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ESTIMATES OF FUNCTIONS, ORTHOGONAL TO
PIECEWISE CONSTANT FUNCTIONS, IN TERMS OF
THE SECOND MODULUS OF CONTINUITY

L. N. Ikhsanov∗ UDC 517.5

The paper is devoted to the problem of finding the exact constant W ∗
2 in the inequality ‖f‖ ≤

K · ω2(f, 1) for bounded functions f with the property

k+1∫

k

f(x) dx = 0, k ∈ Z.

Our approach allows us to reduce the known range for the desired constant as well as the set
of functions involved in the extremal problem for finding the constant in question. It is shown
that W ∗

2 also turns out to be the exact constant in a related Jackson–Stechkin type inequality.
Bibliography: 3 titles.

1. Introduction

1.1. The problem. Let us denote by F 0 the space of measurable bounded functions with
the property

k+1∫

k

f(x) dx = 0, k ∈ Z. (1.1)

All the functions are considered real-valued and defined at any point. Let us equip the space F 0

with the norm
‖f‖ = sup

x∈R
|f |. (1.2)

The second modulus of continuity of a function f with step h is defined by

ω2(f, h) = sup
|t|≤h

‖f(x− t)− 2f(x) + f(x+ t)‖ .

Here we mention some properties of ω2(f, h) which we use very soon:

ω2(f, h) ≤ ω2(g, h) + 4‖f − g‖; (1.3)

ω2(αf, h) = |α|ω2(f, h); (1.4)

ω2(f( · + 1), h) = ω2(f( · ), h); (1.5)

ω2(f(− · ), h) = ω2(f( · ), h). (1.6)

We denote by W ∗
2 the exact constant for the inequality

‖f‖ ≤ K · ω2(f, 1) (1.7)

in the space F 0.
In [1], Yu. Kryakin showed that

0.5058 ≤ W ∗
2 ≤ 0.6244.

Unfortunately, the proof of the lower estimate (0.5810 < W ∗
2 ) given in [1] contains a mistake.

We replaced it by the value actually established.
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Kryakin also considered an analogous problem for higher order moduli. The best results on
this topic obtained so far are given in [2].

Let us introduce the notation

Fb =

{
f∈F 0

∣∣∣f
(
1 + b

2

)
= ‖f‖ = 1

}
and F ∗ =

⋃
b∈[0,1]

Fb.

The goal of the present work is to study the magnitude inf
f∈Fb

ω2(f, 1) for b ∈ [0, 1]. The

motivation for this is explained by the following statement.

Proposition 1. The following relation holds:

W ∗
2 = sup

f∈F ∗

‖f‖
ω2(f, 1)

=
1

inf
f∈F ∗ ω2(f, 1)

.

Proof. Let us show that

sup
f∈F 0

‖f‖
ω2(f, 1)

= sup
f∈F ∗

‖f‖
ω2(f, 1)

.

By definition, for any n ∈ N there exists a point xn ∈ R such that

|f(xn)| > ‖f‖ − 1

n
.

Without loss of generality, we may assume that f(xn) > 0. Let us consider the functions

fn(x) =

{
f(x), x �= xn,

‖f‖, x = xn.

Inequality (1.3) implies that

ω2(fn, 1) ≤ ω2(f, 1) +
1

n
.

Consequently, it is sufficient to consider only functions that attain their norm at some point.
On the other hand, because of (1.4), it is sufficient to consider only the case f ∈ Fb, b ∈ R.
Finally, due to (1.5) and (1.6), we may assume that b ∈ [0, 1]. �

Let us denote by F the space of measurable bounded functions with the property

k+1∫

k

f(x) dx =

1∫

0

f(x) dx, k ∈ Z,

and the norm defined above.

Proposition 2. Let f be in F , let E0(f) be the best approximation of f by constant functions,
and let J∗

2 be the exact constant in the Jackson type inequality

E0(f) ≤ K · ω2(f, 1).

Then

J∗
2 = W ∗

2 .

Proof. Let f ∈ F ∗. Take

fn(x) =

⎧⎪⎨
⎪⎩
f(x), x ≤ 1,
n−k
n f(x), x ∈ (k, k + 1], k = 1, . . . , n,

0, x > n+ 1.
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Consider the functions

f̃n = fn(x)− fn(2n+ 2− x) and F̃ =
{
f̃n

∣∣∣f∈F ∗, n ∈ N

}
.

It is easy to see that

E0(f̃n) = ‖f̃n‖ = ‖f‖ = 1 and ω2(f̃n, 1) ≤ ω2(f) +
4

n
.

