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On the uniform convergence of Fourier series to (ψ, β)-derivatives
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Abstract. In terms of the best approximations of a function in the space Lp, the conditions of existence
of its (ψ, β)-derivatives and the uniform convergence of Fourier series to them are determined.
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1. Introduction

Let Lp be a space of measurable 2π-periodic functions f(x) for which
2π∫
0

|f(x)|p dx <∞, 1 < p <∞,

and let

f ∼
∞∑

k=−∞
f̂ke

ikx

be its Fourier series.
Let ψ(t) > 0 for t ≥ 1, and let β be any fixed real number. If the series

∞∑
k=−∞

f̂k
ψ(|k|)

ei(kx+βsignk)

is the Fourier series of some summable function, it is called the (ψ, β)-derivative of a function f and is
denoted fψβ . The set of functions that satisfy these conditions is denoted by Lψβ .

If f ∈ Lψβ and if fψβ ∈ N (N ⊂ L(0, 2π)), we say that the function belongs to the class LψβN [1, pp.
142–143].

The classes introduced in such way at the fixed parameters defining them coincide with the known
classes of functions W r;W r

β,p;W
r
βHω and similar ones.

The present work is devoted to the determination of a sufficient conditions of existence of the
continuous (ψ, β)-derivative of a function f from Lp and the uniform convergence of the Fourier series
of the (ψ, β)-derivative.

In Section 2, we give the definitions and theorems which are necessary for the formulation and
proof of the main result of this work, and the theorem itself and its proof are presented in Section 3.
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2. Auxiliary assertions

Let ωk(f, δ)p be the modulus of smoothness of the k-th order (k is a natural number) in the space
Lp(0, 2π)

ωk(f, δ)p = sup
|h|≤δ

 2π∫
0

|∆k
hf(x)|p dx


1
p

,

where ∆k
hf(x) is a finite difference of the kth order of the function f(x) with a step h

∆k
hf(x) =

k∑
i=0

(−1)k−i
(
k
i

)
f(x+ ih).

If k = 1, we write ω(f, δ)p instead ω1(f, δ)p.
By En(f)p, we denote the best approximation of the function f(x) in the metric of the space Lp

by means of trigonometric polynomials of the order of at most n− 1.
The following proposition is valid (see [2]).

Theorem 2.1. Let ψ(t) be such positive nonincreasing function which is defined for all t ≥ 1 and
such that ψ(2t) ≥ cψ(t) for t ≥ 1 (c is some positive constant), and let the best approximations of the
function f ∈ Lp , 1 < p <∞, satisfy the condition

∞∑
k=1

Ek(f)p
ψ(k)k

<∞. (2.1)

Then, for any real β, the function f ∈ Lp has the (ψ, β)-derivative which belongs to Lp, and

En(f
ψ
β )p ≤ c1

(
En(f)p
ψ(n)

+
∞∑

k=n+1

Ek(f)p
ψ(k)k

)
. (2.2)

Here and below, c and ci, i = 1, 2, . . . , are some constants depending in the general case on the
function ψ(·). In the case where they depend not only on ψ, their defining parameters will be given in
brackets.

This theorem yields the following assertion.

Corollary 2.1. Let conditions of Theorem 2.1 be satisfied. Then, for any real β there exists the
(ψ, β)-derivative of the function f ∈ Lp. It belongs to Lp, and

ωk(f
ψ
β ,

1

n
)p ≤ c(k)

(
1

nk

n∑
ν=1

Eν(f)p
ψ(ν)

+
∞∑

ν=n+1

Eν(f)p
ψ(ν)ν

)
, (2.3)

where k is any natural number.

