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METHOD OF GUIDING FUNCTIONS FOR EXISTENCE PROBLEMS
FOR PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS

V. G. Zvyagin and S. V. Kornev UDC 517.911.5

Abstract. We provide a review and systematic explanation of various generalizations of the guiding
function method. The current state of the said method and its applications to various kinds of prob-
lems for nonlinear periodic systems described by differential and functional differential equations are
considered.
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Introduction

Geometric and topological methods of analysis are applied to problems of nonlinear oscillations of
dynamical systems since Poincaré, Brouwer, Aleksandrov, Hopf, Leray, and Schauder. Later on, these
methods were developed by Krasnosel’skii, Bobylev, Borisovich, Bulgakov, Gango, Gel’man, Zabreiko,
Zvyagin, Kamenskii, Myshkis, Obukhovskii, Perov, Povolotskii, Rachinskii, Sadovskii, Sapronov, Stry-
gin, Filippov, Deimling, Górniewicz, Mawhin, Nistri, Papageorgiou, Zecca, and other researchers; the
said methods demonstrate their high efficiency.

In particular, a very fruitful direction related to the notion of guiding functions is founded by
Krasnosel’skii and Perov (see, e.g., [7, 8]). This method is closely related to the Poincaré operator
(translation operator along system trajectories) and its fixed point (see ibid). Students of Mathematics
can find basic points of the guiding functions method in [14, 17].

Note that properties of guiding functions are close to properties of Lyapunov functions, but they
are used in problems not related to the stability, e.g., the existence problem for periodic solutions.

The most important achievements in the development of this direction are the Rachinskii method of
many-sheeted guiding functions (see [15, 16]), the Fonda method of integral guiding functions (see [2]),
and the Mawhin method of averaged and asymptotically averaged guiding functions (see [12]), proposed
for differential equations. Various generalizations of the specified methods are provided in works of
Borisovich, Gel’man, Myshkis, Obukhovskii, Kornev, Loi, and Zecca. In particular, the method of the
above classes of guiding functions is extended to the case of differential inclusions (see, e.g., [1, 3, 5])
and generalized for the case of systems described by differential inclusions in infinite-dimensional
Hilbert spaces (see, e.g., [13]).
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The present work provides a review and systematic explanation of the current state of the above
generalizations and their applications to various types of nonlinear oscillation problems described by
differential and functional differential equations.

The work was supported by the Russian Science Foundation (project code 14-21-00066) and by the
Ministry of Education and Science of Russian Federation in the framework of the science activity state
order for 2014–2016 (projects No 1.1539.2014/K and No 3488).

1. Krasnosel’skii–Perov Guiding Functions

Consider a differential equation of the kind

x′(t) = f(t, x), (1.1)

assuming that f : R× R
n → R

n is a continuous map satisfying the following condition:

(ft) the function f is T -periodic (T > 0) with respect to the first independent variable:

f(t, x) = f(t+ T, x) for all t ∈ R and x ∈ R
n

(obviously, under this condition, one can treat f as a map defined on [0, T ]× R
n).

Also, assume that any initial condition

x(s) = x0 (1.2)

uniquely defines a solution
x(t) = p(t; s, x0) (1.3)

of Eq. (1.1) such that it is uniquely extended to the segment [0, T ].
Then, following [7], one can define the operator UT of the translation beyond the period T along

the trajectories of Eq. (1.1):
UTx = p(T ; 0, x).

The existence of T -periodic solutions of Eq. (1.1) is equivalent to the existence of fixed points of the
translation operator UT (see, e.g., [7]).

To prove the existence of fixed points of the translation operator, it is suggested to find a bounded
domain Ω such that the map

g : Ω → R
n, g(x) = x− UTx,

does not vanish on the boundary ∂Ω and to compute (or estimate) its topological degree deg(g,Ω, 0)
then.

It is hard to compute the topological degree of the map g because the explicit form of the translation
operator UT is not known. Therefore, special tools are needed to compute the topological degree of
this map.

One such tool is the method of guiding functions suggested by Krasnosel’skii and Perov (see, e.g., [7–
9]). Recall its main points.

Definition 1.1. A point x0 from R
n is called a T -nonreturnability point of trajectories if

x(t) = p(t; 0, x0) �= x0 (0 < t ≤ T ), (1.4)

where x(t) = p(t; 0, x0) is the solution of Eq. (1.1), satisfying the initial condition x(0) = x0.
If p(t; 0, x0) �= x0 for all positive t, then we say that the nonreturnability (i.e., no period is mentioned)

or nonlocal extendability of trajectories takes place.

Lemma 1.1. Let all points of the boundary ∂Ω of a bounded domain Ω be T -nonreturnability points
of trajectories and the map

ψ : Ω → R
n, ψ(x) = −f(0, x), x ∈ Ω, (1.5)

do not vanish on ∂Ω. Then the degrees deg(ψ,Ω, 0) and deg(g,Ω, 0) are defined and

deg(ψ,Ω, 0) = deg(g,Ω, 0).
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Proof. Consider the following family of maps on Ω:

H(t, x) = x− p(t; 0, x), t ∈ (0, T ].

Condition (1.4) implies that H(t, x) �= 0, t ∈ (0, T ], x ∈ ∂Ω. This and the continuous dependence of
solutions p(t; 0, x) of Eq. (1.1) on the initial data x and on t imply that H is a homotopy connecting
all maps H(t, ·) = i− p(t, 0, ·), t ∈ (0, T ], where i is the identity map. Then degrees deg(H(t, ·),Ω, 0)
are defined and equal to each other for all maps H(t, ·), t ∈ (0, T ]. Therefore, it suffices to show that
the degrees deg(H(t, ·),Ω, 0) and deg(ψ,Ω, 0) are equal to each other for small positive t.

To prove that, we show that, for small positive t, the directions of the maps ψ and H(t, ·) are not
opposite to each other on ∂Ω. Otherwise, there exist sequences xn ⊂ ∂Ω and tn → 0 such that

xn − p(tn; 0, xn) = αnf(0, xn), αn > 0,

whence
p(tn; 0, xn)− xn

tn
= −αn

tn
f(0, xn)

and one can assume (without loss of generality) that the sequence xn converges to a point x0 from
∂Ω. Passing to the limit, we obtain the contradictory inequality

f(0, x0) = −αf(0, x0), α > 0.

Theorem 1.1. Let all solutions of Eq. (1.1) be nonlocally extendable. Let all points of the boundary
∂Ω of a bounded domain Ω be T -nonreturnability points for trajectories. Let the topological degree
deg(ψ,Ω, 0) be different from zero. Then there exists at least one T -periodic solution of Eq. (1.1).

Let V : Rn → R be a continuously differentiable function.

Definition 1.2. We say that V (x) is nondegenerate if there exists a positive r0 such that

gradV (x) =
(∂V (x)

∂x1
,
∂V (x)

∂x2
, . . . ,

∂V (x)

∂xn

)
�= 0, ‖x‖ ≥ r0.

Definition 1.3. The index indV of a nondegenerate function V (x) is the number

indV = deg(gradV,B(0, r), 0),

where r ≥ r0 and B(0, r) = {x ∈ R
n : ‖x‖ < r}.

Note that the value of the above degree is the same for all r from [r0,+∞).

1.1. Strict and generalized guiding functions.

Definition 1.4. A continuously differentiable function V : Rn → R is called a strict guiding function
for Eq. (1.1) if there exists a positive r0 such that

(gradV (x), f(t, x)) > 0, 0 ≤ t ≤ T ; ‖x‖ ≥ r0. (1.6)

From Condition (1.6), it follows that, defining guiding functions, we assume that they are nonde-
generate.

Remark 1.1. If there exists a strict guiding function V (x) of index indV for Eq. (1.1), then

deg(ψ,B(0, r), 0) = (−1)nindV. (1.7)

For the existence principle for a periodic solution provided below, we provide a scheme of a proof
(a complete proof can be found in [7]).
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Theorem 1.2. Let there exist a strict guiding function V (x) for Eq. (1.1) such that either

lim
‖x‖→∞

V (x) = +∞ (1.8)

or

lim
‖x‖→∞

V (x) = −∞. (1.9)

Then Eq. (1.1) has at least one T -periodic solution.

Proof. Let Condition (1.9) be satisfied. Then it is easy to see that the said condition implies the strict
decreasing of the function V1(x) = −V (x) for all values of t such that ‖x(t)‖ ≥ r0. Hence, any solution
is bounded and, therefore, nonlocally extendable.

By virtue of (1.9) and Remark 1.1, the topological degree deg(ψ,B(0, r1), 0) is different from zero
provided that r1 is sufficiently large.