Consequently,

W ∗
2 = sup

F ∗

‖f‖
ω2(f, 1)

= sup
˜F

‖f‖
ω2(f, 1)

= sup
˜F

E0(f)

ω2(f, 1)
≤ sup

F

E0(f)

ω2(f, 1)
= J∗

2 .

On the other hand, if f ∈ F , then (f −
1∫
0

f(x) dx) ∈ F 0 and

E0(f) ≤ ‖f −
1∫

0

f(x) dx‖ ≤ W ∗
2 · ω2(f, 1);

hence,

J∗
2 ≤ W ∗

2 . �

1.2. Main result. We use the function

q(b) =

{
96

27b3−27b2+9b+55
, b ∈ [

0, 1
3

]
,

8(11b2+66b−13)
3b4−69b3+17b2+385b−80

, b ∈ [
1
3 , 1

]
.

Theorem 1. Let f be in Fb. Then

q(b) ≤ ω2(f, 1).

The function q(b) is continuous on the segment [0, 1], has precisely two intervals of mono-
tonicity, and attains its minimum between the points 0.43 and 0.44 with

q(b) > 1.6721.

In [3], we have presented a function from the space F ∗ whose second modulus of continuity

is equal to 37861
20548 − 37

√
8545

20548 < 1.6762. Therefore,

1.6721 ≤ q(b) ≤ inf
f∈F ∗ ω2(f, 1) ≤ 1.6762.

These inequalities, Theorem 1, and Proposition 1 imply the following statement.

Theorem 2. The inequalities

0.5965 ≤ W ∗
2 ≤ 0.5981

are valid. Moreover,

W ∗
2 = sup

b∈[b0, b1]

1

inf
f∈Fb

ω2(f, 1)
,

where the points b0 and b1 are roots of the equation

q(b) =
37861

20548
− 37

20548

√
8545.
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2. A few lemmas and a little bit about the method

We use the following notation for the mean value of a function f on a segment
[
x− r

2 , x+ r
2

]
,

where r > 0:

fr(x) =
1

r

x+r/2∫

x−r/2

f(s) ds,

assuming that f0(x) = f(x).
To prove Theorem 1, we formulate several inequalities connecting some mean values of a

function f ∈ Fb with its second order modulus. Then we solve a linear programming problem

ω2(f, 1) → inf

with these mean values and ω2(f, 1) taken as abstract variables.
The following lemma describes some basic properties of elements belonging to the set Fb.

Lemma 1. Let f be in Fb and let τ, h ≥ 0. Then

f2τ

(
1 + b

2
− 2h

)
− 2fτ

(
1 + b

2
− h

)
+ 1 ≤ ω2

(
f, h+

τ

2

)
; (2.1)

−fτ

(
1 + b

2
− h

)
− fτ

(
1 + b

2
+ h

)
+ 2 ≤ ω2

(
f, h+

τ

2

)
; (2.2)

−2f2τ

(
1 + b

2

)
+ 2 ≤ ω2

(
f,

τ

2

)
; (2.3)

−f 1−b
2

(
−1− b

4

)
+ f 1−b

2

(
1 +

3 + b

4

)
+

4

1− b
≤ 2

1− b
· ω2(f, 1). (2.4)

Proof. Since f
(
1+b
2

)
= 1, inequalities (2.1) and (2.2) can be obtained by integrating

f

(
1 + b

2
− 2h+ 2τs

)
− 2f

(
1 + b

2
− h+ τs

)
+ f

(
1 + b

2

)
≤ ω2

(
f, h+

τ

2

)

and

−f

(
1 + b

2
− h+ τs

)
− 2f

(
1 + b

2
+ h+ τs

)
+ f

(
1 + b

2

)
≤ ω2

(
f, h+

τ

2

)
,

respectively, with s ∈ [−1
2 ,

1
2

]
.

Further, (2.3) can be deduced from (2.2) be noticing that

2f2τ

(
1 + b

2

)
= fτ

(
1 + b

2
− τ

2

)
+ fτ

(
1 + b

2
+

τ

2

)
.

Finally, according to (2.3), we conclude that

−2f2

(
1 + b

2

)
+ 2 ≤ ω2(f, 1).

