THE NEUMANN PROBLEM FOR THE GENERALIZED HÉNON EQUATION

A. P. Shcheglova

Saint Petersburg Electrotechnical University "LETI" 5, Professora Popova St., Saint Petersburg 197276, Russia alexandra.scheglova@gmail.com

UDC 517.9

We study the behavior of radial solutions to the boundary value problem

$$-\Delta_p u + u^{p-1} = |x|^{\alpha} u^{q-1} \quad in \quad B, \quad \frac{\partial u}{\partial \mathbf{n}} = 0 \quad on \ \partial B, \quad q > p,$$

in the unit ball B and prove the existence of nonradial positive solutions for some values of parameters. We obtain multiplicity results which are new even in the case p = 2. Bibliography: 13 titles. Illustrations: 3 figures.

1 Statement of the Problem

Let B be the unit ball in \mathbb{R}^n , $n \ge 2$. Denote $S = \partial B$, p, q > 1, $\alpha > 0$ and consider the problem

$$-\Delta_p u + u^{p-1} = |x|^{\alpha} u^{q-1} \quad \text{in } B,$$

$$u > 0 \quad \text{in } B,$$

$$\frac{\partial u}{\partial \mathbf{n}} = 0 \quad \text{on } S,$$
(1.1)

where $x \in B$, $\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u)$, and **n** is the outward unit normal to S. Solutions to the problem (1.1) can be found by examining critical points of the functional

$$\mathscr{Q}_{p,q,\alpha}(u) = \frac{\int\limits_{B} (|\nabla u|^p + |u|^p) dx}{\left(\int\limits_{B} |x|^{\alpha} |u|^q dx\right)^{p/q}}.$$
(1.2)

For the functional $\mathscr{Q}_{p,q,\alpha}$ we write the Euler equation

$$-\Delta_p u + |u|^{p-2} u = \mu |x|^{\alpha} |u|^{q-2} u \text{ in } B, \quad \frac{\partial u}{\partial \mathbf{n}} = 0 \text{ on } S,$$

Translated from Problemy Matematicheskogo Analiza 95, 2018, pp. 103-114.

1072-3374/18/2353-0360 \odot 2018 Springer Science+Business Media, LLC

where μ is a Lagrange multiplier. If u_{α} is a minimizer of the functional $\mathscr{Q}_{p,q,\alpha}$, then u_{α} is a solution to the Euler equation with

$$\mu = \inf_{u \in W_p^1(B), \ u \neq 0} \mathscr{Q}_{p,q,\alpha}(u).$$

In the case $q \neq p$, the change of variable $u_{\alpha} \to \mu^{\frac{1}{q-p}} u_{\alpha}$ transforms the Euler equation to the boundary value problem (1.1), i.e., a minimizer of the functional $\mathscr{Q}_{p,q,\alpha}$ is a weak solution to the problem (1.1).

We are interested in the question whether a minimizer of the functional $\mathscr{Q}_{p,q,\alpha}$ is radial or, in other words, under what conditions on the parameters q and α a radial function is the least energy solution to the problem (1.1).

This question is successfully studied for the Dirichlet problem (cf., for example, [1, 2] for p = 2 and [3] for arbitrary p > 1). Under certain conditions on q and α , some results on multiplicity of positive solutions to the Dirichlet problem in the ball are known (cf. [1] for p = 2 and [4] for arbitrary p > 1). Hereinafter, multiplicity of solutions means that it is possible to construct any prescribed number of those solutions that are obtained from each other by orthogonal transformations.

For the Neumann problem with p = 2 it is known [5] that positive solutions are unique (thereby radial) for q close to 2 and sufficiently large α . Furthermore, there exist nonradial solutions if q is close to the critical Sobolev embedding exponent. In this case, the behavior of a radial minimizer is described in terms of Bessel functions. However, in the case $p \neq 2$, this is not the case and the analysis of the problem becomes more complicated.

Repeating the proof of Proposition 1.1 in [3], we obtain the following assertion.

Proposition 1.1. For $q \leq p$, on the set of positive functions in $W_p^1(B)$, there exists a unique (up to a multiplicative constant) critical point of the functional $\mathscr{Q}_{p,q,\alpha}$. The problem (1.1) has a unique solution, and this solution is radial.

In this paper, we study the behavior of radial solutions to the problem (1.1) in the case q > pand show that for some values of the parameters there exist nonradial positive solutions. The multiplicity results obtained in this paper are new even in the case p = 2.

We denote by p_m^* and p_m^{**} the critical exponents in the Sobolev embedding and trace embedding in \mathbb{R}^{n-m+1} respectively:

$$\frac{1}{p_m^*} = \left(\frac{1}{p} - \frac{1}{n-m+1}\right)_+, \quad \frac{1}{p_m^{**}} = \left(\frac{1}{p} - \frac{1}{n-m} + \frac{1}{p(n-m)}\right)_+.$$

We write p^* and p^{**} instead of p_1^* and p_1^{**} for the sake of brevity. We note that $p_m^* > p^*$ and $p_m^{**} > p^{**}$ if p < n and $m \ge 2$. Constants independent of α are denoted by c with subscripts.

2 Radial and (m, k)-Radial Solutions

Following [6], we consider the decomposition $\mathbb{R}^n = (\mathbb{R}^m)^l \oplus \mathbb{R}^k$, where n = ml + k, $m \ge 2$, $k \ge m$ or k = 0. We denote by y_j (j = 1, ..., l) points in \mathbb{R}^m and by z points in \mathbb{R}^k . For example, $x = (y_1, \ldots, y_l, z)$. The spherical coordinates of y_j are denoted by (r_j, θ_j) , $\theta_j \in S_m$ (hereinafter, S_m is the unit sphere in \mathbb{R}^m), the spherical coordinates of z are denoted by (r_0, θ_0) . The spherical coordinates of x are denoted by (r, θ) , where $r = \sqrt{r_1^2 + \ldots + r_l^2 + r_0^2}$, $\theta \in S^n$.

