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MOMENT-BASED CHARACTERIZATIONS OF THE
EXPONENTIAL DISTRIBUTION IN THE CLASS OF
DISTRIBUTIONS WITH MONOTONE HAZARD RATE

N.G. Ushakov1 and V.G. Ushakov2

Some new characterizations of the exponential distribution in the class of distributions with monotone
hazard rate are obtained. The characterizations are formulated in terms of expectations of order
statistics.

1. Introduction

Let X be a nonnegative absolutely continuous random variable with cumulative distribution function
F (x) and probability density function f(x). The function

h(x) =
f(x)

1− F (x)
,

defined for those x-s where F (x) < 1, is called the hazard rate function. In reliability theory there are
several functions which are of special interest in describing the evolution of the risks to which a given
unit is subjected over time. The hazard rate function, also known as the failure rate, is perhaps most
popular due to its intuitive interpretation as the amount of risk associated with an item at time x. For
a small increment Δx, the hazard rate in x, multiplied by Δx, is approximately equal to the conditional
probability that a failure occurs in the interval (x, x+Δx] given that no failure has occurred before x:

h(x)Δx ≈ P(x < X � x+Δx|X > x).

Another reason for the popularity of the hazard rate is that it is a special case of the intensity function
for a non-homogeneous Poisson process. The hazard rate function goes by several aliases: in actuarial
science it is also known as the force of mortality or the force of decrement; in point process and extreme
value theory it is known as the rate or intensity function; in vital statistics it is known as the age-specific
death rate; in economics its reciprocal is known as Mill’s ratio.

In many applications it is reasonable to suppose that the hazard rate is monotone in x. The in-
creasing hazard rate function is probably the most likely situation. In this case, items are more likely
to fail as time passes. In other words, items wear out or degrade with time. This is almost certainly
the case with mechanical items that undergo wear or fatigue. The decreasing hazard rate function is
less common. In this case, the item is less likely to fail as time passes. Items with this type of haz-
ard function improve with time. Some metals, for example, work harden through use and thus have
increased strength as time passes. Such widely used distributions as the gamma distribution, Weibull
distribution, and the generalized exponential distribution are distributions with monotone hazard rate.
The increase or decrease of the hazard rate of these three distributions is determined by the value of
the shape parameter. Distributions with monotone hazard rate have received considerable attention in
the literature; in particular, various inequalities for distributions with monotone hazard rate have been
obtained by a number of authors. One can mention, for example, [1–3].
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Let X1, . . . ,Xn be a random sample consisting of independent and identically distributed random
variables. Denote the corresponding order statistics by X(1), . . . ,X(n). Among the results related to
order statistics, there are various inequalities. Let n and k be natural numbers, k � n. Denote

γk,n =

(
1

n
+

1

n− 1
+ . . .+

1

k

)−1

.

For a fixed n the numbers γk,n increase in k, γ1,n < 1, γn,n = n. So, there exists a minimal k for which
γk,n > 1.

The results of [4] imply the following inequalities:

γ1,nEX(n) � γ2,nEX(n−1) � . . . � γn,nEX(1)

for distributions with increasing hazard rate average, and

γ1,nEX(n) � γ2,nEX(n−1) � . . . � γn,nEX(1)

for distributions with decreasing hazard rate average. These classes include the classes of distributions
with increasing and decreasing hazard rate respectively. We show that for distributions with monotone
hazard rate the inequalities are strict, if the exponential distribution is excluded. Similar strict inequal-
ities are obtained for the expectations of order statistics and observations. Thus these inequalities can
be used for obtaining characterizations of the exponential distribution in these classes.

It is known (see, for example, [5,6]) that in the class of distributions with monotone hazard rate, the
equality of moments EX1 = nEX(1) or EX1 = (n − r + 1)

(
EX(r) − EX(r−1)

)
implies the exponentiality

of the distribution of X1. At first sight, these characterizations seem to be moment-based. In fact, the
coincidence of these moments is equivalent to coincidence of distributions. It was proved in [7] that the
equality EX1 = γ1,nEX(n) implies the exponentiality of the distribution of X1. This characterization
is purely moment-based because distributions of random variables X1 and γ1,nEX(n) as well as other
moments do not coincide. In the present paper this result is essentially generalized.