To prove (2.4), it is sufficient to take into account (1.1) and to notice that

2f2

(
1 + b

2

)
=

1− b

2
f 1−b

2

(
−1− b

4

)
+ f1

(
1

2

)
+

1 + b

2
f 1+b

2

(
1 +

1 + b

4

)

=
1− b

2
f 1−b

2

(
−1− b

4

)
− 1− b

2
f 1−b

2

(
1 +

3 + b

4

)
. �
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More complicated results can be obtained in the following way. First one proves a statement
of the kind ∣∣∣∣∣fτ (x)− 2fσ(y) +

n∑
i=1

δifρk(zk)

∣∣∣∣∣ ≤ ω2(f, h) (2.5)

with
n∑

i=1

δi = 1, δi > 0, x+

n∑
i=1

δizk = 2y.

This result is then modified using (1.1) if needed. The simplest example is provided by the
following statement.

Lemma 2. Let f be in Lloc(R) and let a ∈ R, h, τ, σ ≥ 0.
Then ∣∣fτ (a− h)− 2fσ(a) + f|2σ−τ |(a+ h)

∣∣ ≤ ω2

(
f, h+

|σ − τ |
2

)
.

Proof. It is sufficient to show that

fτ (a− h)− 2fσ(a) + f|2σ−τ |(a+ h) ≤ ω2

(
f, h+

|σ − τ |
2

)

for any function f in Lloc(R). Let us introduce

x(s) = a− σ

2
+ σs and t(s) = h+ (σ − τ)s− σ − τ

2

It is easy to see that

f(x(s)− t(s))− 2f(x(s)) + f(x(s) + t(s)) ≤ ω2

(
f, h+

|σ − τ |
2

)

for any s ∈ [0, 1]. The proof can be completed now by integrating over s ∈ [0, 1]. �

Proofs of the following lemmas can be found in [3]. They are based on the described method.

Lemma 3. Assume that δ ∈ [
0, 1

2

]
and f ∈ F 0. Then∣∣∣∣fδ

(
k ± δ

2

)∣∣∣∣ ≤ 2− δ2

4
ω2(f, 1), k ∈ Z.

Lemma 4. Assume that b ∈ [13 , 1] and f ∈ Fb. Then

3 + b

1 + b
f 1−b

2

(
− 1− b

4

)
− 1 + b

4

(
f 3b−1

4

(
3b− 1

8

)
+ f 3b−1

4

(
5b+ 1

8

))

− 1− b

2
f1−b

(
1 + b

2

)
≤ ω2(f, 1).

Lemma 5. Assume that b ∈ [13 , 1] and f ∈ Fb. Then

1

2

(
f 3b−1

4

(
1 +

3b− 1

8

)
+ f 3b−1

4

(
1 +

5b+ 1

8

))
− 2f 1−b

2

(
1 +

3 + b

4

)
≤ ω2(f, 1).

It is noteworthy that the main idea of the proof of these statements does not refer to special
properties of the functions under consideration. Therefore, statements similar to (2.5) may be
true for any measurable function. Only a number of particular cases have been proven in the
frame of this study. However, it is the author’s opinion that further research in this direction
could be useful in solving numerous problems.
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3. Proof of theorem 1 in the case b ∈ [
0, 1

3

]
Let us take b ∈ [

0, 1
3

]
and f ∈ Fb. By Lemma 1,

fb

(
−1− 2b

2

)
− 2f b

2

(
3b

4

)
+ 1 ≤ ω2(f, 1), (3.1)

−f b
2

(
b

4

)
− f b

2

(
1 +

3b

4

)
+ 2 ≤ ω2(f, 1), (3.2)

−f 1−3b
2

(
1 + b

4

)
− f 1−3b

2

(
3 + 3b

4

)
+ 2 ≤ ω2(f, 1), (3.3)

−2f2b

(
1 + b

2

)
+ 2 ≤ ω2(f, 1), (3.4)

and

−f 1−b
2

(
−1− b

4

)
+ f 1−b

2

(
1 +

3 + b

4

)
+

4

1− b
≤ 2

1− b
· ω2(f, 1). (3.5)

By Lemma 2,

−f2b

(
1 + b

2

)
+ 2f b

2

(
1 +

3b

4

)
− fb

(
1 +

1 + 2b

2

)
≤ ω2(f, 1). (3.6)

By Lemma 3,

f 1−3b
2

(
−1− 3b

4

)
− f 1−3b

2

(
1 +

3 + 3b

4

)
≤ 7 + 6b− 9b2

8
ω2(f, 1). (3.7)

Mean values of the function f are related by the equalities

f 1−b
2

(
−1− b

4

)
=

2b

1− b
fb

(
−1− 2b

2

)
+

1− 3b

1− b
f 1−3b

2

(
−1− 3b

4

)
, (3.8)

f 1−b
2

(
1 +

3 + b

4

)
=

2b

1− b
fb

(
1 +

1 + 2b

2

)
+

1− 3b

1− b
f 1−3b

2

(
1 +

3 + 3b

4

)
, (3.9)

and

b

2
f b

2

(
b

4

)
+

b

2
f b

2

(
3b

4

)