A function u is said to be (m, k)-symmetric if u is invariant under all permutations of y_1, \ldots, y_l and (for $k \neq 0$) depends only on r_0 . A function u is said to be (m, k)-radial if u is (m, k)-symmetric and depends only on r_j and r_0 . In particular, a radial function is an (n, 0)-radial function. We note that nontrivial admissible decompositions exist only for $n \geq 4$.

Let $\mathscr{W}_{(m,k)}$ be the subspace of (m,k)-radial functions in $W_p^1(B)$. It is easy to see that the functional $\mathscr{Q}_{p,q,\alpha}$ is well defined for all $q \in (p; p^*)$. As is shown in [7, Theorem 1.1], the subspace $\mathscr{W}_{(m,k)}$ is compactly embedded into the weighted space $L_{q,\alpha} = L_q(B, |x|^{\alpha} dx)$ for all q > 1 such that $q < p_m^*$ and $q < p_{\alpha}^* = p^* + p\alpha/(n-p)$. Denote $\widehat{p} = \min\{p_m^*, p_{\alpha}^*\}$. Then $\widehat{p} > p^*$ for p < n.

Proposition 2.1. Assume that $\alpha > 0$ and $q \in (p; \hat{p})$. Then the functional $\mathscr{Q}_{p,q,\alpha}$ attains a nonzero minimum on $\mathscr{W}_{(m,k)}$ and the minimizing function $\mathbf{v}_{m,\alpha}$ (after multiplication by a suitable constant) is a positive weak solution to the problem (1.1).

Proof. We note that the restriction of the functional $\mathscr{Q}_{p,q,\alpha}$ on $\mathscr{W}_{(m,k)}$ is well defined for all $q < \hat{p}$. Since the functional $\mathscr{Q}_{p,q,\alpha}$ is homogeneous, it suffices to minimize over the set of functions in $\mathscr{W}_{(m,k)}$ with unit $L_{q,\alpha}$ -norm. This set is weakly closed in $\mathscr{W}_{(m,k)}$, and a coercive convex functional attains the minimum on this set.

By the principle of symmetric criticality [8], the first differential $D\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{m,\alpha};h)$ of the functional (1.2) vanishes not only at increments $h \in \mathscr{W}_{(m,k)}$, but also at all $h \in W_p^1(B)$.

We note that the Euler equation with a natural boundary condition for the functional $\mathscr{Q}_{p,q,\alpha}$ coincides, after a suitable renormalization of $\mathbf{v}_{m,\alpha}$, with the boundary value problem (1.1). Using the Harnack inequality [9, Theorem 1.1], we conclude that $\mathbf{v}_{m,\alpha}$ are positive.

The following assertion is similar to Lemma 2.5 in [5].

Lemma 2.1. The following relation holds

$$(\alpha+n)\int\limits_{B}|x|^{\alpha}|u|^{q}dx=\int\limits_{S}|u|^{q}d\theta+o(1),\quad \alpha\to+\infty,$$

- 1) uniformly on all bounded subsets of $W_p^1(B)$ for $q \in (p; p^{**})$ and
- 2) uniformly on all bounded subsets of $\mathscr{W}_{(m,k)}$ for $q \in (p; p_m^{**})$.

In particular, for radial functions this assertion is valid for all 1 .

Proof. We note that $(\alpha + n)|x|^{\alpha} = \operatorname{div}(|x|^{\alpha}x)$. Integrating by parts, we find

$$\begin{aligned} (\alpha+n)\int_{B}|u|^{q}|x|^{\alpha}dx &= \int_{B}|u|^{q}\operatorname{div}\left(|x|^{\alpha}x\right)dx = \int_{S}|u|^{q}|x|^{\alpha}\langle x,\mathbf{n}\rangle d\theta - q\int_{B}|u|^{q-2}u|x|^{\alpha}\langle \nabla u,x\rangle dx \\ &= \int_{S}|u|^{q}d\theta - q\int_{B}|u|^{q-2}u|x|^{\alpha}\langle \nabla u,x\rangle dx. \end{aligned}$$

We show that the last integral is of order o(1) as $\alpha \to +\infty$. Indeed, by the Hölder inequality,

$$\left|\int\limits_{B} |u|^{q-2} u|x|^{\alpha} \langle \nabla u, x \rangle dx\right| \leqslant \left(\int\limits_{B} |\nabla u|^{p} dx\right)^{1/p} \left(\int\limits_{B} |u|^{(q-1)p'} |x|^{(\alpha+1)p'} dx\right)^{1/p'}$$

$$\leq \|u\|_{W_p^1(B)} \left(\int_B |u|^{(q-1)p'} |x|^{(\alpha+1)p'} dx\right)^{1/p'},$$

where p' = p/(p-1) is the conjugate exponent.

If p < n and $q \in (p; p^{**})$, then

$$(q-1)p' < \left(\frac{p(n-1)}{n-p} - 1\right)\frac{p}{p-1} = p^*.$$

By the Hölder inequality and embedding theorem,

$$\int_{B} |u|^{(q-1)p'} |x|^{(\alpha+1)p'} dx \leq \left(\int_{B} |u|^{p^*} dx \right)^{\frac{(q-1)p'}{p^*}} \left(\int_{B} |x|^{\frac{(\alpha+1)np}{p(n-1)-q(n-p)}} dx \right)^{\frac{p(n-1)-q(n-p)}{n(p-1)}} \leq c_1(n,p) \|u\|_{W_p^1(B)}^{(q-1)p'} \cdot o(1),$$

and the required assertion is proved.

If $u \in \mathscr{W}_{(m,k)}$, p < n - m + 1, and $q \in (p; p_m^{**})$, then $(q - 1)p' < p_m^*$. By the Hölder inequality,

$$\int_{B} |u|^{(q-1)p'} |x|^{(\alpha+1)p'} dx \leq \left(\int_{B} |u|^{p_m^*} |x|^{\delta} dx\right)^{\frac{(q-1)p'}{p_m^*}} \left(\int_{B} |x|^{d_1} dx\right)^{d_2},$$
(2.1)

where $d_1 = d_1(\alpha, n, p, q, \delta) \asymp \alpha$ as $\alpha \to +\infty$ and $d_2 = d_2(n, p, q, \delta)$ is independent of α . We fix

$$\delta > \frac{1}{q} \left(\frac{n}{p} - \frac{n}{q} - 1 \right)_+$$

By the weighted embedding theorem [7, Theorem 1.1],

$$\left(\int_{B} |u|^{p_m^*} |x|^{\delta} dx\right)^{\frac{(q-1)p'}{p_m^*}} \left(\int_{B} |x|^{d_1} dx\right)^{d_2} \leqslant c_2(n,p) \|u\|_{W_p^1(B)}^{(q-1)p'} \cdot o(1),$$

and the required assertion is proved.