Assign M = max
‖x‖≤r0

V1(x). Then Condition (1.6) implies the T -nonreturnability of points of the

boundary of the ball B(0, r1) provided that r1 is sufficiently large to guarantee that V1(x) ≥ M for
‖x‖ ≥ r1.

All conditions of Theorem 1.1 are satisfied and Eq. (1.1) has at least one T -periodic solution.

Remark 1.2. If Condition (1.8) is satisfied, then it suffices to seek periodic solutions x(t) of the form
x(t) = y(−t) and to replace Eq. (1.1) by the equation

y′(t) = −f(−t, y).

Strengthening Condition (1.6), we obtain an existence principle for T -periodic solutions.

Definition 1.5. A nondegenerate function V : Rn → R is called a generalized guiding function for
Eq. (1.1) if there exists a positive r0 such that

(gradV (x), f(t, x)) ≥ 0, 0 ≤ t ≤ T ; ‖x‖ ≥ r0.

The following assertion is valid.

Theorem 1.3. Let there exist a generalized guiding function V (x) for Eq. (1.1) such that either
Condition (1.8) or Condition (1.9) is valid. Then Eq. (1.1) has at least one T -periodic solution.

1.2. Collections of guiding functions. As we see above, even a single guiding function allows
us to select domains consisting of points possessing the T -nonreturnability properties. Therefore, an
existence of several guiding functions linked by certain relations might be useful for a proof of the
existence theorem for periodic solutions.

Let V : Rn → R be a strict guiding function in the sense of Definition 1.4. Assign

m = min
‖x‖≤r0

V (x) and M = max
‖x‖≤r0

V (x).

By Ω and Ω∗ we denote the sets of points x from R
n such that ‖x‖ ≥ r0 and the following conditions

are satisfied, respectively:

V (x) ≤ m and V (x) ≥ M.

Then the following assertion is valid (see [7]).

Lemma 1.2. If x0 ∈ Ω ∪ Ω∗, then x0 is a nonreturnability point for trajectories.

Lemma 1.2 has a clear geometric interpretation: moving along trajectories, level surfaces of the
function V (x) in the domains Ω and Ω∗ intersect in the same direction.

Definition 1.6. If continuously differentiable functions

V0(x), V1(x), . . . , Vk(x), k ≥ 1, (1.10)

581



are such that
lim

‖x‖→∞
[|V0(x)|+ |V1(x)|+ . . . + |Vk(x)|] = ∞, (1.11)

then they form a complete collection of strict guiding functions for Eq. (1.1) provided that the following
conditions are satisfied:

(gradVi(x), f(t, x)) > 0, i = 0, 1, . . . , k, 0 ≤ t ≤ T, ‖x‖ ≥ r0. (1.12)

Theorem 1.4. Let Eq. (1.1) have a complete collection {V0(x), V1(x), . . . , Vk(x)} of strict guiding
functions. Let the topological index indV0 of the function V0(x) be different from zero, i.e.,

indV0 �= 0. (1.13)

Then Eq. (1.1) has at least one T -periodic solution.

Remark 1.3. It follows from Conditions (1.12) that the maps gradVi(x) (i = 0, 1, . . . , k) are homo-
topic to f(0, x) for ‖x‖ ≥ r0. Therefore, they are homotopic to each other and their topological degrees
coincide each other. Therefore, the topological indices of all guiding functions (1.10) coincide with
each other.
Proof of Theorem 1.4.

1. First, suppose that solutions of Eq. (1.1) are nonlocally extendable. Let

mi = min
‖x‖≤r0

Vi(x), Mi = max
‖x‖≤r0

Vi(x), i = 0, 1, . . . , k,

and

M∗ =
k∑

i=0

(|mi|+ |Mi|).

By virtue of (1.11), there exists r∗ such that

|V0(x)|+ |V1(x)|+ . . . + |Vk(x)| > M∗ (‖x‖ ≥ r∗). (1.14)

By Ωi and Ω∗
i (i = 0, 1, . . . , k) denote the sets of points x from R

n such that ‖x‖ ≥ r0 and the following
conditions are satisfied, respectively:

Vi(x) ≤ mi and Vi(x) ≥ Mi.

If we assume that ‖x‖ ≥ r∗, then (1.14) implies the existence of i = i(x) such that x ∈ Ωi ∪Ω∗
i . Then

Lemma 1.2 implies that x is a nonreturnability point for trajectories.
By virtue of Remark 1.1 and Condition (1.13), the topological degree of map (1.5) is different from

zero. Thus, all conditions of Theorem 1.1 are satisfied and Eq. (1.1) has a T -periodic solution.
2. We pass to the general case: assume that there exists an initial condition such that the cor-

responding solution “goes to infinity” within a small time segment, i.e., that solutions cannot be
extended to the segment [0, T ].

Note that T -periodic solutions x(·) of all systems satisfying Conditions (1.12) satisfy the inequality

‖x(t)‖ < r∗ (0 ≤ t ≤ T ) (1.15)

because a point x and i ∈ 1, k would exist otherwise such that x belongs to the set Ωi ∪Ω∗
i , but is not

a nonreturnability point for trajectories.
The existence of estimate (1.15), which is an a priori estimate, shows the way to prove the theorem

for the general case. We have to construct an auxiliary equation

x′(t) = f∗(t, x) (1.16)

such that its right-hand side satisfies the following conditions:

10. f∗(t, x) = f(t, x), x ∈ R
n, ‖x‖ ≤ r∗;

20. f∗(t, x) satisfies Conditions (1.12);
30. all solutions of Eq. (1.16) are extendable to [0, T ] .

582



By virtue of Conditions 20 and 30, Eq. (1.16) has at least one T -periodic solution. It satisfies esti-
mate (1.15). Therefore, it satisfies Eq. (1.1) as well.

Strengthening Condition (1.12), one can obtain an existence principle for T -periodic solutions.

Definition 1.7. Nondegenerate functions (1.10) possessing property (1.11) form a complete and acute
collection of generalized guiding functions for Eq. (1.1) if

(gradVi(x), f(t, x)) ≥ 0, i = 0, 1, . . . , k, 0 ≤ t ≤ T, ‖x‖ ≥ r0,

and the set

K(x) =

{
y ∈ R

n : y =
k∑

i=0

γigradVi(x), γ0, . . . , γk ≥ 0

}

is a Krein cone (i.e., the belonging of y and −y to K(x) implies that y = 0) for any fixed x from R
n

such that ‖x‖ ≥ r0.

The following assertion is valid.

Theorem 1.5. Let Eq. (1.1) have a complete and acute collection {V0(x), V1(x), . . . , Vk(x)} of gener-
alized guiding functions and the topological index indV0 of the function V0(x) be different from zero.
Then Eq. (1.1) has at least one T -periodic solution.

Definition 1.8. A nondegenerate function V (x) is called a proper guiding function for Eq. (1.1) if

(gradV (x), f(t, x)) ≥ α0 ‖gradV (x)‖ ‖f(t, x)‖ ,
where α0 > 0, 0 ≤ t ≤ T, and ‖x‖ ≥ r0, and there exists a continuously differentiable function V1(x)
such that

‖gradV (x)‖ ≥ ‖gradV1(x)‖ (‖x‖ ≥ r0)

and
lim

‖x‖→∞
|V1(x)| = ∞.

The following assertion is valid.

Theorem 1.6. Let Eq. (1.1) have a proper guiding function V (x) and the topological index of V (x)
be different from zero at infinity:

ind (V,∞) �= 0.

Then Eq. (1.1) has at least one T -periodic solution.

2. Many-Sheeted Vector Guiding Functions

Consider the following periodic problem for a differential equation in the space R
n (n > 2):

z′(t) = f(t, z), (2.1)

where f(t, z) is a continuous function with respect to the (vector) independent variable (t, z), contin-
uously differentiable with respect to z, and T -periodic with respect to t (T > 0).