The usual terminology, when dealing with monotone hazard rate, is to use the term “increasing” for
“nondecreasing” and “decreasing” for “nonincreasing.” We will also use this convention but with one
exception: we do not include exponential distribution (the hazard rate is constant) into the classes with
increasing and decreasing hazard rate. Thus, “increasing” means “nondecreasing” and “nonconstant”;
“decreasing” means “nonincreasing” and “nonconstant.” The reason is that all the inequalities obtained
in the paper become strict. Denote the union of the set of distributions with increasing hazard rate and
the set of distributions with decreasing hazard rate by M. The set of all exponential distributions will
be denoted by E . We call the union M∪ E the class of distributions with monotone hazard rate.

In what follows, without loss of generality, we will assume that F (x) < 1 for all x.

The paper is organized as follows. In Section 2 we present the inequalities for the expectation of
order statistics for samples from distributions with monotone hazard rate. In Section 3 the inequalities
are applied to the problem of characterization of the exponential distribution.

2. Inequalities

First, we obtain some auxiliary results.

Lemma 1. Let G(u) be a continuous function defined on the interval [0, 1] and satisfying the following
conditions:

G(0) < 0, G(1) � 0,

1∫
0

G(u)du = 0,

the solution of G(u) = 0 on (0, 1) is unique.
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If F (x) is a distribution function with increasing hazard rate, then

∞∫
0

(1− F (x))G(F (x))dx < 0.

If F (x) is a distribution function with decreasing hazard rate, then

∞∫
0

(1− F (x))G(F (x))dx > 0.

Proof. It follows from the conditions of the lemma that there exists a unique point u0 ∈ (0, 1) such
that G(u0) = 0. We have

∞∫
0

(1− F (x))G(F (x))dx =

∞∫
0

1− F (x)

f(x)
G(F (x))f(x)dx.

Let x0 be such a value that F (x0) = u0. Then

∞∫
0

1− F (x)

f(x)
G(F (x))f(x)dx =

=

∞∫
x0

1− F (x)

f(x)
G(F (x))f(x)dx −

x0∫
0

1− F (x)

f(x)
(−G(F (x)))f(x)dx.

If F (x) has a decreasing hazard rate, then the function (1− F (x))/f(x) increases and, hence,

∞∫
x0

1− F (x)

f(x)
G(F (x))f(x)dx −

x0∫
0

1− F (x)

f(x)
(−G(F (x)))f(x)dx >

>

∞∫
x0

1− F (x0)

f(x0)
G(F (x))f(x)dx −

x0∫
0

1− F (x0)

f(x0)
(−G(F (x)))f(x)dx =

=
1− F (x0)

f(x0)

∞∫
0

G(F (x))f(x)dx =
1− F (x0)

f(x0)

1∫
0

G(u)du = 0.

If F (x) has an increasing hazard rate, the opposite inequalities hold.

Lemma 2. Let F (x) and f(x) be the cumulative distribution function and the density of a positive,
absolutely continuous random variable X. If g(x) is a differentiable function such that g(0) = 0 and

lim
x→∞(1− F (x))g(x) = 0, (1)

then

Eg(X) =

∞∫
0

(1− F (x))g′(x)dx. (2)
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Proof. Integrating by parts the right-hand side of (2) and taking (1) into account, we obtain

∞∫
0

(1− F (x))g′(x)dx =

∞∫
0

(1− F (x))dg(x) =

= lim
x→∞(1− F (x))g(x) −

∞∫
0

g(x)d(1 − F (x)) =

=

∞∫
0

g(x)f(x)dx = Eg(X).

We will also use the following elementary equalities:

∞∫
0

(1− n(1− F (x))n−1)f(x)dx = 0 (3)

and ∞∫
0

(
1 +

1

2
+ . . . +

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx = 0, (4)

which hold for any n = 1, 2, . . .. Both (3) and (4) are obtained by direct integration after the change of
variable u = F (x).

Lemma 3. If F (x) has an increasing hazard rate, then

γk+1,nEX(n−k) > γk,nEX(n−k+1)

for all k = 1, . . . , n− 1.
If F (x) has a decreasing hazard rate, then

γk+1,nEX(n−k) < γk,nEX(n−k+1)

for all k = 1, . . . , n− 1.
In other words,

γ1,nEX(n) < γ2,nEX(n−1) < . . . < γn,nEX(1)

for the distributions with increasing hazard rate and

γ1,nEX(n) > γ2,nEX(n−1) > . . . > γn,nEX(1)

for the distributions with decreasing hazard rate.

Proof. Since the distribution function of X(k) is

P(X(k) � t) =
n∑

j=k

Cj
nF

j(t)(1 − F (t))n−j = 1−
k−1∑
j=0

Cj
nF

j(t)(1 − F (t))n−j ,

we have

EX(n−k) =
n−k−1∑
j=0

Cj
n

∞∫
0

F j(t)(1 − F (t))n−jdt,
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EX(n−k+1) =
n−k∑
j=0

Cj
n

∞∫
0

F j(t)(1 − F (t))n−jdt.

