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THE ASYMPTOTIC BEHAVIOR OF THE OPTIMAL
THRESHOLD MINIMIZING THE
PROBABILITY-OF-ERROR CRITERION

A.A. Kudryavtsev1 and O.V. Shestakov1,2

In this paper we consider the problem of estimation of a signal function from the noised observations
via thresholding its wavelet coefficients. We find the asymptotic order of the optimal threshold
that minimizes the probability of the maximum error between the estimates and the true wavelet
coefficients exceeding a critical value.

1. Introduction

Estimation of a signal function using wavelet methods is a problem that has been drawing great
attention over the last two decades. Many theoretical and practical results are introduced with an
emphasis on problems of the choice of the parameters of these methods. The basic idea behind wavelet
estimation is to get a relatively small number of wavelet coefficients to represent the underling signal
function. A value called the threshold is used to remove or keep the wavelet coefficient. Hence, estimation
quality depends on how efficient the threshold value is chosen.

There are a number of different strategies for choosing a threshold value [1–5]. Most of them are
oriented at the minimization of the mean squared error (the risk) or its estimate. Statistical properties
of this estimate were investigated in detail in [6] and [7]. In [8] the authors proposed a new cost function
based on the probabilities of errors between the estimates and the true coefficients exceeding a critical
value. They considered this cost function for each wavelet coefficient separately. In this paper we propose
a generalization of the cost function from [8], which calculates the probability of the maximum error
between the estimates and the true wavelet coefficients exceeding a critical value. We also investigate
the asymptotic behavior of the minimax threshold value in the class of Lipschitz functions.

2. Statement of the problem

The wavelet decomposition of a signal function f ∈ L2(R) is the series

f =
∑

j,k∈Z
〈f, ψj,k〉ψj,k, (1)

where ψj,k(x) = 2j/2ψ(2jx− k) and ψ is a wavelet (the family {ψj,k}j,k∈Z forms an orthonormal basis in
L2(R)). The index j in (1) is the scale, and the index k is the shift. The function ψ cannot be arbitrary,
but it can possess some useful properties. For example, it can be M times differentiable and have M
vanishing moments:

∞∫

−∞
xkψ(x)dx = 0, k = 0, . . . ,M − 1.

In what follows we consider the signal functions f ∈ L2(R) on a finite interval [a, b], which are
uniformly Lipschitz with some exponent γ > 0 and a Lipschitz constant L > 0: f ∈ Lip(γ, L). Suppose
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that the wavelet ψ has M vanishing moments and M continuous derivatives (M � γ) that have a fast
decay. This means that for any 0 � k � M and m ∈ N there exists a constant Cm such that for all
x ∈ R ∣∣∣ψ(k)(x)

∣∣∣ � Cm

1 + |x|m .

Then it is known [9] that there exists Cf > 0 such that

|〈f, ψj,k〉| � Cf

2j(γ+1/2)
. (2)

It is further assumed that the wavelet ψ satisfies these requirements.
Note. If we additionally assume that ψ has a compact support, then the uniform Lipschitz regularity

requirement may be replaced by a piecewise Lipschitz regularity [9]. The results of this paper will not
change.

In practice the signal function f is defined by its samples. Suppose that the number of these samples
is 2J for some J > 0. The discrete wavelet transform is a multiplication of the vector of values of f by
the orthogonal matrix defined by the wavelet function ψ. Due to the orthogonality of the matrix the
discrete wavelet coefficients are related to the continuous ones as μj,k = 2J/2〈f, ψj,k〉 [9]. In addition the
observations always contain some noise. In this paper we consider the following data model:

Xi = fi +wi, i = 1, . . . , 2J ,

where fi are clean samples of the signal function and wi ∼ N(0, σ2) are samples from a white Gaussian
noise. Applying the discrete wavelet transform we obtain the following model of the empirical wavelet
coefficients:

Yj,k = μj,k +Wj,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1,

where Wj,k have the same statistical structure as wi.
To remove the noise one usually uses a thresholding procedure. This procedure removes small

coefficients which are considered to be pure noise.
Denote by Ŷj,k the estimate of the wavelet coefficient which is obtained with the use of thresholding

function ρT (x) and the threshold value T : Ŷj,k = ρT (Yj,k). We will consider the soft thresholding

ρ
(s)
T (x) = sign(x)(|x| − T )+ and the hard thresholding ρ

(h)
T (x) = xI(|x| > T ).