Suppose that a two-dimensional plane R
2 is selected in the space R

n and R
n−2 is the subspace

complementary to that plane. Let q be the projection operator to the plane R
2 along the subspace

R
n−2 and p = I − q. In the sequel, elements of R2 are denoted by ξ and elements of Rn−2 are denoted

by ζ. Thus, any element z of Rn is uniquely representable as z = ξ + ζ, where ξ = qz and ζ = pz.
Let (ϕ, ρ) be the polar coordinates in R

2. Consider the many-sheeted Riemannian surface

Π = {(ϕ, ρ) : ϕ ∈ (−∞,∞), ρ ∈ (0,∞)} .
Let a scalar continuously differentiable function W (ϕ, ρ) be defined on Π such that

∂

∂ϕ
W (ϕ, ρ) > 0, (ϕ, ρ) ∈ Π, (2.2)
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and
W (ϕ+ 2π, ρ) = W (ϕ, ρ) + 2π, (ϕ, ρ) ∈ Π. (2.3)

The last relation implies the identity gradW (ϕ+ 2π, ρ) ≡ gradW (ϕ, ρ). Therefore, the vector field of
gradients gradW (ϕ, ρ) is defined on R

2 \ {0}.
Let a smooth scalar function V (ζ) be defined on the subspace R

n−2 such that

lim
‖ζ‖→∞

V (ζ) = ∞. (2.4)

By virtue of (2.4), the domains {ζ ∈ R
n−2 : V (ζ) < ϑ} are nonempty and bounded provided that

ϑ > ϑ0 = minV (ζ).
For ρ2 > ρ1 ≥ 0 and ϑ > ϑ0, select the domain

Ω (ϑ, ρ1, ρ2) = {z ∈ R
n : V (pz) < ϑ, ρ1 < ‖qz‖ < ρ2} .

Assume that continuous functions αϑ,ρ1,ρ2(·) and βϑ,ρ1,ρ2(·) are defined on [0, T ] such that

sup
z∈Ω(ϑ,ρ1,ρ2)

(gradW (qz), qf(t, z)) = αϑ,ρ1,ρ2(t) (2.5)

and
inf

z∈Ω(ϑ,ρ1,ρ2)
(gradW (qz), qf(t, z)) = βϑ,ρ1,ρ2(t). (2.6)

2.1. Strict and generalized many-sheeted vector guiding functions.

Definition 2.1. A pair {V (ζ), W (ϕ, ρ)} of functions possessing properties (2.2)–(2.4) is called a
strict many-sheeted vector guiding function for Eq. (2.1) with respect to the domain Ω (ϑ, ρ1, ρ2) if the
following conditions are satisfied:

sup
t∈[0,T ]

|(qf(t, z), qz)|
‖qz‖ <

ρ2 − ρ1
2T

, z ∈ Ω(ϑ, ρ1, ρ2), (2.7)

(gradV (pz), pf(t, z)) < 0, V (pz) ≥ ϑ, ‖qz‖ ≤ ρ2, (2.8)

and

2π(N − 1) <

T∫

0

αϑ,ρ1,ρ2(τ)dτ ,

T∫

0

βϑ,ρ1,ρ2(τ)dτ < 2πN, (2.9)

where N is an integer and αϑ,ρ1,ρ2(t) and βϑ,ρ1,ρ2(t) are defined by (2.5)-(2.6).

Define the domain G(ϑ, ρ) = {z ∈ R
n : V (pz) < ϑ, ‖qz‖ < ρ}. It can be represented as G(ϑ, ρ) =

Gζ(ϑ)×Gξ(ρ), where Gζ(ϑ) =
{
ζ ∈ R

n−2 : V (ζ) < ϑ
}
and Gξ(ρ) =

{
ξ ∈ R

2 : ‖ξ‖ < ρ
}
.

For the existence principle for a periodic solution provided below we provide a scheme of a proof (a
complete proof can be found in [16]).

Theorem 2.1. Let there exist a strict many-sheeted vector guiding function for Eq. (2.1) with respect
to the domain Ω (ϑ, ρ1, ρ2) . Then Eq. (2.1) has at least one T -periodic solution z∗(·) such that

z∗(t) ∈ G(ϑ, ρ0), t ∈ [0, T ], ρ0 = (ρ1 + ρ2) /2.

Proof. First, we show that a continuous translation operator UT with respect to trajectories of Eq. (2.1)

is defined on the set G (ϑ, ρ0) and nondegenerate on the boundary ∂G (ϑ, ρ0) and, therefore, the

topological degree deg(i− UT , G (ϑ, ρ0), 0) is defined.

To do that, we have to prove that any solution of Eq. (2.1) with any initial value z0 from G (ϑ, ρ0)
is extendable to the segment [0, T ] and possesses the T -nonreturnability property.

Let us show that any solution of Eq. (2.1) with any initial value z0 from G (ϑ, ρ0) is extendable to
the segment [0, T ] and

z(t) ∈ G (ϑ, ρ2) , t ∈ (0, T ] . (2.10)
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First, we prove that z(t) ∈ G (ϑ, ρ2) for small positive t.
Consider the component ζ(t). If ζ(0) is an interior point of the domain Gζ(ϑ), then there exists a

positive number ε1 such that

ζ(t) ∈ Gζ(ϑ), t ∈ (0, ε1). (2.11)

Now, let ζ(0) ∈ ∂Gζ(ϑ). Then V (ζ(0)) = ϑ. Since ‖ξ(0)‖ ≤ ρ0 < ρ2, it follows from (2.8) that the
estimate

(gradV (ζ(0)), pf(0, ζ(0), ξ(0))) < 0

is valid. This and the relation V (ζ(0)) = ϑ imply that V (ζ(t)) < ϑ for small positive t. Therefore,
there exists a positive ε1 such that (2.11) is valid.

Obviously, there exists a positive ε2 such that

ξ(t) ∈ Gξ(ρ2) for t ∈ (0, ε2). (2.12)

By virtue of (2.11) and (2.12), z(t) ∈ G(ϑ, ρ2) provided that 0 < t < min{ε1, ε2}. Therefore, the
number t∗ = sup {t > 0 : z(t) ∈ G(ϑ, ρ2)} is defined and positive.

Inclusion (2.10) is equivalent to the estimate t∗ > T.
Using relation (2.7), one can easily show that t∗ > T. Therefore, any solution z(·) of Eq. (2.1) with

an initial condition on G (ϑ, ρ0) satisfies inclusion (2.10).
Let us show that these trajectories possess the T -nonreturnability property.
Since G(ϑ, ρ0) = Gζ(ϑ)×Gξ(ρ0), it follows that

∂G (ϑ, ρ0) =
(
∂Gζ(ϑ)×Gξ(ρ0)

)
∪
(
Gζ(ϑ)× ∂Gξ(ρ0)

)
.

First, assume that z(0) ∈ ∂Gζ(ϑ)×Gξ(ρ0). Then ζ(0) ∈ ∂Gζ(ϑ). However, ζ(t) ∈ Gζ(ϑ) for t ∈ (0, T ]
due to (2.10). Therefore, ζ(t) �= ζ(0) for t ∈ (0, T ] or, which is the same,

pz(t) �= pz(0), t ∈ (0, T ] . (2.13)

Now, let z(0) ∈ Gζ(ϑ)× ∂Gξ(ρ0). Then

z(t) ∈ Ω(ϑ, ρ1, ρ2), t ∈ (0, T ] .

Using estimates (2.9), one can show that ξ(T ) �= ξ(0). Therefore, taking into account (2.13), we
conclude that the relation

z(t) �= z(0)

is valid for any trajectory z(·) such that its initial value satisfies the inclusion z(0) ∈ G(ϑ, ρ0).
Further, using (2.8), we prove that

deg(i− UT , G(ϑ, ρ0), 0) = deg(gradV (pz) + qz,G(ϑ, ρ0), 0).

Now, applying the theorem on products of degrees and the normalization property of topological
degrees and taking into account Condition (2.4), we obtain that

deg(i− UT , G(ϑ, ρ0), 0) �= 0.

By virtue of the nonzero degree principle, the field z − UT z has at least one singular point z0 in the
domain G(ϑ, ρ0). Therefore, the solution z(t, z0) of Eq. (2.1) is T -periodic. It is easy to see that the
trajectory of that solution does not intersect the boundary of the domain G(ϑ, ρ0); therefore, the
inclusion

z(t, z0) ∈ G(ϑ, ρ0), t ∈ [0, T ]

is valid.

Strengthening Condition (2.8), one can obtain an existence principle for T -periodic solutions.
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Definition 2.2. A pair {V (ζ), W (ϕ, ρ)} of functions possessing properties (2.2)–(2.6) is called a
generalized many-sheeted vector guiding function for Eq. (2.1) with respect to the domain Ω (ϑ, ρ1, ρ2) if
the function V (ζ) is nondegenerate and the following condition is satisfied apart from Conditions (2.7)
and (2.9):

(gradV (pz), pf(t, z)) ≤ 0, V (pz) ≥ ϑ, ‖qz‖ ≤ ρ2. (2.14)

The following assertion is valid.

Theorem 2.2. Let there exist a generalized many-sheeted vector guiding function for Eq. (2.1) with
respect to the domain Ω (ϑ, ρ1, ρ2) . Then Eq. (2.1) has at least one T -periodic solution z∗(·) such that

z∗(t) ∈ G (ϑ, ρ0) , t ∈ [0, T ].