+
1− 3b

2
f 1−3b

2

(
1 + b

4

)
+ 2bf2b

(
1 + b

2

)
+

1− 3b

2
f 1−3b

2

(
3 + 3b

4

)
= 0. (3.10)

Now, by solving the linear programming problem

ω2(f, 1) → inf

with respect to variables

f b
2

(
3b
4

)
,

f b
2

(
b
4

)
,

f2b
(
1+b
2

)
,

f b
2

(
1 + 3b

4

)
,

fb
(
1 + 1+2b

2

)
,

fb
(−1−2b

2

)
,

f 1−3b
2

(
1 + 3+3b

4

)
,

f 1−3b
2

(
1+b
4

)
,

f 1−b
2

(−1−b
4

)
,

f 1−b
2

(
1 + 3+b

4

)
,

ω2(f, 1),

and inequality constrains (3.1)–(3.10), we conclude that

96

27b3 − 27b2 + 9b+ 55
≤ ω2(f, 1).

�
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4. Proof of theorem 1 in the case b ∈ [
1
3 , 1

]
Let us take b ∈ [

1
3 , 1

]
and f ∈ Fb. By Lemma 1,

f 1−b
2

(
−1− b

4

)
− 2f 1−b

4

(
1 + 3b

4

)
+ 1 ≤ ω2(f, 1), (4.1)

−f 3b−1
4

(
3b− 1

8

)
− f 3b−1

4

(
1 +

5b+ 1

8

)
+ 2 ≤ ω2(f, 1), (4.2)

−f 3b−1
4

(
5b+ 1

8

)
− f 3b−1

4

(
1 +

3b− 1

8

)
+ 2 ≤ ω2(f, 1), (4.3)

−f 1−b
4

(
5b− 1

8

)
− f 1−b

4

(
1 +

3b+ 1

8

)
+ 2 ≤ ω2(f, 1), (4.4)

−2f1−b

(
1 + b

2

)
+ 2 ≤ ω2(f, 1), (4.5)

and

−f 1−b
2

(
−1− b

4

)
+ f 1−b

2

(
1 +

3 + b

4

)
+

4

1− b
≤ 2

1− b
· ω2(f, 1). (4.6)

By Lemma 2,

−f1−b

(
1 + b

2

)
+ 2f 1−b

4

(
1 +

1 + 3b

8

)
− f 1−b

2

(
1 +

3 + b

4

)
≤ ω2(f, 1). (4.7)

By Lemma 4,

3 + b

1 + b
f 1−b

2

(
1 + b

2

)
− 1 + b

4

(
f 3b−1

4

(
3b− 1

8

)
+ f 3b−1

4

(
5b+ 1

8

))

− 1− b

2
f1−b

(
1 + b

2

)
≤ ω2(f, 1). (4.8)

By Lemma 5,

1

2
f 3b−1

4

(
7 + 3b

8

)
+

1

2
f 3b−1

4

(
9 + 5b

8

)
− 2f 1−b

2

(
1 +

3 + b

4

)
≤ ω2(f, 1). (4.9)

Mean values of the function f are related by the equalities

3b− 1

4
f 3b−1

4

(
3b− 1

8

)
+

1− b

4
f 1−b

4

(
5b− 1

8

)
+

1− b

4
f 1−b

4

(
1 + 3b

8

)

+
3b− 1

4
f 3b−1

4

(
5b+ 1

8

)
+ (1− b)f1−b

(
1 + b

2

)
= 0. (4.10)

Now, by solving the linear programming problem

ω2(f, 1) → inf

with respect to variables

f 3b−1
4

(
3b−1
8

)
,

f 1−b
4

(
5b−1
8

)
,

f 1−b
4

(
3b+1
8

)
,

f 3b−1
4

(
5b+1
8

)
,

f1−b

(
1+b
2

)
,

f 3b−1
4

(
1 + 3b−1

8

)
,

f 1−b
4

(
1 + 3b+1

8

)
,

f 1−b
2

(
1 + 3+b

4

)
,

f 1−b
2

(−1−b
4

)
,

ω2(f, 1),
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and inequality constrains (4.1)–(4.10), we conclude that

8(11b2 + 66b − 13)

3b4 − 69b3 + 17b2 + 385b− 80
≤ ω2(f, 1).

�

Translated by L. N. Ikhsanov.
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