Proof. It is known [3]) that if f ∈ Lp, 1 ≤ p ≤ ∞ and if k is a natural number, then

ωk(f,
1

n
)p ≤ c(k)

1

nk

n∑
ν=1

νk−1Eν(f)p.
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Theorem 2.1 implies that the (ψ, β)-derivative of a function f exists and belongs to Lp. Therefore, the
inequality

ωk(f
ψ
β ,

1

n
)p ≤ c(k)

1

nk

n∑
ν=1

νk−1Eν(f
ψ
β )p

holds. Substituting the right-hand side of inequality (2.2) in this inequality instead of Eν(f
ψ
β )p, we

get

ωk(f,
1

n
)p ≤ c1

1

nk

n∑
ν=1

(
νk−1Eν(f)p

ψ(ν)
+

∞∑
m=ν+1

Em(f)p
ψ(m)m

)

≤ c2

(
1

nk

n∑
ν=1

νk−1Eν(f)p
ψ(ν)

+
1

nk

n∑
ν=1

νk−1
n∑

m=ν+1

Em(f)p
ψ(m)m

+

∞∑
m=n+1

Em(f)p
ψ(m)m

)

≤ c3

(
1

nk

n∑
ν=1

νk−1Eν(f)p
ψ(ν)

+
1

nk

n∑
ν=1

Eν(f)p
ψ(ν)ν

ν∑
m=1

mk−1 +

∞∑
m=n+1

Em(f)p
ψ(m)m

)

≤ c3

(
1

nk

n∑
ν=1

Eν(f)p
ψ(ν)

+

∞∑
ν=n+1

Eν(f)p
ψ(ν)ν

)
.

The corollary is proved.

To prove the main result of the present work, we will use the Konyushkov–Stechkin inequality.
Namely, we will need the following proposition (see [4]).

Theorem 2.2. Let the function f ∈ Lp(0, 2π), 1 ≤ p <∞ be such that

∞∑
k=1

Ek(f)pk
1
p
− 1

q
−1

<∞, (2.4)

where q is some number, p < q ≤ ∞. Then f ∈ Lq(0, 2π), and

En(f)q ≤ c3

(
En(f)p(n+ 1)

1
p
− 1

q +

∞∑
k=n+1

Ek(f)pk
1
p
− 1

q
−1

)
(2.5)

n = 0, 1, ....

3. Main result

The main result of the present work is the following assertion.

Theorem 3.1. Let ψ(t) be a positive nonincreasing function which is defined for all t ≥ 1 and is
such that ψ(2t) ≥ cψ(t) for t ≥ 1 (c is some positive constant), and let the best approximations of the
function f ∈ Lp, 1 < p <∞, satisfy the condition

∞∑
k=1

k
1
pEk(f)p
ψ(k)k

<∞. (3.1)

Then, for any real β, the function f ∈ Lp possesses a continuous (ψ, β)-derivative whose Fourier series
converges uniformly.
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Proof. According to condition (3.1), the series

∞∑
k=1

Ek(f)p
ψ(k)k

is convergent. By virtue of Theorem 2.1, this guarantees the existence of the (ψ, β)-derivative of the
function f. The derivative belongs to the space Lp and satisfies inequalities (2.2) and (2.3). Substituting

estimate (2.2) in the Konyushkov–Stechkin inequality (2.5) (written here for the function fψβ and the
q = ∞)

En(f
ψ
β )∞ ≤ c3

(
En(f

ψ
β )p(n+ 1)

1
p +

∞∑
k=n+1

Ek(f
ψ
β )pk

1
p
−1

)
we get

En(f
ψ
β )∞ ≤ c4

(
En(f)p(n+ 1)

1
p

ψ(n)
+ (n+ 1)

1
p

∞∑
k=n+1

Ek(f)p
ψ(k)k

)

+c4

( ∞∑
k=n+1

k
1
pEk(f)p
ψ(k)k

+

∞∑
k=n+1

k
1
p
−1

∞∑
m=k+1

Em(f)p
ψ(m)m

)
. (3.2)

To prove the continuity of the function fψβ , it is sufficient (and necessary) to prove the relations

lim
n→∞

En(f
ψ
β )∞ = 0. (3.3)

For this purpose, we evaluate the terms on the right-hand side of inequality (3.2).
First, we establish the relation

lim
n→∞

En(f)p(n)
1
p

ψ(n)
= 0. (3.4)

Let

αn ≡
∞∑

k=[n
2
]+1

k
1
pEk(f)p
ψ(k)k

≥
n∑

k=[n
2
]+1

k
1
pEk(f)p
ψ(k)k

. (3.5)