2.2. Collections of many-sheeted vector guiding functions. In [3], to develop ideas of [6, 7,
16], complete collections of strict many-sheeted vector guiding functions, complete and acute collec-
tions of generalized many-sheeted vector guiding function, and proper many-sheeted vector guiding
functions are introduced for Eq. (2.1). We provide these definitions.

Let scalar continuously differentiable functions

V1(ζ), V2(ζ), . . . , Vk(ζ), ζ ∈ R
n−2, k ≥ 1, (2.15)

be defined in the subspace R
n−2.

Fix a positive r0 and denote

mi = min
‖ζ‖≤r0

Vi(ζ), Mi = max
‖ζ‖≤r0

Vi(ζ), i = 1, . . . , k,

and

M∗ =
k∑

i=1

(|mi|+ |Mi|).

In the sequel, we assume that functions (2.15) satisfy the nondegeneration condition

gradVi(ζ) �= 0 for all ζ ∈ R
n−2 : ‖ζ‖ ≥ r0, i = 1, . . . , k.

Let functions (2.15) satisfy the condition

lim
‖ζ‖→∞

[|V1(ζ)|+ |V2(ζ)|+ . . . + |Vk(ζ)|] = ∞, k ≥ 1. (2.16)

By virtue of Condition (2.16), there exists r∗ such that

|V1(ζ)|+ |V2(ζ)|+ . . .+ |Vk(ζ)| > M∗, ζ ∈ R
n−2 : ‖ζ‖ ≥ r∗, k ≥ 1. (2.17)

For ρ2 > ρ1 ≥ 0, select the domain

Ω (r∗, ρ1, ρ2) = {z ∈ R
n : ‖pz‖ < r∗, ρ1 < ‖qz‖ < ρ2}

in R
n and assign

αr∗,ρ1,ρ2(t) = sup
z∈Ω(r∗,ρ1,ρ2)

(gradW (qz), qf(t, z)) (2.18)

and
βr∗,ρ1,ρ2(t) = inf

z∈Ω(r∗,ρ1,ρ2)
(gradW (qz), qf(t, z)). (2.19)

Introduce a complete collection of strict many-sheeted vector guiding functions.

Definition 2.3. Functions {V1(ζ), . . . , Vk(ζ),W (ϕ, ρ)} possessing properties (2.2), (2.3), and (2.16)
form a complete collection of strict many-sheeted vector guiding functions for Eq. (2.1) with respect
to the domain Ω (r∗, ρ1, ρ2) if the following conditions are satisfied:

sup
t∈[0,T ]

|(qf(t, z), qz)|
‖qz‖ <

ρ2 − ρ1
2T

, z ∈ Ω(r∗, ρ1, ρ2), (2.20)
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(gradVi(pz), pf(t, z)) < 0, ‖pz‖ ≥ r0, ‖qz‖ ≤ ρ2, i = 1, . . . , k, (2.21)

and

2π(N − 1) <

T∫

0

αr∗,ρ1,ρ2(τ)dτ ,

T∫

0

βr∗,ρ1,ρ2(τ)dτ < 2πN, (2.22)

where N is an integer and αr∗,ρ1,ρ2(t) and βr∗,ρ1,ρ2(t) are functions defined by (2.18)-(2.19).

For ρ0 = (ρ1 + ρ2) /2, introduce the notation

G(r∗, ρ0) = {z ∈ R
n : ‖pz‖ < r∗, ‖qz‖ < ρ0} .

Applying methods of [7, 16] and the theory of topological degrees of maps, we provide a scheme of a
proof of the following existence principle for periodic solutions (a complete proof can be found in [3]).

Theorem 2.3. Let there exist a complete collection {V1(ζ), . . . , Vk(ζ), W (ϕ, ρ)} of strict many-sheeted
vector guiding functions for Eq. (2.1) with respect to the domain Ω (r∗, ρ1, ρ2) . Let the topological index
of the function V1(ζ) be different from zero at infinity, i.e.,

ind (V1,∞) �= 0.

Then Eq. (2.1) has at least one T -periodic solution z∗(·) such that z∗(t) ∈ G (r∗, ρ0) , t ∈ [0, T ].

Remark 2.1. Note that Conditions (2.21) imply the homotopy of the vector fields gradVi(pz), i =
1, . . . , k, and −pf(0, z), z ∈ R

n : ‖pz‖ ≥ r0, ‖qz‖ ≤ ρ2. Therefore, all fields gradVi(ζ), i = 1, . . . , k,
are homotopic to each other and have the same topological degree. Therefore,

ind (Vi,∞) �= 0, i = 1, . . . , k.

In the space Rn, by Qi and Q∗
i , i = 1, . . . , k, denote the sets {z : ‖pz‖ ≥ r0} such that the following

inequalities are satisfied, respectively:

Vi(pz) ≤ mi and Vi(pz) ≥ Mi, i = 1, . . . , k.

To prove Theorem 2.3, we need the following assertions.

Lemma 2.1. All points of the set {z ∈ R
n : ‖pz‖ = r∗} are nonreturnability points for trajectories of

Eq. (2.1).

Proof. Assume that ‖pz‖ = r∗. It follows from (2.17) that there exists i = i(pz) such that z ∈ Qi∪Q∗
i .

Then, following [7, Lemma 6.7], we conclude that z is a nonreturnability point for trajectories of
Eq. (2.1).

Let Gζ(r
∗) =

{
ζ ∈ R

n−2 : ‖ζ‖ < r∗
}
and Gξ(ρ0) =

{
ξ ∈ R

2 : ‖ξ‖ < ρ0
}
.

Lemma 2.2. For any trajectory z(·) of Eq. (2.1) with an initial value z(0) from Gζ(r∗) × ∂Gξ(ρ0),
the relation

qz(T ) �= qz(0)

is valid.
Proof of Theorem 2.3.

1. First, assume that solutions of Eq. (2.1) are extendable to [0, T ] . By virtue of conditions imposed
on the function f(t, z), the Cauchy problem for Eq. (2.1) is uniquely solvable for any initial value z0
from R

n. By z(t, z0) denote the solution such that z(0) = z0.
Under the imposed assumptions, a continuous translation operator UT z0 = z(T ; z0) is defined on the

set G(r∗, ρ0). By virtue of Lemmas 2.1 and 2.2, this operator is nondegenerate on ∂G(r∗, ρ0). Hence,
the topological degree deg(i− UT , G(r∗, ρ0), 0) is defined. In this case, it is known (see, e.g., [7]) that
the existence proof for T -periodic solutions of Eq. (2.1) is reduced to the proof of the relation

deg(i− UT , G(r∗, ρ0), 0) �= 0.
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Following [16], we prove that the specified topological degree satisfies the condition

deg(i− UT , G(r∗, ρ0), 0) = deg(gradVi(pz) + qz,G(r∗, ρ0), 0), i = 1, . . . , k. (2.23)

Any field gradVi(pz)+qz, z ∈ G(r∗, ρ0), i = 1, . . . , k, is the direct sum of the vector fields gradVi(ζ) ∈
R
n−2, where ζ ∈ Gζ(r

∗), i = 1, . . . , k, and ξ ∈ R
2, ξ ∈ Gξ(ρ0). Therefore, by virtue of properties of

products of degrees, we have the relation

deg(gradVi(pz) + qz,G(r∗, ρ0), 0) = deg(gradVi(ζ), Gζ(r∗), 0) deg(ξ,Gξ(ρ0), 0),

where i = 1, . . . , k. Since the point ξ = 0 belongs to the domain Gξ(ρ0), it follows from the normal-
ization property of topological degrees that

deg(ξ,Gξ(ρ0), 0) = 1.

Taking into account Remark 2.1, we see that

deg(gradVi(pz) + qz,G(r∗, ρ0), 0) �= 0;

then

deg(i− UT , G(r∗, ρ0), 0) �= 0.

by virtue of (2.23).
By virtue of the nonzero degree principle, the field z−UT z has at least one singular point z0 in the

domain G(r∗, ρ0). The solution z(t, z0) of Eq. (2.1) is T -periodic. It is easy to see that the trajectory
of this solution does not intersect the boundary of the domain G(r∗, ρ0) and, therefore, the inclusion

z(t, z0) ∈ G(r∗, ρ0), t ∈ R,

holds.
2. To consider the general case where there exist initial conditions such that the corresponding

solutions “go to infinity” within small time segments (i.e., those solutions cannot be extended to the
segment [0, T ]), one can use the Krasnosel’skii scheme (see, e.g., [7]).