Consider the cost function rJ(f) defined for a given critical value ε > 0 as

rJ(f) = P

(
max
j,k

∣∣∣Ŷj,k − μj,k

∣∣∣ > ε

)
. (3)

Note that as the number of samples grows, rJ(f) tends to 1. The goal of this paper is to find an optimal
threshold ensuring the minimum loss in the sense that the rate of convergence of rJ(f) to 1 is the slowest.
Due to the relation

1− P

(
max
j,k

∣∣∣Ŷj,k − μj,k

∣∣∣ > ε

)
=

J−1∏

j=0

2j−1∏

k=0

P
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)

this problem is equivalent to finding the threshold for which the rate of convergence of the sum

SJ(f) =
J−1∑

j=0

2j−1∑

k=0

logP
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)

(4)

to −∞ is the slowest.
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The main results are formulated in the minimax framework for the class of functions f ∈ Lip(γ, L),
where the cost function is defined as

RJ = sup
f∈Lip(γ,L)

rJ(f). (5)

Note that the maximum reasonable threshold is the so-called universal threshold TU = σ
√

2log2J .
It follows from the relation

lim
J→∞

P

(
TU − σloglog2J√

log2J
� max

j,k
|Wj,k| � TU

)
= 1.

This threshold with a high probability removes most of the noise, while the higher threshold may damage
the useful signal components [9]. Hence, we assume that T � TU . Note also that the “reasonable”
threshold T should grow with J [2].

By the symbol � we denote the order of the considered value, i.e., aJ � bJ , if there exists a positive
constant C such that lim

J→∞
aJ/bJ = C.

3. The optimal threshold for the soft thresholding

Let the estimates of the wavelet coefficients be obtained by the soft thresholding: Ŷj,k = ρ
(s)
T (Yj,k).

Let the function g1(J) > 0 decrease arbitrarily slowly to zero and let the function g2(J) > 0 grow to
infinity so that

log g2(J) = o(
√

log2J), J → ∞. (6)

The inequality (2) allows splitting the set of indices {0, . . . , J − 1} into three classes depending on
the values of |μj,k|. Let j1 and j2 (j1 < j2) be such that

|μj,k| � C(g1(J))
−(γ+1/2), j1 � j � j2 − 1,

|μj,k| � C(g2(J))
−(γ+1/2), j2 � j � J − 1.

From (2) we have

ji =
J

2γ + 1
+ log2 gi(J) +C, i = 1, 2. (7)

Let us split (4) into three sums:

SJ(f) =

j1−1∑

j=0

2j−1∑

k=0

logP
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)
+

+

j2−1∑

j=j1

2j−1∑

k=0

logP
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)
+

J−1∑

j=j2

2j−1∑

k=0

logP
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)
≡

≡ S1 + S2 + S3. (8)

Consider S3. Note that for any fixed ε > 0 there exists such J0 = J0(ε) that C(g2(J))
−(γ+1/2) � ε

for all J > J0. Thus we have |μj,k| � ε for j2 � j � J − 1. Hence, for any summand from S3 we have
for J > J0:

logP
(∣∣∣Ŷj,k − μj,k

∣∣∣ � ε
)
= log

[
P(|μj,k| � ε, |Yj,k| � T )+

+P(|Yj,k − μj,k − T | � ε, Yj,k > T ) + P(|Yj,k − μj,k + T | � ε, Yj,k < −T )

]
=



The Asymptotic Behavior of the Optimal Threshold Minimizing the Probability-Of-Error Criterion813

= log

[
2Φ

(
T + ε

σ

)
− 1

]
.