Consider the difference

γ−1
k+1,nEX(n−k+1) − γ−1

k,nEX(n−k) =

=

∞∫
0

(1− F (t))
(
γ−1
k+1,n

n−k∑
j=0

Cj
nF

j(t)(1− F (t))n−j−1−

−γ−1
k,n

n−k−1∑
j=0

Cj
nF

j(t)(1 − F (t))n−j−1
)
dt.

Denote

ψk(u) = γ−1
k+1,n

n−k∑
j=0

Cj
nu

j(1− u)n−j−1 − γ−1
k,n

n−k−1∑
j=0

Cj
nu

j(1− u)n−j−1, u ∈ [0, 1].

Since
1∫

0

uj(1− u)n−j−1du =
1

(n− j)Cj
n

,

we have
1∫

0

ψk(u)du = 0.

Further,

ψk(0) = −1

k
< 0, ψk(1) = 0, k = 2, . . . , n − 1, ψ1(1) = γ−1

2,n, n > 0.

Prove now that in the interval (0, 1), the function ψk(u) has exactly one zero. Rewrite it in the form

(1− u)k−1

⎛
⎝γ−1

k+1,nC
n−k
n un−k − 1

k

n−k−1∑
j=0

Cj
nu

j(1− u)n−k−j

⎞
⎠ .

The multiplier (1 − u)k−1 has no influence on the number of zeros in the interval (0, 1); therefore it
suffices to find the number of zeros of the function

γ−1
k+1,nC

n−k
n un−k − 1

k

n−k−1∑
j=0

Cj
nu

j(1− u)n−k−j ,

which can be written as

γ−1
k+1,nC

n−k
n un−k +

1

k
Cn−k−1
n−1 un−k − 1

k

n−k−1∑
l=0

Cl
k+l−1u

l =

= γ−1
k+1,nC

n−k
n un−k +

1

k

(
n−k−1∑
l=0

Cl
k+l−1

)
un−k − 1

k

n−k−1∑
l=0

Cl
k+l−1u

l.

It follows from this representation that the function itself and its n−k−1 first derivatives take negative
values at zero and positive values at one. The derivative of order n − k − 1 is a linear function with a
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positive coefficient at u. Thus, this derivative has one zero and is negative on the left and positive on
the right. This implies that all other derivatives (of smaller order) and the function itself have the same
properties: unique zero, negativity on the left and positivity on the right. Now the statement of the
theorem follows from Lemma 1.

Since for the exponential distribution the equalities

γ1,nEX(n) = γ2,nEX(n−1) = . . . = γn,nEX(1)

hold, Lemma 3 is sharp.

Due to applications, the relationship between the expectations of order statistics, especially of the
extreme order statistics, and the expectation of the population is very important. It follows from the
above theorem that

γ1,nEX(n) < EX1 < γn,nEX(1) (5)

for the distributions with increasing hazard rate and

γ1,nEX(n) > EX1 > γn,nEX(1) (6)

for the distributions with decreasing hazard rate. It turns out that much stronger results can be obtained.
Relations (5) and (6) can be sharpened in two directions, as is shown in the following three lemmas.

Lemma 4. If γk,n > 1 and F (x) has an increasing hazard rate, then

γ1,nEX(n) < EX1 < γk,nEX(n−k+1).

If γk,n > 1 and F (x) has a decreasing hazard rate, then

γ1,nEX(n) > EX1 > γk,nEX(n−k+1).

Proof. The inequalities γ1,nEX(n) < EX1 for the distributions with an increasing hazard rate and
γ1,nEX(n) > EX1 for the distributions with a decreasing hazard rate were obtained in [7]. To prove other
inequalities, consider the difference

γ−1
k,nEX1 − EX(n−k+1) =

=

∞∫
0

(1− F (t))

⎛
⎝γ−1

k,n −
n−k∑
j=0

Cj
nF

j(t)(1 − F (t))n−j−1

⎞
⎠ dt.

The function

χk(u) = γ−1
k,n −

n−k∑
j=0

Cj
nu

j(1− u)n−j−1, u ∈ [0, 1],

has the following properties:

1∫
0

χk(u)du = 0, χk(0) = γ−1
k,n − 1 < 0, χk(1) = γ−1

k,n > 0.