To provide an a priori estimate for T -periodic solutions z(·) of Eq. (2.1) satisfying Conditions (2.20)-
(2.21), we note that such periodic solutions with respect to the p-projection satisfy the inequality

‖pz(t)‖ < r∗, t ∈ [0, T ] , (2.24)

because otherwise there would exist a point z belonging to a set Qi ∪Q∗
i , i = 1, . . . , k, such that it is

not a nonreturnability point for trajectories.
Let us show that ‖qz(t)‖ < ρ2, t ∈ [0, T ] , if ‖qz(0)‖ ≤ ρ0. Since ρ0 < ρ2, it follows that

‖qz(t)‖ < ρ2, t ∈ [0, ε) .

Therefore, a positive number t∗ = sup {t > 0 : ‖qz(t)‖ < ρ2} is defined.
Let us show that t∗ > T.
Since ‖qz(t∗)‖ = ρ2 and ‖qz(0)‖ = ρ0, it follows that

‖qz(t∗)‖ − ‖qz(0)‖ ≥ ρ2 − ρ0 = (ρ2 − ρ1)/2.

The last inequality can be represented as follows:

ρ(t∗) = ρ(0) ≥ (ρ2 − ρ1)/2.

Therefore, we have the inequality

max
t∈[0,t∗]

∣∣ρ′(t)∣∣ ≥ (ρ2 − ρ1) /2t∗. (2.25)

On the other hand, since ρ′(t) = (qf(t,ζ(t),ξ(t)),ξ(t))
‖ξ(t)‖ and z(t) ∈ G(r∗, ρ2) for t ∈ (0, t∗) , it follows

from (2.20) that

max
t∈[0,t∗]

∣∣ρ′(t)∣∣ < (ρ2 − ρ1) /2T. (2.26)
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Comparing (2.25) and (2.26), we see that t∗ > T. Therefore, we have the estimate

‖qz(t)‖ < ρ2, t ∈ [0, T ] . (2.27)

The existence of estimates (2.24) and (2.27), which are a priori estimates, shows the way to prove
Theorem 2.3 for the general case. We have to construct an auxiliary equation

z′(t) = f∗(t, z(t)) (2.28)

such that its right-hand side satisfies the following three requirements:

10. f∗(t, z) = f(t, z), z ∈ Ω(r∗, ρ1, ρ2).
20. f∗(t, z) satisfies Conditions (2.21);
30. all solutions of Eq. (2.28) are extendable to [0, T ] .

Then, as we proved above, Eq. (2.28) has at least one T -periodic solution z(·). This solution satisfies
estimates (2.24) and (2.27). Therefore, it is a solution of Eq. (2.1) as well.

Definition 2.4. Functions {V1(ζ), . . . , Vk(ζ), W (ϕ, ρ)} possessing properties (2.2), (2.3), and (2.16)
form a complete and acute collection of generalized many-sheeted vector guiding function for Eq. (2.1)
with respect to the domain Ω (r∗, ρ1, ρ2) if the functions Vi(ζ) are nondegenerate, Conditions (2.20),
(2.22), and

(gradVi(pz), pf(t, z)) ≤ 0, ‖pz‖ ≥ r0, ‖qz‖ ≤ ρ2, i = 1, . . . , k, (2.29)

are satisfied, and the set

K(ζ) =

{
η ∈ R

n−2 : η =

k∑
i=1

γigradVi(ζ), γ1, . . . , γk ≥ 0

}

is a Krein cone for any fixed ζ from R
n−2 such that ‖ζ‖ ≥ r0.

The following assertion is valid.

Theorem 2.4. Let there exist a complete and acute collection {V1(ζ), . . . , Vk(ζ), W (ϕ, ρ)} of gener-
alized many-sheeted vector guiding functions of Eq. (2.1) with respect to the domain Ω (r∗, ρ1, ρ2) . Let
the topological index of the function V1(ζ) be different from zero at infinity, i.e.,

ind (V1,∞) �= 0.

Then Eq. (2.1) has at least one T -periodic solution z∗(·) such that z∗(t) ∈ G (r∗, ρ0) , t ∈ [0, T ].

To prove this, we need the following assertion (see, e.g., [6]).

Lemma 2.3. Let V1(ζ), V2(ζ), . . . , Vk(ζ), ζ ∈ R
n−2, k ≥ 1, be an acute collection of functions. Then

there exists a locally Lipschitz function g : Rn−2 → R
n−2 such that

(gradVi(ζ), g(ζ)) < 0, i = 1, . . . , k, ‖ζ‖ ≥ r0. (2.30)

Proof of Theorem 2.4. By virtue of Lemma 2.3, there exists a function g : Rn−2 → R
n−2 satisfying

Condition (2.30). Consider the family of auxiliary differential equations

z′(t) = f(t, z(t)) + εg(pz(t)), ε > 0. (2.31)

It is easy to see that any complete and acute collection {V1(ζ), . . . , Vk(ζ),W (ϕ, ρ)} of generalized
many-sheeted vector guiding functions for Eq. (2.1) with respect to the domain Ω (r∗, ρ1, ρ2) is a
complete collection of strict many-sheeted vector guiding functions for Eq. (2.31) with respect to the
same domain provided that ε is sufficiently small. Then, due to Theorem 2.3, for any sufficiently small
ε = εm, m ≥ 1, there exists at least one T -periodic solution zm(·) of Eq. (2.31). Passing to the limit as
εm → 0, we obtain the sought solution z(·) of Eq. (2.1) as the limit point of the sequence {zm(·)}.
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Let {V (ζ),W (ϕ, ρ)} be a strict many-sheeted vector guiding function for Eq. (2.1), i.e.,

(gradV (pz), pf(t, z)) < 0, ‖pz‖ ≥ r0, ‖qz‖ ≤ ρ2.

Following [7], we show that another function Ṽ (ζ) (depending on the function V (ζ)) can be constructed
to satisfy the condition

lim
‖ζ‖→∞

{
|V (ζ)|+

∣∣∣Ṽ (ζ)
∣∣∣
}
= ∞ (2.32)

provided that the angle between gradV (ζ) and −pf(t, z) is acute and bounded from above by a number
that is less than π/2.

Definition 2.5. A pair {V (ζ), W (ϕ, ρ)} of functions possessing properties (2.2) and (2.3) is called a
proper many-sheeted vector guiding function for Eq. (2.1) with respect to the domain Ω (r∗, ρ1, ρ2) if
V (ζ) is a nondegenerate function, the condition

(gradV (pz), pf(t, z)) ≤ δ0 ‖gradV (pz)‖ ‖pf(t, z)‖ , (2.33)

where δ0 < 0, 0 ≤ t ≤ T, ‖pz‖ ≥ r0, ‖qz‖ ≤ ρ2, is satisfied (apart from Conditions (2.7) and (2.9)),
and there exists a continuously differentiable function V1(ζ) such that

‖gradV (ζ)‖ ≥ ‖gradV1(ζ)‖ (‖ζ‖ ≥ r0) (2.34)

and
lim

‖ζ‖→∞
|V1(ζ)| = ∞. (2.35)

The following assertion is valid.

Theorem 2.5. Let there exist a proper many-sheeted vector guiding function {V (ζ),W (ϕ, ρ)} for
Eq. (2.1) with respect to the domain Ω (r∗, ρ1, ρ2) , and let the topological index of the function V (ζ)
be different from zero at infinity, i.e.,

ind (V,∞) �= 0.

Then Eq. (2.1) has at least one T -periodic solution z∗(·) such that z∗(t) ∈ G (r∗, ρ0) , t ∈ [0, T ].

Proof. Suppose that V1(ζ) satisfies Conditions (2.34)-(2.35). Assign Ṽ (ζ) = V (ζ)+ δ0
2 V1(ζ). It is easy

to verify that Ṽ (ζ) is a strict many-sheeted vector guiding function for Eq. (2.1).

It follows from (2.35) that Condition (2.32) is satisfied. Thus, the collection
{
V (ζ), Ṽ (ζ), W (ϕ, ρ)

}

is a complete collection of strict many-sheeted vector guiding functions for Eq. (2.1) with respect to
the domain Ω (r∗, ρ1, ρ2) . Therefore, due to Theorem 2.3, there exists at least one T -periodic solution
z∗(·) of Eq. (2.1) such that

z∗(t) ∈ G (r∗, ρ0) , t ∈ [0, T ].

Remark 2.2. Following the Krasnosel’skii smoothing method for right-hand sides, one can show that
Theorems 2.1–2.5 are valid for Eq. (2.1) as well provided that the right-hand side f(t, z) is continuous
with respect to the (vector) independent variable (t, z).