If $p \ge n$ or $u \in \mathscr{W}_{(m,k)}$, $p \ge n - m + 1$, then for any $q \in (p; +\infty)$ we have $(q-1)p' < p_{\alpha}^*$ for sufficiently large α . Then (2.1) remains valid with p_m^* replaced by p_{α}^* and some fixed

$$\delta > \frac{p'}{q'p_{\alpha}^*} \left(\frac{n}{p} - \frac{n}{q} - 1\right)_+.$$

Then we argue as above.

By Proposition 2.1, $\mu_{q,m,\alpha} = \min_{v \in \mathscr{W}_{(m,k)}, v \neq 0} \mathscr{Q}_{p,q,\alpha}(v) > 0$ is well defined for any $\alpha > 0$ and $q \in (p; \hat{p})$. Hence any (m, k)-radial minimizer $\mathbf{v}_{m,\alpha}$ of the functional $\mathscr{Q}_{p,q,\alpha}$ such that $\|\mathbf{v}_{m,\alpha}\|_{W_p^1(B)} = 1$ is a solution to the problem

$$-\Delta_p u + u^{p-1} = \mu_{q,m,\alpha}^{q/p} |x|^{\alpha} u^{q-1} \quad \text{in } B,$$

$$\frac{\partial u}{\partial \mathbf{n}} = 0 \quad \text{on } S.$$
(2.2)

363

We consider (n, 0)-radial solutions (i.e., radial) in more detail. We introduce the auxiliary problem (the generalized Steklov problem)

$$-\Delta_p u + |u|^{p-2} u = 0 \quad \text{in } B,$$
$$|\nabla u|^{p-2} \langle \nabla u; \mathbf{n} \rangle = \lambda |u|^{p-2} u \quad \text{on } S$$

It is known [10] that the first nonzero eigenvalue λ_p of this problem is simple and is expressed as

$$\lambda_p = \inf_{u \in W_p^1(B), \ u \neq 0} \frac{\|u\|_{W_p^1(B)}^p}{\|u\|_{L_p(S)}^p}.$$
(2.3)

The corresponding eigenfunction φ is positive and radial in B. We assume that $\|\varphi\|_{W_p^1(B)} = 1$. The function $\varphi(r)$ is a solution to the problem

$$-\frac{1}{r^{n-1}}(r^{n-1}(\varphi')^{p-1})' + \varphi^{p-1} = 0, \quad r \in (0;1),$$

$$\varphi'(1) = \lambda_p^{\frac{1}{p-1}}\varphi(1).$$
 (2.4)

From (2.4) it follows that the function φ in a neighborhood of zero has the structure

$$\varphi(r) = c_3(n,p) + o(1), \quad \varphi'(r) = c_3 n^{-\frac{1}{p-1}} r^{\frac{1}{p-1}} + o(r^{\frac{1}{p-1}}), \quad r \to 0.$$
 (2.5)

Without loss of generality we assume that $c_3 = 1$.

Theorem 2.1. Let $q \in (p, p_m^{**})$. Then

$$\mu_{q,m,\alpha} \ge c_4(n,m,p,q)(\alpha+n)^{p/q} \tag{2.6}$$

as $\alpha \to \infty$. Furthermore, for m = n and $q \in (p, +\infty)$

$$\mu_{q,n,\alpha} \sim (\text{mes } S)^{1-p/q} \lambda_p (\alpha+n)^{p/q}, \qquad (2.7)$$

where λ_p is defined by (2.3).

Proof. By Lemma 2.1, for an arbitrary nonnegative (m, k)-radial function $v \in \mathscr{W}_{(m,k)}$ such that $\|v\|_{W_{p}^{1}(B)} = 1$ we have

$$\mathcal{Q}_{p,q,\alpha}(v) \cdot (\alpha+n)^{-p/q} = \left((\alpha+n) \int_{B} v^{q} |x|^{\alpha} dx \right)^{-p/q}$$
$$= \left(\int_{S} v^{q} d\theta + o(1) \right)^{-p/q} = \left(\int_{S} v^{q} d\theta \right)^{-p/q} + o(1)$$

as $\alpha \to \infty$ uniformly with respect to v. By the embedding theorem on the boundary for (m, k)-radial functions [11, Proposition 2.1], we have

$$\left(\int_{S} v^{q} d\theta\right)^{-p/q} = \|v\|_{L_{q}(S)}^{-p} \ge c_{4}(n, m, p, q)\|v\|_{W_{p}^{1}(B)}^{-p} = c_{4}(n, m, p, q),$$

i.e., $\mathscr{Q}_{p,q,\alpha}(v) \ge c_4(\alpha+n)^{p/q}$, and (2.6) is proved.