The number of zeros of the function χk(u) in the interval (0, 1) coincides with the number of zeros of
the function

γ−1
k,n

(1− u)k−1
−

n−k∑
j=0

Cj
nu

j(1− u)n−k−j =
γ−1
k,n

(1− u)k−1
−

n−k∑
l=0

Cl
k+l−1u

l.



Moment-based Characterizations of the Exponential Distribution 765

All derivatives of this function of order from 1 to n − k are negative at u = 0 and converge to +∞ as
u → 1. The derivative of order n− k increases on the interval (0, 1) and, hence, has a unique zero. The
rest of the proof repeats the corresponding part of the proof of Lemma 3.

The lemma is sharp in the following sense: the order of the order statistic on the right-hand side can-
not be made greater. Without the condition γk,n > 1, the relationship between EX1 and γk,nEX(n−k+1)

can be arbitrary: the first variable can be less than, greater than, or equal to the second one. Let, for
example, F (x) be the gamma distribution with the shape parameter 2 (increasing hazard rate) and the
scale parameter 1. If n = 4, then γ2,4 < 1, and γ2,4EX(3) > 2 = EX1. If n = 6, then γ2,6 < 1, and
γ2,6EX(5) < 2 = EX1.

Lemma 5. Let g(x) be a convex differentiable function such that

lim
x→∞(1− F (x))g(x) = 0, g(0) = 0.

If F (x) has a decreasing hazard rate, then

γ1,nEg(X(n)) > Eg(X1) > γn,nEg(X(1)).

Proof. Without loss of generality, one can suppose that g(x) is twice differentiable. Then the
derivative g′(x) is a nondecreasing function. Consider the difference Eg(X1) − γn,nEg(X(1)). Since the
distribution function of the random variable X(1) is 1− (1−F (x))n, and due to Lemma 2, the following
equality holds:

Eg(X1)− γn,nEg(X(1)) =

∞∫
0

g′(x)(1 − F (x))dx − n

∞∫
0

g′(x)(1 − F (x))ndx =

=

∞∫
0

g′(x)
1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx. (7)

Since, due to (3),
∞∫
0

g′(x)
1 − F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx =

=

∞∫
0

(
g′(x)

1− F (x)

f(x)
+A

)
(1− n(1− F (x))n−1)f(x)dx

for any A, without loss of generality we can suppose that

g′(x)
1− F (x)

f(x)
> 0.

Consider the function ψ(u) = 1−n(1−u)n−1. It increases in the interval [0, 1] and ψ(0) = 1−n < 0,
ψ(1) = 1 > 0. Hence, there exists the unique u0 ∈ (0, 1) such that ψ(u0) = 0, ψ(u) < 0, u ∈ [0, u0),
ψ(u) > 0, u ∈ (u0, 1]. Let x0 be such that F (x0) = u0. The integral in (7) is represented as the difference
of two integrals of nonnegative functions:

∞∫
0

g′(x)
1 − F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx =
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=

∞∫
x0

g′(x)
1− F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx−

−
x0∫
0

g′(x)
1− F (x)

f(x)
(n(1− F (x))n−1 − 1)f(x)dx.

Since the function

g′(x)
1− F (x)

f(x)

increases, we have
∞∫

x0

g′(x)
1 − F (x)

f(x)
(1− n(1− F (x))n−1)f(x)dx >

> g′(x0)
1− F (x0)

f(x0)

∞∫
x0

(1− n(1− F (x))n−1)f(x)dx,

and
x0∫
0

g′(x)
1 − F (x)

f(x)
(n(1− F (x))n−1 − 1)f(x)dx <

< g′(x0)
1− F (x0)

f(x0)

x0∫
0

(n(1− F (x))n−1 − 1)f(x)dx.

This implies

Eg(X1)− γn,nEg(X(1)) >

> g′(x0)
1− F (x0)

f(x0)

( ∞∫
x0

(1− n(1− F (x))n−1)f(x)dx−

−
x0∫
0

(n(1− F (x))n−1 − 1)f(x)dx
)
=

= g′(x0)
1− F (x0)

f(x0)

∞∫
0

(1− n(1− F (x))n−1)f(x)dx = 0.

Now consider the difference
1

γ1,n
Eg(X1)− Eg(X(n)).

Since the distribution function of X(n) is F
n(x), using Lemma 2, we obtain

(
1 +

1

2
+ . . .+

1

n

)
Eg(X1)− Eg(X(n)) =

=

(
1 +

1

2
+ . . .+

1

n

) ∞∫
0

g′(x)(1 − F (x))dx −
∞∫
0

g′(x)(1 − Fn(x))dx =
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=

∞∫
0

g′(x)
1− F (x)

f(x)

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + F 2(x) + . . . + Fn−1(x))

)
f(x)dx.