3. Integral Guiding Functions

For τ > 0, denote the space C([−τ, 0];Rn) by C. For any function x(·) ∈ C([−τ, T ];Rn), T > 0, the
symbol xt denotes the following function from C: xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

Consider the following periodic problem for a functional differential equation:

x′(t) = f(t, xt), (3.1)

x(0) = x(T ). (3.2)

We assume that the map f : R× C → R
n satisfies the following conditions:
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(ft) the function f is T -periodic with respect to the first independent variable, i.e.,

f(t, ϕ) = f(t+ T, ϕ) for all t ∈ R, ϕ ∈ C
(obviously, this condition allows us to treat the map f defined on [0, T ]× C);
(f1) for any ϕ from C, the function f(·, ϕ) : [0, T ] → R

n is measurable;
(f2) for almost any (a. a.) t from [0, T ], the map f(t, ·) : C → R

n is continuous;
(f3) for any positive ρ, there exists a function αρ(·) from L1

+([0, T ],R) such that

‖f(t, ϕ)‖ ≤ αρ(t)

for any ϕ from C such that ‖ϕ‖ ≤ ρ and for a. e. t from [0, T ].

To investigate problem (3.1)-(3.2), we use the theory of the coincidence topology degree for a map
pair in the following situation (see, e.g., [10]).

Let X1 and X2 be normed spaces, U ⊂ X1 be a bounded open set, l : dom l ⊆ X1 → X2 be a linear
zero-index Fredholm operator,

Nl = {x ∈ dom l : lx = 0},
and

Rl = {lx : x ∈ dom l}.
Let p : X1 → X1 and q : X2 → X2 be continuous projection operators such that Rp = Nl and Nq = Rl

and lp denote the restriction of l to dom l ∩Np, where Np = Ker p.
Further, let kp,q = l−1

p (i− q) : X2 → dom l ∩Np be a continuous operator.

Definition 3.1. We say that a map G : U → X2 is l-compact if

(1) G(U) is a bounded set;
(2) kp,q ◦G : U → K(E1) is a compact map.

Remark 3.1. The above definition of l-compact maps does not depend on the choice of linear pro-
jection operators p : E1 → E2 and q : E1 → E2.

Let G : U → X2 be a closed l-compact operator such that lx �= Gx for all x from ∂U. Then the
degree of the coincidence is defined: it is an integer (denoted by deg(l, G,U )) such that if it is different
from zero, then there exists a coincidence point x0 from U, l(x0) = G(x0).

The following assertion can be proved by means of the coincidence and topological degrees of maps
(see, e.g., [10]).

Theorem 3.1. Let the operators qG and kp,qG be compact and the following conditions be satisfied:

(1) lx �= λGx for all λ from (0, 1) and x from dom l ∩ ∂U ;
(2) 0 �= qGx for all x from Ker l ∩ ∂U.

Then the equation lx = Gx has a solution from dom l ∩ U if deg(qG |Ker l∩U ,Ker l ∩ U, 0) �= 0.

Let CT denote the space of continuous T -periodic functions x : R → R
n with norm ‖x‖C =

sup
t∈[0,T ]

‖x(t)‖.

Let ‖x‖2 denote the norm of the function x in the space L2, ‖x‖2 =

(
T∫
0

‖x(s)‖2 ds
) 1

2

.

3.1. Strict integral guiding functions. In [2], the following notion is introduced.

Definition 3.2. A continuously differentiable function V : R
n → R is called an integral guiding

function of problem (3.1)-(3.2) if there exists a positive N such that

T∫

0

(gradV (x(s)), f(s, xs)) ds > 0 (3.3)

591



for any continuously differentiable function x from CT such that ‖x‖2 ≥ N and ‖x′(t)‖ ≤ ‖f(t, xt)‖
(t ∈ [0, T ]).

The following assertion is valid.

Theorem 3.2. Let V : Rn → R be an integral guiding function of problem (3.1)-(3.2) such that

deg(gradV ;BN , 0) �= 0, (3.4)

where BN ⊂ R
n is the ball of radius N centered at the origin. Then problem (3.1)-(3.2) has a solution.

Remark 3.2. Note that the assumptions of the theorem are satisfied if, e.g., the function V is even
or lim

‖x‖→∞
V (x) = ±∞.

We provide a scheme of a proof of Theorem 3.2 (for a detailed proof, see [2]).

Proof. To use Theorem 3.1, consider the operators

l : dom l := {x ∈ CT : x ∈ C1} → CT , lx = x′,

and
G : CT → CT , (Gx)(t) = f(t, xt).

It is easy to verify (see, e.g., [10]) that the Nemytskii operator G is an l-compact operator, l is a linear
zero-index Fredholm operator, and Ker l = R

n. The projection q : CT → R
n can be defined by the

relation qx = 1
T

T∫
0

x(s) ds. It is easy to verify that pG and kp,qG are compact operators.

Note that if λ ∈ (0, 1), then the solution x ∈ dom l of the equation l(x) = λG(x) satisfies the
problem

x′(t) = λf(t, xt), (3.5)

x(0) = x(T ). (3.6)

Then
T∫

0

(gradV (x(s)), f(s, xs)) ds =
1

λ

T∫

0

(
gradV (x(s)), x′(s)

)
ds

=
1

λ

T∫

0

V ′(x(s)) ds =
1

λ
(V (x(T )) − V (x(0))) = 0,

which implies that
‖x‖2 < N.

On the other hand, it follows from Condition (f3) that there exists a positive M such that ‖x′‖2 < M.
Then there exists a positive M ′ such that

‖x‖C < M ′.

Let U be a ball Br ⊂ CT of radius r = max{N,M ′, NT−1/2}. Then
l(x) �= λG(x)

for all x ∈ ∂U.
Now, take an arbitrary u from ∂U ∩ Ker l. Since ‖u‖ ≥ NT−1/2, it follows from the definition of

integral guiding functions that
T∫

0

(gradV (u), f(s, u)) ds > 0

and, therefore, qGx �= 0 for any x from Ker l ∩ ∂U.
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This means that, by virtue of (3.4), we have the relation

deg(qG|UKer l
, UKer l, 0) = deg(gradV,UKer l, 0) �= 0,

where UKer l = U ∩Ker l. Thus, all conditions of Theorem 3.1 are satisfied and problem (3.1)-(3.2) has
a solution.

Examples.

3.1.1. Differential equations with delays. Consider the periodic problem for a differential equations
with delay

x′(t) = f(t, x(t− τ)), (3.7)

x(0) = x(T ), (3.8)

where the map f : R× R
n → R

n satisfies Conditions (ft), (f1), and (f2).

Theorem 3.3. Suppose that there exist positive N and C such that

(x, f(t, x)) ≥ C

for any x, ‖x‖ ≥ N. If
‖f(t, x)‖ ≤ M

and C − τM2 > 0, then problem (3.7)-(3.8) has a solution.

Proof. We show that V (x) = 1
2‖x‖2 is an integral guiding function for problem (3.7)-(3.8). Then,

taking into account Remark 3.2, we deduce the assertion of the present theorem from Theorem 3.2.
Indeed, if a positive N is sufficiently large, then conditions ‖x′(t)‖ ≤ M (t ∈ [0, T ]) and ‖x‖2 ≥ N
imply that ‖x(t)‖ ≥ N for any t from [0, T ] and any continuously differentiable function x(·) from CT .
Then such a function x(·) satisfies the relation

T∫

0

(gradV (x(s)), f(s, x(s − τ))) ds =

T∫

0

(x(s), f(s, x(s − τ))) ds

=

T∫

0

(x(s − τ), f(s, x(s − τ))) ds+

T∫

0

(x(s)− x(s− τ), f(s, x(s − τ))) ds

≥ CT − τM2T = (C − τM2)T > 0.

3.1.2. Semilinear functional differential equations. Consider the periodic problem

x′(t) = Ax(t) + f(t, xt), (3.9)

x(0) = x(T ), (3.10)

where the map f : R× C → R
n satisfies Conditions (ft) and (f1)–(f3), while A : Rn → R

n is a linear
operator.

Theorem 3.4. Let there exist a positive ε such that the quadratic form (Ax, x) satisfies the condition

(Ax, x) ≥ ε‖x‖2
for all x ∈ R

n. If

lim
‖x‖2→+∞

‖G̃x‖2
‖x‖2 < ε

for all x from CT , where G̃ is the Nemytskii operator generated by f, i.e.,

G̃ : CT → CT : [G̃(x)](t) = f(t, xt),

then problem (3.9)-(3.10) has a solution.

593



Proof. Similarly to the previous example, we show that V (x) = 1
2‖x‖2 is an integral guiding function

for problem (3.9)-(3.10). Indeed, if ‖x‖2 is sufficiently large, then

T∫

0

(gradV (x(s)), Ax(s) + f(s, xs)) ds =

T∫

0

(Ax(s), x(s)) ds+

T∫

0

(x(s), f(s, xs)) ds

≥ ε‖x‖22 − ‖x‖2‖G̃x‖2 > 0.