Let v be a radial function. Then

$$\left(\int_{S} v^{q} d\theta\right)^{p/q} = (\operatorname{mes} S)^{p/q} (v(1))^{p} = (\operatorname{mes} S)^{p/q-1} \int_{S} v^{p} d\theta$$

i.e.,

$$\mathscr{Q}_{p,q,\alpha}(v) \cdot (\alpha+n)^{-p/q} = (\operatorname{mes} S)^{1-p/q} \left(\int_{S} v^{p} d\theta\right)^{-1} + o(1).$$

Setting $v = \mathbf{v}_{n,\alpha}$, we find

$$\mu_{p,q,\alpha}(\alpha+n)^{-p/q} = \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{n,\alpha}) \cdot (\alpha+n)^{-p/q} = \left(\operatorname{mes} S\right)^{1-p/q} \left(\int_{S} \mathbf{v}_{n,\alpha}^{p} d\theta\right)^{-1} + o(1)$$

$$\geq (\operatorname{mes} S)^{1-p/q} \cdot \inf_{v \in W_p^1(B), \|v\|=1} \frac{\|v\|_{W_p^1(B)}^p}{\|v\|_{L_q(S)}^p} + o(1) = (\operatorname{mes} S)^{1-p/q} \lambda_p + o(1).$$

On the other hand,

$$\mu_{p,q,\alpha}(\alpha+n)^{-p/q} = \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{n,\alpha}) \cdot (\alpha+n)^{-p/q} \leqslant \mathscr{Q}_{p,q,\alpha}(\varphi) \cdot (\alpha+n)^{-p/q}$$
$$= (\operatorname{mes} S)^{1-p/q} \left(\int_{S} \varphi^{p} d\theta\right)^{-p} + o(1) = (\operatorname{mes} S)^{1-p/q} \lambda_{p} + o(1), \qquad (2.8)$$

where the inequality is valid since φ is a radial function. Thereby the relation (2.7) is proved.

Theorem 2.2. Assume that $q \in (p; +\infty)$ and \mathbf{v}_{α} such that $\|\mathbf{v}_{\alpha}\|_{W_{p}^{1}(B)} = 1$ is a minimizer of the functional $\mathcal{Q}_{p,q,\alpha}$ on the set of radial functions $\mathscr{W}_{(n,0)}$. Then the following assertions hold as $\alpha \to \infty$:

- 1) $\mathbf{v}_{\alpha} \to \varphi$ in $W_p^1(B)$,
- 2) $\mathbf{v}_{\alpha} \to \varphi$ in C(B),
- 3) \mathbf{v}_{α} are uniformly bounded in $C^{1}(B)$,
- 4) for any $\delta \in (0;1)$ $\mathbf{v}_{\alpha} \to \varphi$ in $C^{1}(B_{\delta})$, where B_{δ} is the ball with radius δ in \mathbb{R}^{n} .

Proof. To prove the first assertion, we extract a subsequence \mathbf{v}_{α} that weakly converges in $W_p^1(B)$ to some function $\mathbf{v} \in W_p^1(B)$. This can be done because the functions \mathbf{v}_{α} are normalized. Then $\mathbf{v}_{\alpha}(r) \to \mathbf{v}(r)$ in $W_p^1((1/2, 1))$ since the weighted function is separated from zero. By the compactness of one-dimensional embedding, we have $\mathbf{v}_{\alpha}(1) \to \mathbf{v}(1)$, i.e., $\mathbf{v}_{\alpha} \to \mathbf{v}$ in $L_p(S)$. Applying (2.8), we find

$$(\operatorname{mes} S)^{1-p/q} \left(\int_{S} \mathbf{v}_{\alpha}^{p} d\theta \right)^{-p} + o(1) = (\alpha + n)^{-p/q} \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{\alpha}) \leq (\operatorname{mes} S)^{1-p/q} \lambda_{p} + o(1),$$

$$\|\mathbf{v}\|_{L_p(S)} = \|\mathbf{v}_{\alpha}\|_{L_p(S)} \ge \lambda_p^{-1/p} + o(1) > 0, \quad \mathbf{v} \neq 0$$

On the other hand,

$$\begin{aligned} \lambda_p &\leqslant \frac{\|\mathbf{v}\|_{W_p^1(B)}^p}{\|\mathbf{v}\|_{L_p(S)}^p} \leqslant \frac{1}{\|\mathbf{v}\|_{L_p(S)}^p} = \lim_{\alpha \to \infty} \frac{1}{\|\mathbf{v}_\alpha\|_{L_p(S)}^p} \\ &= (\operatorname{mes} S)^{p/q-1} \lim_{\alpha \to \infty} ((\alpha+n)^{-p/q} \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_\alpha) + o(1)) = \lim_{\alpha \to \infty} \frac{(\operatorname{mes} S)^{p/q-1} \mu_{p,q,\alpha}}{(\alpha+n)^{p/q}} = \lambda_p. \end{aligned}$$

where the last equality is valid in view of (2.7). Hence $\|\mathbf{v}\|_{W_p^1(B)} = 1$ and, consequently, $\mathbf{v} \equiv \varphi$ since λ_p is a simple eigenvalue, i.e., $\mathbf{v}_{\alpha} \rightarrow \varphi$ in $W_p^1(B)$ and $\|\mathbf{v}_{\alpha}\|_{W_p^1(B)} \rightarrow \|\varphi\|_{W_p^1(B)}$, which implies the strong convergence in $W_p^1(B)$ [12, Theorem 2.11]. Assertion 1) is proved.

To prove assertions 2)–4), we first show that \mathbf{v}_{α} are uniformly bounded in $L_{\infty}(B)$. We fix $\delta \in (0; 1)$. Since $\|\mathbf{v}_{\alpha}\|_{W_{p}^{1}(B)} = 1$ and \mathbf{v}_{α} are radial functions, the embedding theorem for one-dimensional functions yields

$$\|\mathbf{v}_{\alpha}\|_{L_{\infty}(B\setminus B_{\delta})} \leqslant c_{5}(\delta) \|\mathbf{v}_{\alpha}\|_{W^{1}_{p}(B\setminus B_{\delta})} \leqslant c_{5}.$$
(2.9)

On the other hand, for any $x \in B \setminus \{0\}$ (cf. [2])

$$|\mathbf{v}_{\alpha}(x)| \leqslant c_{6} \frac{\|\mathbf{v}_{\alpha}\|_{W_{p}^{1}(B)}}{|x|^{(n-p)/p}} = \frac{c_{6}}{|x|^{(n-p)/p}}$$