Using the relations

1− Φ(x) � φ(x)

x
, x → ∞,

log(1− x) � −x, x → 0,

we conclude that

S3 � −2J
exp

{
− T 2

2σ2

}
exp

{−Tε
σ2

}

T
. (9)

In order to find the lower estimate for the optimal threshold, note that the sum SJ(f) from (4) tends
to −∞ the faster, the more samples of the signal function satisfy the inequality |μj,k| > ε. According
to the definition (7) the maximum number of such samples has the order of 2j2 . Assuming that all the
summands in S1 and S2 from (8) have |μj,k| > ε, we conclude that

S1 + S2 �
j2−1∑

j=0

2j−1∑

k=0

log

[
P(T − ε � Yj,k − μj,k � T + ε, Yj,k > T )+

+P(−T − ε � Yj,k − μj,k � −T + ε, Yj,k < −T )

]
=

=

j2−1∑

j=0

2j−1∑

k=0

log

[
Φ

(
T + ε

σ

)
− Φ

(
T − ε

σ

)]
�

� 2
J

2γ+1 g2(J)log
exp

{
− T 2

2σ2

}

T
� −2

J
2γ+1 g2(J)T

2.

Now let us equate the orders of S1 + S2 and S3. Let

T
(s)
∗ = σ

√
4γ

2γ + 1
log2J − ε, (10)

T
(s)
i = σ

√
2γ + 1

4γ
· log

(
(log2J)3/2gi(J)

)
√

log2J
, i = 1, 2. (11)

It is easy to see that the equality of the orders is attained with the threshold

T (s)
m = T

(s)
∗ − T

(s)
2 , (12)

which thereby is the lower estimate (up to the O(1/
√

log2J ) terms) for the optimal threshold in the cost
function RJ , since any lower threshold would increase the rate of convergence of RJ to 1.

Let us now find the upper estimate for the optimal threshold. Note that for any Cf from (2) there
exists a function f ∈ Lip(γ, L) such that the inequality (2) becomes the equality for 0 � j � j1 − 1 [9].
Hence, since T � TU , there exists such J1 > 0 that for all ε > 0 and J > J1 we have |μj,k| > ε when
0 � j � j1 − 1. Repeating the above considerations we conclude that

S1 � −2
J

2γ+1 g1(J)T
2.

Let us equate the orders of S1 and S3. In this case the threshold equals

T
(s)
M = T

(s)
∗ − T

(s)
1 , (13)
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where T
(s)
∗ and T

(s)
1 are defined in (10) and (11) respectively.

Note that we omitted the sum S2 in these arguments. This means that the real value of the optimal
threshold T should be less than (13), since by reducing the value of T the order of the sum S3 can be
increased to its real value (taking into account the sum S2). Note also that the value of the threshold
should be the lowest possible for a given order of the cost function, since the higher threshold could
damage the important components of the signal function.

The above considerations lead to the following statement.
Theorem. For the optimal value of the soft threshold minimizing the rate of convergence of the cost

function (5) to 1, the following inequalities hold starting with some J :

T (s)
m � T � T

(s)
M ,

where T
(s)
m and T

(s)
M are defined in (12) and (13) respectively.

Note. The thresholds defined in (12) and (13) have the same growing component T
(s)
∗ , and since

(6) holds, the difference |T (s)
m − T

(s)
M | tends to zero. This means that the real value of the optimal soft

threshold minimizing the cost function also has the main component T
(s)
∗ . Note also that the growth

rate of T
(s)
∗ coincides with that of asymptotically optimal threshold minimizing the mean squared risk

in the problem of estimating the Lipschitz function by thresholding its wavelet coefficients [2].

4. Hard thresholding

Let the estimates of the wavelet coefficients be obtained by the hard thresholding: Ŷj,k = ρ
(h)
T (Yj,k).

Consider the cost function (5). Note that for an arbitrary ε > 0 there exists a function f ∈ Lip(γ, L)
such that the inequality (2) becomes the equality for some jh and |μjh,k| > ε. Hence there exists such
J2 > 0 that for J > J2 we have |μjh,k| > ε, T − μjh,k > ε and −T − μjh,k < −ε. In this case

P
(∣∣∣Ŷjh,k − μjh,k

∣∣∣ � ε
)
= P(−ε � Yjh,k − μjh,k � ε, Yjh,k − μjh,k > T − μjh,k)+

+P(−ε � Yjh,k − μjh,k � ε, Yjh,k − μjh,k < −T − μjh,k) = 0,

and thus for J > J2

RJ = sup
f∈Lip(γ,L)

P

(
max
j,k

∣∣∣Ŷj,k − μj,k

∣∣∣ > ε

)
= 1.

This fact means that there is no sense in estimating the cost function (5) for the hard thresholding
method. It is an interesting observation since this is not the case when estimating the mean squared
risk.
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