3.1.3. Gradient functional differential equations. Consider a periodic problem of the kind

x′(t) = grad g(x(t)) + f(t, xt), (3.11)

x(0) = x(T ), (3.12)

where f is a map satisfying Conditions (ft) and (f1)–(f3), while grad g is the gradient of a C1-function
g : Rn → R.

Theorem 3.5. Let the following conditions be satisfied:

(1) there exist positive constants ε, K, and β, β ≥ 1, such that

‖grad g(x)‖ ≥ ε‖x‖β −K

for all x from R
n;

(2) lim
‖x‖2→+∞

‖g̃x‖2
‖x‖β2

< εT (1−β)/2 for all x from ∈ CT ;

(3) the gradient grad g has a nonzero topological index, i.e.,

deg(grad g,BN , 0) �= 0

provided that N is positive and sufficiently large.

Then problem (3.11)-(3.12) has a solution.

Proof. Similarly to previous examples, we show that g is an integral guiding function for prob-
lem (3.11)-(3.12). Note that the embedding L2β ⊂ L2 yields the following estimate for any continuously
differentiable function x(·) ∈ CT :

‖grad g(x(·))‖2 ≥ ε‖x‖β2β −K
√
T ≥ εT (1−β)/2‖x‖β2 −K

√
T .

Then the inequality

T∫

0

(grad g(x(s)), grad g(x(s)) + f(s, xs)) ds ≥ ‖grad g(x(·))‖2 (‖grad g(x(·))‖2 − ‖g̃x‖2)

≥ ‖grad g(x(·))‖2
(
εT (1−β)/2 − K

√
T

‖x‖β2
− ‖g̃x‖2

‖x‖β2

)
‖x‖β2 > 0

holds provided that ‖x‖2 is sufficiently large.
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3.2. Generalized integral guiding functions. Strengthening Condition (3.3), one can obtain an
existence principle for T -periodic solutions.

Definition 3.3. A continuously differentiable function V : Rn → R is called a generalized integral
guiding function of problem (3.1)-(3.2) if there exists a positive N such that

T∫

0

(gradV (x(s)), f(s, xs)) ds ≥ 0 (3.13)

for any continuously differentiable function x from CT such that ‖x‖2 ≥ N and ‖x′(t)‖ ≤ ‖f(t, xt)‖
(t ∈ [0, T ]).

The following assertion is valid.

Theorem 3.6. Suppose that V : Rn → R is a generalized integral guiding function of problem (3.1)-
(3.2), grad V (x) �= 0 provided that x ∈ R

n and ‖x‖ ≥ N, and

deg(gradV,BN , 0) �= 0, (3.14)

where BN ⊂ R
n is the ball of radius N centered at the origin. Then problem (3.1)-(3.2) has a solution.

4. Guiding Functions on Given Sets

Consider the following periodic problem for a differential equation:

x′(t) = f(t, x(t)) a. e. t ∈ [0, T ], (4.1)

x(0) = x(T ). (4.2)

It is assumed that the map f : R× R
n → R

n satisfies the following conditions:

(ft) the function f is T -periodic with respect to the first independent variable, i.e.,

f(t, x) = f(t+ T, x) for all t ∈ R and x ∈ R
n

(obviously, this condition allows us to assume that the map f is defined on [0, T ]× R
n);

(f1) the function f(·, x) : [0, T ] → R
n is measurable for any x from R

n;
(f2) for a. a. t from [0, T ], the map f(t, ·) : Rn → R

n is continuous;
(f3) for any positive ρ, there exists a function αρ(·) from L1

+([0, T ],R) such that if x ∈ R
n and

‖x‖ ≤ ρ, then

‖f(t, x)‖ ≤ αρ(t)

for a. a. t from [0, T ].

We say that an absolutely continuous function x(·) is a solution of problem (4.1)-(4.2) if it almost
everywhere (a. e.) satisfies Condition (4.2) and Eq. (4.1).

To investigate problem (4.1)-(4.2), we use the theory of the coincidence topology degree for a pair
of maps in a situation similar to Sec. 3.

Let D ⊂ R
n be a nonempty set and CT be the space of continuous T -periodic functions x : R → R

n

with the norm ‖x‖C = sup
t∈[0,T ]

‖x(t)‖.
Introduce the notation

Γ(D) := {x ∈ CT : x(t) ∈ D for all t ∈ [0, T ]}.
For any function V : Rn → R, M ⊂ R, and any real r, introduce

V −1(M) := {x ∈ R
n : V (x) ∈ M}

and

Vr := {x ∈ R
n : V (x) < r}.
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4.1. Generalized guiding functions on given sets. In [12], the following notion is introduced.

Definition 4.1. A continuously differentiable function V : D → R is called a generalized guiding
function on D for Eq. (4.1) if the inequality

(gradV (x), f(t, x)) ≤ 0 (4.3)

is satisfied for any x from D and any t from [0, T ].

The case where D = R
n \ B(r), r > 0, is similar to the one considered in Sec. 1.1 (see [10] for

details).
The following assertion is valid.

Theorem 4.1. Let V : R
n → R be a continuously differentiable function such that the following

conditions are satisfied:

(1) V0 is a nonempty, open, and bounded set;
(2) V is a generalized guiding function for Eq. (4.1) on the set V −1(0);
(3) grad V (x) �= 0 for all x ∈ V −1(0);
(4) deg(grad V, V0, 0) �= 0.

Then Eq. (4.1) has at least one T -periodic solution x(·) ∈ Γ(V0).

We provide a scheme of a proof of Theorem 4.1 (a detailed proof can be found in [11, 12]).
Proof.

(a). First, we prove that the assertion of the theorem is valid if Conditions 2 and 3 are assumed to
be satisfied on a set V −1([0, ε]), ε > 0.

Define the homotopy H : [0, T ]× R
n × [0, 1] → R

n as follows:

H(t, x, λ) = −(1− λ)gradV (x(t)) + λf(t, x(t)). (4.4)

Consider the periodic problem

x′(t) = H(t, x, λ) a. e. in λ ∈ [0, 1), (4.5)

x(0) = x(T ). (4.6)

Let λ ∈ [0, 1) and x be a solution of (4.5)-(4.6) such that x ∈ Γ(V0). Let us show that x ∈ Γ(V0), i.e.,
V (x(t)) < 0, for all t from [0, T ]. Suppose that there exists τ from [0, T ] such that V (x(τ)) = 0. This
means that x(τ) ∈ V −1(0) and, by virtue of Condition 3, the relation gradV (x(τ)) �= 0 is satisfied.
Hence, there exists a positive δ such that

gradV (x(τ)) �= 0 for all t ∈ [τ − δ, τ + δ] ∩ [0, T ]. (4.7)

Without loss of generality, assume that τ − δ ∈ (0, T ) and V (x(t)) ∈ [−ε, 0] for all t from [τ − δ, τ ].
Then, applying assumption 2 and relation (4.7), we obtain the inequality

0 ≤ V (x(τ)) − V (x(τ − δ)) =

τ∫

τ−δ

d

dt
V (x(t))dt

=

τ∫

τ−δ

[−(1− λ)‖grad V (x(t))‖2 + λ(grad V (x(t)), f(t, x(t)))
]
dt < 0.

A contradiction is obtained. Thus, either problem (4.1)-(4.2) has a solution on ∂Γ(V0) (in this case,
the theorem is proved) or problem (4.5)-(4.6) is solvable on ∂Γ(V0) for no λ from [0, 1].

Then define the operator

l : dom l := {x ∈ CT : x is absolutrly continuous} → CT , lx = x′.
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Also, for any λ from [0, T ], define the Nemytskii operator

G(·, λ) = GH(·, λ) : CT → CT , (GHx)(t) = H(t, x, λ).

It is easy to verify (see, e.g., [10]) that G(·, λ) is a family of l-compact operators and l is a linear
zero-index Fredholm operator.

The abstract form of (4.5) is

lx = G(x, λ) (4.8)

or

lx = −(1− λ)grad V (x) + λf(·, x).
Due to the homotopic invariance property of the coincidence topology degree, we have the relation

deg(l,H(·, 1),Γ(V0), 0) = deg(l,H(·, 0),Γ(V0), 0).

From Conditions 1 and 4, it follows that

|deg(l,H(·, 0),Γ(V0), 0)| = |deg(grad V,V0, 0)| �= 0.

Then, from the existence property of the coincidence point, we conclude that

l(x) = G(x, λ) if x ∈ Γ(V0).