We set $f_{p,q,\alpha}(x) = \mu_{p,q,\alpha}^{q/p} |x|^{\alpha} \mathbf{v}_{\alpha}^{q-1}$. From the obtained estimate and (2.7) it follows that

$$\|f_{p,q,\alpha}\|_{L_{\infty}(B_{\delta})} \leqslant c_{7}\alpha|x|^{\alpha} \cdot \frac{1}{|x|^{\frac{(n-p)(q-1)}{p}}} \leqslant c_{7}\alpha \cdot \delta^{\alpha - \frac{(n-p)(q-1)}{p}} = o(1)$$
(2.10)

as $\alpha \to +\infty$ uniformly with respect to α . By (2.2), (2.9), and (2.10), the function \mathbf{v}_{α} is a solution to the problem

$$-\Delta_p \mathbf{v}_{\alpha} + \mathbf{v}_{\alpha}^{p-1} = f_{p,q,\alpha} \quad \text{in } B_{\delta},$$

$$\mathbf{v}_{\alpha} \leqslant c_5 \quad \text{on } \partial B_{\delta},$$

(2.11)

where $\|f_{p,q,\alpha}\|_{L_{\infty}(\frac{1}{2}B)} = o(1)$ as $\alpha \to +\infty$. As is shown in [13], this means the uniform boundedness of \mathbf{v}_{α} in $C^{1,\beta}(B_{\delta})$ with some $\beta(\delta) \in (0;1)$. Since $C^{1,\beta}$ is compactly embedded into C^{1} , we can assume that $\mathbf{v}_{\alpha} \rightrightarrows \varphi$ in $\overline{B_{\delta}}$, i.e.,

$$\mathbf{v}_{\alpha}(r) = \varphi(r) + o(1) \tag{2.12}$$

as $r \to 0$ uniformly with respect to α .

Let us show that

$$(\mathbf{v}'_{\alpha})^{p-1} = (\varphi')^{p-1}(1+o(1)), \quad r \to 0.$$
 (2.13)

Setting $(\mathbf{v}'_{\alpha})^{p-1} = (\varphi')^{p-1}u_{\alpha}$ and substituting into (2.11), we obtain the first order linear equation for u_{α}

$$-\frac{1}{r^{n-1}}(r^{n-1}(\varphi')^{p-1}u_{\alpha})' + \mathbf{v}_{\alpha}^{p-1} = f_{p,q,\alpha}.$$

366

i.e.,

We note that the solution $\tilde{u}(r) = \frac{1}{r^{n-1}(\varphi')^{p-1}}$ to the homogeneous equation is independent of α . Then the general solution to the inhomogeneous equation can be found by the Lagrange formula

$$u_{\alpha}(r) = \int^{r} t^{n-1} (\mathbf{v}_{\alpha}^{p-1} - f_{p,q,\alpha}) dt \cdot \widetilde{u}(r).$$

Taking into account (2.12), (2.5), and (2.10), we find

$$u_{\alpha}(r) = \int^{r} t^{n-1}(1+o(1))dt \cdot \widetilde{u}(r) = \left(\frac{r^{n}}{n}(1+o(1)) + C\right)(nr^{-n} + o(1))$$

uniformly in α . For $C \neq 0$ the function u_{α} does not satisfy the summability condition at zero, which means $u_{\alpha}(r) = 1 + o(1)$ and, consequently, (2.13) is proved. Hence $\mathbf{v}'_{\alpha} \rightrightarrows \varphi'$ in $\overline{B_{\delta}}$ and assertion 4) is proved.

In view of (2.9), it remains to show that \mathbf{v}_{α} are bounded in $C^1(\overline{B \setminus B_{\delta}})$. We note that \mathbf{v}_{α} is a solution to the equation

$$-\frac{1}{r^{n-1}}(r^{n-1}(\mathbf{v}_{\alpha}')^{p-1})' + \mathbf{v}_{\alpha}^{p-1} = \mu_{q,n,\alpha}^{q/p}r^{\alpha}\mathbf{v}_{\alpha}^{q-1}, \quad \mathbf{v}_{\alpha}'(1) = 0.$$

Integrating this equation on $r \in [s; 1]$, $s \ge 1/2$, we find

$$-\int_{s}^{1} \frac{1}{r^{n-1}} (r^{n-1}(\mathbf{v}_{\alpha}')^{p-1})' dr + \int_{s}^{1} \mathbf{v}_{\alpha}^{p-1} dr = \mu_{q,n,\alpha}^{q/p} \int_{s}^{1} r^{\alpha} \mathbf{v}_{\alpha}^{q-1} dr.$$

Integrating by parts in the first term, we get

$$(\mathbf{v}_{\alpha}'(s))^{p-1} = (n-1)\int_{s}^{1} \frac{(\mathbf{v}_{\alpha}'(r))^{p-1}dr}{r} - \int_{s}^{1} \mathbf{v}_{\alpha}^{p-1}dr + \mu_{q,n,\alpha}^{q/p} \int_{s}^{1} r^{\alpha} \mathbf{v}_{\alpha}^{q-1}dr,$$

which implies

$$\begin{aligned} |\mathbf{v}_{\alpha}'(s)|^{p-1} &\leqslant (n-1) \int_{s}^{1} \frac{(\mathbf{v}_{\alpha}'(r))^{p-1} dr}{r} + \int_{s}^{1} \mathbf{v}_{\alpha}^{p-1} dr + \mu_{q,n,\alpha}^{q/p} \int_{s}^{1} r^{\alpha} \mathbf{v}_{\alpha}^{q-1} dr \\ &\leqslant 2^{n-2} (n-1) \int_{s}^{1} r^{n-1} (\mathbf{v}_{\alpha}'(r))^{p-1} dr + 2^{n-1} \int_{s}^{1} r^{n-1} \mathbf{v}_{\alpha}^{p-1} dr + c_{6} \alpha \cdot c_{4}^{q-1} \cdot \frac{r^{\alpha+1}}{\alpha+1} \Big|_{s}^{1} \\ &\leqslant 2^{n-2} (n-1) \| \nabla \mathbf{v}_{\alpha} \|_{L_{p-1}(B)}^{p-1} + 2^{n-1} \| \mathbf{v}_{\alpha} \|_{L_{p-1}(B)}^{p-1} + c_{8} (n, p, q) \\ &\leqslant 2^{n} \| \mathbf{v}_{\alpha} \|_{W_{p}^{1}(B)}^{p-1} + c_{8} (n, p, q) = 2^{n} + c_{8} (n, p, q) \end{aligned}$$

in view of (2.9) and (2.7), which implies $|\mathbf{v}'_{\alpha}(s)| \leq c_8(n, p, q)$ for any $s \in [1/2; 1]$, where the constant c_8 is independent of α .