Since the sequence Ek(f)p does not increases in k, we get

αn ≥

En(f)p
ψ(n)

n∑
k=[n

2
]+1

k
1
pψ(n)

kψ(k)

 . (3.6)

But the values of k in the sum on the right-hand side of inequality (3.5) are larger than [n2 ]+1. Hence,
k > n

2 . From whence and the properties of the function ψ(t), we obtain the relation ψ(n) ≥ cψ(n2 ) ≥
ψ(k), i.e., ψ(n)ψ(k) ≥ c for k ≥ n

2 . Substituting this inequality in (3.5) and taking into account that the

sequence k
1
p
−1

decreases, and n− [n2 ] ≥
n
2 , we have

αn ≥ c
En(f)p
ψ(n)

(
n−

[n
2

])
n

1
p
−1 ≥ c

2

En(f)p
ψ(n)

n
1
p . (3.7)

By Definition (3.5), the number αn is a residual of the convergent series (3.1). Therefore, αn → 0 as
n→ ∞. This result and estimate(3.6) yield equality (3.4).
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Let us set

σn ≡
∞∑

k=n+1

k
1
p
−1

∞∑
m=k+1

Em(f)p
ψ(m)m

. (3.8)

We now show that σn are finite, and

lim
n→∞

σn = 0. (3.9)

Permutating the summations over k and n in the double sum (3.8) and using the inequality

m∑
k=n+1

k
1
p
−1 ≤

m∫
n

x
1
p
−1
dx ≤ pm

1
p ,

we obtain the relations

σn =
∞∑

m=n+1

Em(f)p
ψ(m)m

m∑
k=n+1

k
1
p
−1 ≤ p

∞∑
m=n+1

m
1
pEm(f)p
ψ(m)m

.

From whence and the convergence of series (3.1), we get equality (3.9). (The legitimacy of a per-
mutation of terms in the sums follows from the positiveness of terms and the well-known theorem of
mathematical analysis).

We note that the convergence of the series on the right-hand side of identity (3.8) is equivalent to
the convergence of the series

∞∑
k=n+1

(
(k + 1)

1
p
−1

∞∑
m=k+1

Em(f)p
ψ(m)m

)
,

whose terms in large parentheses monotonically decrease. Therefore,

lim
k→∞

(
(k + 1)

1
p
−1

∞∑
m=k+1

Em(f)p
ψ(m)m

)
= 0. (3.10)

Thus, according to equalities (3.4), (3.8)–(3.10), The first, second, and fourth terms on the right-
hand side of inequality (3.2) tend to zero, as n tends to infinity. The tending of the third term to
zero follows from the convergence of series (3.1). So, we have established relation (3.3) and prove the
continuity of the (ψ, β)-derivative of the function f .

To complete the proof of the theorem, it remains to show the uniform convergence of the Fourier
series of the continuous function fψβ . To this end, we will establish the relation

lim
n→∞

n
1
pω

(
fψβ ,

1

n

)
p

= 0. (3.11)

For any ε > 0, we choose m such that

∞∑
k=m

k
1
p
Ek(f)p
ψ(k)k

< ε.
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Then, for all n > m,

n
1
p

n

n∑
k=1

Ek(f)p
ψ(k)

=
1

n
1− 1

p

m∑
k=1

Ek(f)p
ψ(k)

+

n∑
k=m

(
k

n

)1− 1
p k

1
pEk(f)p
ψ(k)k

≤ cm

n
1− 1

p

+ ε.

By virtue of the arbitrariness of ε, this yields the relation

lim
n→∞

n
1
p

n

n∑
k=1

Ek(f)p
ψ(k)

= 0.

From whence, inequality (2.3), and equality (3.10), we get (3.11). Based on (3.11) and the known
properties of the modulus of continuity, we may conclude that

ω(fψβ , δ)p = o(δ
1
p ).

According to the Yano theorem [5], this this condition ensures the uniform convergence of the Fourier

series of the function fψβ . Thus, the theorem is completely proved.
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