As in the first part of the proof, since due to (9),

∞∫
0

g′(x)
1− F (x)

f(x)

(
1 +

1

2
+ . . . +

1

n
− (1 + F (x) + F 2(x) + . . .+ Fn−1(x))

)
f(x)dx =

=

∞∫
0

(
g′(x)

1− F (x)

f(x)
+A

)(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + . . . + Fn−1(x))

)
f(x)dx

for any A, without loss of generality we can suppose that

g′(x)
1− F (x)

f(x)
> 0.

The function

χ(u) =

(
1 +

1

2
+ . . .+

1

n
− (1 + u+ u2 + . . . + un−1)

)

satisfies the conditions χ(0) = 1
2 + . . . + 1

n > 0, χ(1) = 1 + 1
2 + . . . + 1

n − n < 0, χ(u) decreases in the
interval [0, 1]. Let u0 be the unique zero of the function χ(u) in the interval (0, 1), and F (x0) = u0. We
have (

1 +
1

2
+ . . .+

1

n

)
Eg(X1)− Eg(X(n)) =

=

x0∫
0

g′(x)
1− F (x)

f(x)

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + . . .+ Fn−1(x))

)
f(x)dx−

−
∞∫

x0

g′(x)
1− F (x)

f(x)

(
(1 + F (x) + . . . + Fn−1(x))− 1− 1

2
− . . .− 1

n

)
f(x)dx,

and therefore (
1 +

1

2
+ . . .+

1

n

)
Eg(X1)− Eg(X(n)) <

< g′(x0)
1− F (x0)

f(x0)

x0∫
0

(
1 +

1

2
+ . . . +

1

n
− (1 + F (x) + . . .+ Fn−1(x))

)
f(x)dx−

−g′(x0)
1− F (x0)

f(x0)

∞∫
x0

(
(1 + F (x) + . . .+ Fn−1(x)) − 1− 1

2
− . . . − 1

n

)
f(x)dx =

= g′(x0)
1− F (x0)

f(x0)

∞∫
0

(
1 +

1

2
+ . . .+

1

n
− (1 + F (x) + . . . + Fn−1(x))

)
f(x)dx = 0.

Lemma 6. Let g(x) be a concave differentiable function such that

lim
x→∞(1− F (x))g(x) = 0, g(0) = 0.

If F (x) has an increasing hazard rate, then

γ1,nEg(X(n)) < Eg(X1) < γn,nEg(X(1)).

The proof of Lemma 6 is completely analogous to the proof of Lemma 5.
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3. Characterizations of the exponential distribution in the class of distributions with
monotone hazard rate

The above inequalities can be applied to the problem of characterization of the exponential distri-
bution in the class of distributions with monotone hazard rate.

Theorem 1. Let F (x) belong to the class M∪E . F (x) is an exponential distribution function if and
only if

γi+1,nEX(n−i) = γj+1,nEX(n−j) (8)

for at least one pair of i and j, i �= j.
Thus, if (8) holds for one pair i �= j, then it holds for all pairs.
Theorem 2. Let F (x) belong to the class calM ∪ E. F (x) is an exponential distribution function if

and only if
EX1 = γ1,nEX(n).

Theorem 3. Let F (x) belong to the class M ∪ E. F (x) is an exponential distribution function if
and only if the equality

EX1 = γk,nEX(n−k+1) (9)

holds for at least one k, such that
γk,n > 1. (10)

Note that as in Theorem 1, if (9) holds for one k satisfying (10), then (9) holds for all k-s, satisfying
(10).

Theorem 4. Let F (x) belong to the class M∪E . Let G(u) be a continuous function defined on the
interval [0, 1] and satisfying the following conditions:

G(0) < 0, G(1) � 0,

1∫
0

G(u)du = 0,

solution of G(u) = 0 on (0, 1) is unique. Then F (x) is an exponential distribution function if and only
if

∞∫
0

(1− F (x))G(F (x))dx = 0.

A typical way to obtain a characterization of the exponential distribution in the class of distributions
with monotone hazard rate on the basis of inequalities is as follows. If for some Expression 1 and
Expression 2, the first expression is greater than the second one if F (x) has increasing hazard rate and
less if it has decreasing hazard rate, then Expression 1 is equal to Expression 2 if and only if F (x) is an
exponential distribution function. Thus Theorem 1 follows directly from Lemma 3, Theorems 2 and 3
from Lemma 4, and Theorem 4 from Lemma 5.
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