Thus, $\mathbf{v}'_{\alpha}(r)$ are uniformly bounded. Consequently, $\mathbf{v}_{\alpha}(r)$ are equicontinuous. By the Arzeli–Ascoli theorem, $\mathbf{v}_{\alpha} \rightrightarrows \varphi$.

3 Multiplicity of Solutions

Throughout the section, we assume that p < n.

Theorem 3.1. Let $q \in (p^{**}; p^*)$. Then there exists $\widehat{\alpha}(p,q) > 0$ such that for all $\alpha > \widehat{\alpha}$ the (global) minimizer of the functional $\mathscr{Q}_{p,q,\alpha}$ is a nonradial function.

Remark 3.1. In the case p = 2, this assertion is proved in [5].

Proof of Theorem 3.1. We consider a nonnegative function $v \in C_0^{\infty}(B)$. We set $x_{\alpha} = (1 - 1/\alpha; 0; \ldots; 0)$ and $v_{\alpha}(x) = v(\alpha(x - x_{\alpha}))$. Then supp $v_{\alpha} \subset B_{1/\alpha}(x_{\alpha})$ and

$$\int\limits_{B} v_{\alpha}^{q} |x|^{\alpha} dx = \int\limits_{B_{1/\alpha}(x_{\alpha})} v_{\alpha}^{q} |x|^{\alpha} dx \ge \left(1 - \frac{2}{\alpha}\right)^{\alpha} \int\limits_{B_{1/\alpha}(x_{\alpha})} v_{\alpha}^{q} dx = \alpha^{-n} \left(1 - \frac{2}{\alpha}\right)^{\alpha} \int\limits_{B} v^{q} dx.$$

Therefore,

$$\mathscr{Q}_{p,q,\alpha}(v_{\alpha}) \leqslant \frac{\alpha^{p-n} \|\nabla v\|_{L_{p}(B)}^{p} + \alpha^{-n} \|v\|_{L_{p}(B)}^{p}}{\alpha^{-np/q} (1 - 2/\alpha)^{p\alpha/q} \|v\|_{L_{q}(B)}^{p}} \leqslant c_{9}(p,q) \alpha^{p-n+\frac{np}{q}},$$

i.e.,

$$\inf_{W_p^1(B)\setminus\{0\}} \mathscr{Q}_{p,q,\alpha}(u) \leqslant c_9 \alpha^{p-n+\frac{np}{q}}.$$

On the other hand, from Theorem 2.1 we have

$$\inf_{\mathscr{W}_{(n,0)}\setminus\{0\}}\mathscr{Q}_{p,q,\alpha}(u)\asymp \alpha^{\frac{p}{q}}.$$

Since p - n + np/q < p/q for $q > p^{**}$, we find

$$\inf_{W_p^1(B)\setminus\{0\}} \mathscr{Q}_{p,q,\alpha}(u) < \inf_{\mathscr{W}_{(n,0)}\setminus\{0\}} \mathscr{Q}_{p,q,\alpha}(u)$$

if α is sufficiently large.

Theorem 3.2. Let $q \in (p^{**}; \min\{p^*, p_m^{**}\})$. Then there exists $\widehat{\alpha}_m(p, q) > 0$ such that for all $\alpha > \widehat{\alpha}_m$ the (global) minimizer of the functional $\mathcal{Q}_{p,q,\alpha}$ is not an (m,k)-radial function.

Proof. As was shown in Theorem 3.1, for $q < p^*$ we have

$$\inf_{W_p^1(B)\setminus\{0\}}\mathscr{Q}_{p,q,\alpha}(u)\leqslant c_9\alpha^{p-n+\frac{np}{q}}.$$

But (2.6) implies

$$\inf_{\mathscr{W}_{(m,k)}\setminus\{0\}}\mathscr{Q}_{p,q,\alpha}(u) \geqslant c_{10}(n,p,q)\alpha^{\frac{\mu}{q}}$$

for $q < p_m^{**}$. Therefore, for $q > p^{**}$ and sufficiently large α

$$\inf_{W_p^1(B)\setminus\{0\}} \mathscr{Q}_{p,q,\alpha}(u) < \inf_{\mathscr{W}_{(m,k)}\setminus\{0\}} \mathscr{Q}_{p,q,\alpha}(u).$$

The theorem is proved.

368

2	-	

Lemma 3.1. Assume that m < n and $q \in (p, p_m^*)$. Then for sufficiently large α

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{m,\alpha}) \leqslant c_{11}\alpha^{\frac{np}{q}-n+p+(m-1)\left(1-\frac{p}{q}\right)}.$$

Proof. We note that $\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{m,\alpha}) \leq \mathscr{Q}_{p,q,\alpha}(u)$ for any $u \in \mathscr{W}_{(m,k)}$. We consider a subset of nonnegative functions u such that supp $u \subset \{r \geq 1 - 1/\alpha\}$. We introduce the auxiliary functional

$$Q_{p,q}(u) = \frac{\|u\|_{W_p^1(B)}^p}{\|u\|_{L_q(B)}^p}.$$

Then

$$\mathcal{Q}_{p,q,\alpha}(u) = \frac{\|u\|_{W_{p}^{1}(B)}^{p}}{\left(\int_{B} |x|^{\alpha} u^{q} dx\right)^{p/q}} = \frac{\|u\|_{W_{p}^{1}(B)}^{p}}{\left(\int_{B\setminus B_{1-1/\alpha}} |x|^{\alpha} u^{q} dx\right)^{p/q}}$$
$$\leqslant \frac{\|u\|_{W_{p}^{1}(B)}^{p}}{\|u\|_{L_{q}(B)}^{p}} \cdot \left(1 - \frac{1}{\alpha}\right)^{-\alpha p/q} \leqslant c_{12}(p,q)Q_{p,q}(u).$$

