequality (3.1) for q > p∗∗.

We extract a class G providing multiplicity of solutions to the problem (1.1). Let Gt be the

group generated by rotation by an angle 2π/t, t ∈ N. Denote by vt the minimizer of Qp,q,α on

the set WGt .

Theorem 3.4. Let q ∈ (p∗∗,min{p∗, p∗∗2 }). Then for any t0 ∈ N there exists α0(n, p, q, t0)

such that for α > α0 and all t = 1, 2, . . . , t0 the problem (1.1) has a (2, n − 2)-symmetric Gt-

invariant solution vt. For different t the solutions vt are different.

Proof. We consider the functions vt and vt′ , t
′ > t. Let t′ = st, s ∈ N. We introduce the

function

vt((r1, θ1), r0) = vst

((
r1,

1

s
θ1

)
, r0

)
.

Then vt ∈ W 1
p (B) is a (2, n − 2)-symmetric function that is Gt-invariant with respect to y1. It

is easy to see that
∫

B

|vt|pdx =

∫

B

|vst|pdx,
∫

B

|x|α|vt|qdx =

∫

B

|x|α|vst|qdx.

Since (vt)θi =
1

s
(vst)θi , we have

∫

B

|∇vt|pdx =

∫

B

(
(vt)

2
r1 +

1

r21
(vt)

2
θ1 + (vt)

2
r0

)p/2
dx

=

∫

B

(
(vst)

2
r1 +

1

s2
1

r21
(vst)

2
θ1 + (vst)

2
r0

)p/2

dx <

∫

B

|∇vst|pdx (3.2)

only if (vst)θ1 �≡ 0. However, the identity (vst)θ1 ≡ 0 should mean that vst is a (2, n− 2)-radial

function, which is impossible for large α in view of Proposition 3.1. Therefore, (3.2) implies

Qp,q,α(vt) � Qp,q,α(vt) < Qp,q,α(vst) (3.3)
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and the assertion is proved in this case.

In the general case, we denote by t̂ the least common multiple of (t, t′). If vt is equivalent to

vt′ , then vt is Ĝt-invariant with respect to yi and, consequently, Qp,q,α(v̂t) � Qp,q,α(vt), which

contradicts (3.3).

In the case n = 2, only the trivial decomposition of R2 is possible. In this case, an analogue

of Figure 2 looks like Figure 3.

nonradial solution for α > α̂m

Figure 3. Case n = 2, 1 < p < 2.

Repeating the proof of Theorem 3.4, we obtain the following assertion.

Theorem 3.5. Assume that n = 2, p ∈ (1, 2), and q ∈ (p∗∗, p∗). Then for any t0 ∈ N

there exists α0(p, q, t0) such that for α > α0 and all t = 1, 2, . . . , t0 the problem (1.1) has a

Gt-invariant solution vt. For different t the solutions vt are different.
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