We make the similarity transformation $B \to \alpha B$ and denote $\xi = \alpha x$ and $\tilde{u}(\xi) = u(\xi/\alpha)$. We extend \tilde{u} along the radial variable as follows:

$$\widetilde{v}(|\xi|,\theta) = \begin{cases} \widetilde{u}(|\xi|,\theta), & \alpha - 1 \leq |\xi| \leq \alpha, \\ \widetilde{u}(2\alpha - |\xi|,\theta), & \alpha \leq |\xi| \leq \alpha + 1. \end{cases}$$

Then

$$Q_{p,q}(u) = \frac{\alpha^{\frac{np}{q} - n + p} \int (|\nabla \widetilde{u}|^p + \alpha^{-p} \widetilde{u}^p) d\xi}{\left(\int_{\alpha B} \widetilde{u}^q d\xi\right)^{p/q}} \leqslant c_{13}(p,q) \alpha^{\frac{np}{q} - n + p} \frac{\int_{B_{\alpha+1} \setminus B_{\alpha-1}} |\nabla \widetilde{v}|^p d\xi}{\left(\int_{B_{\alpha+1} \setminus B_{\alpha-1}} \widetilde{v}^q d\xi\right)^{p/q}}$$

Since \tilde{v} is an (m, k)-radial function supported in the annulus $B_{\alpha+1} \setminus B_{\alpha-1}$, Lemma 1.5 in [6] yields the estimate

$$\frac{\int\limits_{B_{\alpha+1}\setminus B_{\alpha-1}} |\nabla \widetilde{v}|^p d\xi}{\left(\int\limits_{B_{\alpha+1}\setminus B_{\alpha-1}} \widetilde{v}^q d\xi\right)^{p/q}} \leqslant c_{14}(p,q)\alpha^{(m-1)(1-p/q)}.$$

Finally,

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{m,\alpha}) \leqslant \mathscr{Q}_{p,q,\alpha}(u) \leqslant c_{11}(n,m,p,q)\alpha^{\frac{np}{q}-n+p+(m-1)\left(1-\frac{p}{q}\right)}.$$

The theorem is proved.

369

Theorem 3.3. Assume that p < n - m + 1 and $q \in (p_m^{**}; p_m^*)$. Then there exists $\widetilde{\alpha}_m(p,q) > 0$ such that for all $\alpha > \widetilde{\alpha}_m$ the (m,k)-minimizer of the functional $\mathcal{Q}_{p,q,\alpha}$ is not radial.

Proof. We assume that $\mathbf{v}_{(m,k)}$ is a radial function. By Theorem 2.1,

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{(m,k)}) \asymp \alpha^{\frac{p}{q}}$$

On the other hand, by Lemma 3.1,

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{(m,k)}) \leqslant c_{11}\alpha^{\frac{np}{q}-n+p+(m-1)\left(1-\frac{p}{q}\right)}$$

However, for $q \in (p_m^{**}; p_m^*)$ we have np/q - n + p + (m-1)(1 - p/q) < p/q.

It is easy to see that $p_m^{**} \leq p^*$ for $pm \leq n$ and $p_m^{**} > p^*$ for pm > n. Furthermore, in the case $pm \leq n$, we have $n - m + 1 - p \geq n - m + 1 - n/m = [(n - m)(m - 1)]/m > 0$, i.e., p_m^{**} and p_m^* are finite.

As was mentioned in Section 1, renormalized minimizers over different subspaces $\mathscr{W}_{(m,k)}$ are solutions to the problem (1.1). Theorems 3.1 and 3.2 provide sufficient nonuniqueness conditions for this problem. A radial solution exists for all 1 . Figures 1 and 2 show intervals of values of <math>q and α where nonradial solutions exist. It is important to note that the intervals in Figures 1 and 2 depend on m.

non-(m, k)-radial solution for $\alpha > \widehat{\alpha}_m$

FIGURE 1. Case $pm \leq n$.

non-(m, k)-radial solution for $\alpha > \widehat{\alpha}_m$

FIGURE 2. Case pm > n.

For $n \ge 4$ we consider the decomposition $\mathbb{R}^n = \mathbb{R}^2 \oplus \mathbb{R}^{n-2}$, i.e., m = 2, k = n - 2. Let G be a finite subgroup of O(2). We denote by \mathbf{v}_G a function minimizing the functional $\mathscr{Q}_{p,q,\alpha}$ over the subspace \mathscr{W}_G of all (2, n - 2)-symmetric functions in $W_p^1(B)$ that are G-invariant with respect to y. Repeating the proof of Proposition 2.1, we find that all \mathbf{v}_G are solutions to the problem (1.1).

Proposition 3.1. For $q \in (p^{**}, \min\{p^*, p_2^{**}\})$ the function \mathbf{v}_G is not (2, n-2)-radial.

Proof. We consider a nonnegative (2, n - 2)-symmetric function $v \in C_0^{\infty}(B)$ such that supp $v \subset \{x \in B, |x| \ge 1 - 1/\alpha\}$. We define

$$u(y_1, r_0) = \sum_{g \in G} v_g(y_1, r_0)$$

where $v_g(y_1, r_0) = v((r_1, \theta_1) - (1, g\theta^0), r_0), \theta^0$ is a point of \mathbb{S}_2 . Then $u \in \mathcal{W}_G$. Repeating the proof of Theorem 3.1, we find

$$\mathscr{Q}_{p,q,\alpha}(u) \leqslant c_{15}(p,q,G)\alpha^{p-n+np/q}.$$

Therefore,

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_G) \leqslant c_{15}(p,q,G)\alpha^{p-n+\frac{np}{q}}.$$
(3.1)

However, if \mathbf{v}_G is a (2, n-2)-radial function, then

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_G) \geqslant c_{10} \alpha^{p/q}$$

in view of Theorem 2.1, which contradicts the inequality (3.1) for $q > p^{**}$.

We extract a class G providing multiplicity of solutions to the problem (1.1). Let G_t be the group generated by rotation by an angle $2\pi/t$, $t \in \mathbb{N}$. Denote by \mathbf{v}_t the minimizer of $\mathscr{Q}_{p,q,\alpha}$ on the set \mathscr{W}_{G_t} .

Theorem 3.4. Let $q \in (p^{**}, \min\{p^*, p_2^{**}\})$. Then for any $t_0 \in \mathbb{N}$ there exists $\alpha_0(n, p, q, t_0)$ such that for $\alpha > \alpha_0$ and all $t = 1, 2, ..., t_0$ the problem (1.1) has a (2, n - 2)-symmetric G_t -invariant solution \mathbf{v}_t . For different t the solutions \mathbf{v}_t are different.

Proof. We consider the functions \mathbf{v}_t and $\mathbf{v}_{t'}$, t' > t. Let t' = st, $s \in \mathbb{N}$. We introduce the function

$$v_t((r_1,\theta_1),r_0) = \mathbf{v}_{st}\Big(\Big(r_1,\frac{1}{s}\theta_1\Big),r_0\Big).$$

Then $v_t \in W_p^1(B)$ is a (2, n-2)-symmetric function that is G_t -invariant with respect to y_1 . It is easy to see that

$$\int_{B} |v_t|^p dx = \int_{B} |\mathbf{v}_{st}|^p dx, \quad \int_{B} |x|^\alpha |v_t|^q dx = \int_{B} |x|^\alpha |\mathbf{v}_{st}|^q dx.$$

Since $(v_t)_{\theta_i} = \frac{1}{s} (\mathbf{v}_{st})_{\theta_i}$, we have

$$\int_{B} |\nabla v_{t}|^{p} dx = \int_{B} \left((v_{t})_{r_{1}}^{2} + \frac{1}{r_{1}^{2}} (v_{t})_{\theta_{1}}^{2} + (v_{t})_{r_{0}}^{2} \right)^{p/2} dx$$
$$= \int_{B} \left((\mathbf{v}_{st})_{r_{1}}^{2} + \frac{1}{s^{2}} \frac{1}{r_{1}^{2}} (\mathbf{v}_{st})_{\theta_{1}}^{2} + (\mathbf{v}_{st})_{r_{0}}^{2} \right)^{p/2} dx < \int_{B} |\nabla \mathbf{v}_{st}|^{p} dx$$
(3.2)

only if $(\mathbf{v}_{st})_{\theta_1} \neq 0$. However, the identity $(\mathbf{v}_{st})_{\theta_1} \equiv 0$ should mean that \mathbf{v}_{st} is a (2, n-2)-radial function, which is impossible for large α in view of Proposition 3.1. Therefore, (3.2) implies

$$\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_t) \leqslant \mathscr{Q}_{p,q,\alpha}(v_t) < \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{st})$$
(3.3)

and the assertion is proved in this case.

In the general case, we denote by \hat{t} the least common multiple of (t, t'). If \mathbf{v}_t is equivalent to $\mathbf{v}_{t'}$, then \mathbf{v}_t is $G_{\hat{t}}$ -invariant with respect to y_i and, consequently, $\mathscr{Q}_{p,q,\alpha}(\mathbf{v}_{\hat{t}}) \leq \mathscr{Q}_{p,q,\alpha}(\mathbf{v}_t)$, which contradicts (3.3).

In the case n = 2, only the trivial decomposition of \mathbb{R}^2 is possible. In this case, an analogue of Figure 2 looks like Figure 3.

FIGURE 3. Case n = 2, 1 .

Repeating the proof of Theorem 3.4, we obtain the following assertion.

Theorem 3.5. Assume that n = 2, $p \in (1,2)$, and $q \in (p^{**}, p^*)$. Then for any $t_0 \in \mathbb{N}$ there exists $\alpha_0(p, q, t_0)$ such that for $\alpha > \alpha_0$ and all $t = 1, 2, \ldots, t_0$ the problem (1.1) has a G_t -invariant solution \mathbf{v}_t . For different t the solutions \mathbf{v}_t are different.

Acknowledgments

The work is supported by the Russian Foundation for Basic Research (grant No. 17-01-00678a).

The author thanks Professor A. I. Nazarov for useful discussions.

References

- D. Smets, M. Willem, and J. Su, "Non-radial ground states for the Hénon equation," Commun. Contemp. Math. 4, No. 3, 467–480 (2002).
- W.-M. Ni, "A nonlinear Dirichlet problem on a unit ball and its applications," Indiana Univ. Math. J. 31, No. 6, 801-807 (1982).
- 3. A. I. Nazarov, "On the symmetry of extremals in the weight embedding theorem," J. Math. Sci., New York 107, No. 3, 3841-3859 (2001).
- 4. S. B. Kolonitskii and A. I. Nazarov, "Multiplicity of solutions to the Dirichlet problem for generalized Hénon equation," J. Math. Sci., New York 144, No. 6, 4624-4644 (2007).
- M. Gazzini and E. Serra, "The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues," Ann. Inst. Henri Poincaré, Anal. Non Lineaire 25, 281–302 (2008).
- 6. A. I. Nazarov, "On solutions to the Dirichlet problem for an equation with *p*-Laplacian in a spherical layer," *Translations. Series 2. Am. Math. Soc.* **214**, 29-57 (2005).

- S. V. Ivanov and A. I. Nazarov, Ivanov, S. V.; Nazarov, A. I. "Weighted Sobolev-type embedding theorems for functions with symmetries," *St. Petersbg. Math. J.* 18, No. 1, 77-88 (2007).
- 8. R. S. Palais, "The principle of symmetric criticality," Commun. Math. Phys. 69, 19–30 (1979).
- 9. N. Trudinger, "On Harnack type inequalities and their application to quasilinear elliptic equations," Commun. Pure Appl. Math. 20, 721–747 (1967).
- S. Martínez and J. D. Rossi, "Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition," *Abstr. Appl. Anal.* 7, No. 5, 287–293 (2002).
- 11. A. P. Shcheglova, "Multiplicity of solutions to a boundary-value problem with nonlinear Neumann condition," J. Math. Sci., New York 128, No. 5, 3306-3333 (2005).
- 12. E. Lieb and M. Loss, Analysis, Am. Math. Soc., Providence, RI (1998).
- 13. P. Tolksdorf, "Regularity for a more general class of quasilinear elliptic equations," J. Diff. Equations 51, No. 1, 126–150 (1984).

Submitted on April 26, 2018