(b). Now, let Conditions 2 and 3 be satisfied on the set V −1(0).
For this case, the idea of the proof is to construct a sequence of maps fm : R×R

n → R
n such that

‖fm(t, x)‖ ≤ 2αρ(t) + 1 for a. a. t ∈ [0, T ] and x ∈ V0,

lim
‖m‖→∞

fm(t, x) = f(t, x),

and

(grad V (x), fm(t, x)) ≤ 0 for all (t, x) ∈ ([0, T ] \N)× V0,

where N ⊂ [0, T ] is a zero measure set. By virtue of the continuity of the maps gradV and fm, the
last inequality is valid for all (t, x) from [0, T ]× V0.

We consider the periodic problem for the following auxiliary differential equation:

x′(t) = fm(t, x(t)) a. e. in t ∈ [0, T ], (4.9)

x(0) = x(T ). (4.10)

By virtue of the first part (a) of the proof of the theorem, problem (4.9)-(4.10) has at least one
T -periodic solution x∗m(·). Passing to the limit as m → ∞, we obtain the sought solution x∗(·) of
problem (4.1)-(4.2) as the limit point of the sequence x∗m(·) of solutions of (4.9)-(4.10).
4.2. Averaged guiding functions on given sets. As above, let D ⊂ R

n be a nonempty set.

Definition 4.2. A continuously differentiable function V : D → R is called an averaged guiding
function on D for Eq. (4.1) if

T∫

0

(grad V (x(s)), f(s, x(s)))ds ≤ 0 for all x ∈ Γ(D). (4.11)

Remark 4.1. Any generalized guiding function on D for Eq. (4.1) is an averaged guiding function
on D for Eq. (4.1). The inverse assertion is not valid.

The following assertion is valid.

Theorem 4.2. Let V : R
n → R be a continuously differentiable function such that the following

conditions are satisfied:
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(1) V0 and Vr are nonempty, open, and bounded sets, where

r = max{T max
u∈V −1(0)

‖grad V (u)‖2, max
u∈V −1(0)

T∫

0

|(grad V (u), f(t, u))|dt};

(2) V is an averaged guiding function on the set Rn\V0 for Eq. (4.1);
(3) grad V (x) �= 0 for any x from R

n\V0;
(4) deg(grad V,V0, 0) �= 0.

Then Eq. (4.1) has at least one T -periodic solution x from Γ(Vr ∪ V −1(r)).

Proof. First, consider the homotopy H : [0, T ]× R
n × [0, 1] → R

n defined as follows:

H(t, x, λ) = −(1− λ)gradV (x(t)) + λf(t, x(t)).

Let x be a solution of the problem

x′(t) = H(t, x, λ), λ ∈ [0, 1), (4.12)

x(0) = x(T ). (4.13)

If we assume that V (x(t)) ≥ 0 for all t from [0, T ], then, taking into account the periodicity of the
solution and assumption (2), we see that

0 = V (x(T )) − V (x(0)) =

T∫

0

V ′(x(s))ds =

T∫

0

(gradV (x(s)), x′(s))ds

= −(1− λ)

T∫

0

‖grad V (x(s))‖2ds+ λ

T∫

0

(grad V (x(s)), f(s, x(s)))ds < 0.

It follows from the obtained contradiction that there exists t0 from [0, T ] such that

V (x(t0)) < 0, (4.14)

i.e., x(t0) ∈ V0. If

V (x(t)) ≤ 0 for all t ∈ [0, T ],

then assumption (1) yields an a priori estimate for this solution of Eq. (4.12). Otherwise, there exists
τ from [0, T ] such that V (x(τ)) > 0 and, therefore,

max
t∈[0,T ]

V (x(t)) = V (x(τ)) > 0. (4.15)

From (4.14) and (4.15), it follows that there exists σ from [0, T ] such that either

σ < τ, V (x(σ)) = 0, and V (x(t)) > 0 for t ∈ (σ, τ ] (4.16)

or

τ < σ, V (x(σ)) = 0, and V (x(t)) > 0 for t ∈ [τ, σ). (4.17)

For definiteness, consider the case where (4.16) is valid (the case where (4.17) is valid is considered in
the same way). First, we assume that τ �= 0 (and τ �= T ); then, for any positive integer n such that

τ + 1
n < T, define the continuous function xn : [0, T ] → R

n as follows:

xn(t) =

⎧
⎪⎪⎨
⎪⎪⎩

x(σ) if t ∈ [0, σ],
x(t) if t ∈ (σ, τ ],

x(τ + n(σ − τ)(t− τ)) if t ∈ (τ, τ + 1
n ],

x(σ) if t ∈ (τ + 1
n, T ].
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If τ = 0 and the function V (x(·)) attains its maximum at the points 0 and T, then the function xn(·)
is defined for (sufficiently large) values of n such that 0 + 1

n < σ:

xn(t) =

⎧
⎨
⎩

x(τ + n(σ − τ)t) if t ∈ [0, 1n ],

x(σ) if t ∈ ( 1n, σ],
x(t) if t ∈ (σ, T ].

In any case, xn(·) is a sequence of continuous and T -periodic functions such that 0 ≤ V (xn(t)) ≤
V (x(τ)) and the sequence converges on [0, T ] to the function ξ(·) defined by the relation

ξ(t) =

{
x(t) if t ∈ [σ, τ ],
x(σ) if t ∈ [0, T ] \ [σ, τ ],

and 0 ≤ V (ξ(t)) ≤ V (x(τ)). It follows from assumption (2) that

T∫

0

(gradV (xn(s), f(s, xn(s)))ds ≤ 0

provided that n is sufficiently large. Then

T∫

0

(grad V (ξ(s), f(s, ξ(s))))ds ≤ 0

and we obtain the relation

0 >

⎛
⎜⎝

τ∫

σ

+

∫

[0,T ]\[σ,τ ]

⎞
⎟⎠

[−(1− λ)‖grad V (ξ(s))‖2 + λ(gradV (ξ(s)), f(s, ξ(s)))
]
ds

=

τ∫

σ

d

dt
V (x(s))ds +

∫

[0,T ]\[σ,τ ]

[−(1− λ)‖grad V (ξ(s))‖2 + λ(grad V (ξ(s)), f(s, ξ(s)))
]
ds

= V (x(τ)) +

∫

[0,T ]\[σ,τ ]

[−(1− λ)‖grad V (x(σ))‖2 + λ(grad V (x(σ), f(s, x(σ))
]
ds.

Due to assumption (1), this implies the relation

V (x(τ)) <

∫

[0,T ]\[σ,τ ]

[
(1− λ)‖grad V (x(σ))‖2 − λ(gradV (x(σ), f(s, x(σ))

]
ds

≤ max{T max
u∈V −1(0)

‖grad V (u)‖2, max
u∈V −1(0)

T∫

0

|(gradV (u), f(t, u))|dt} = r.

Therefore, the inequality V (x(t)) < r holds for possible solutions of Eq. (4.12) and for all t ∈ [0, T ].
Thus, either problem (4.1)-(4.2) has a solution on ∂Γ(Vr) (in this case, the theorem is proved)

or problem (4.12)-(4.13) has no solution on ∂Γ(Vr) for λ from [0, 1]. Then, considering an equation
similar to (4.8) and repeating the reasoning from the proof of Theorem 4.1, we obtain the relation

deg(l,H(·, 1),Γ(Vr), 0) = deg(l,H(·, 0),Γ(Vr), 0) = |deg(grad V,Vr, 0)| �= 0.

Then the assertion of the theorem follows from the existence property of the coincidence point.
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Corollary 4.1. Let there exist a positive r such that a continuously differentiable function V : Rn → R

is an averaged guiding function on R
n \B(r) for Eq. (4.1) and

lim
‖x‖→+∞

V (x) = ±∞.

Then problem (4.1)-(4.2) has at least one T -periodic solution.

4.3. Asymptotically averaged guiding functions on given sets. Results of Sec. 4.2 can be
generalized as follows.

Definition 4.3. A continuously differentiable function V : D → R is called an asymptotically averaged
guiding function for Eq. (4.1) if there exists a function α(·) from L1

+([0, T ],R) such that the following
conditions are satisfied:

(1) (grad V (x), f(t, x)) ≤ α(t) for all x from R
n and for a. a. t from [0, T ];

(2)
T∫
0

lim sup
‖x‖→∞

(grad V (x(s)), f(s, x(s)))ds < 0.

The following assertion is valid.

Theorem 4.3. If a positive r is sufficiently large, then any asymptotically averaged guiding function
for Eq. (4.1) is an averaged guiding function on R

n \B(r) for the said equation.

Corollary 4.2. Let a continuously differentiable function V : Rn → R be an asymptotically averaged
guiding function for Eq. (4.1) and

lim
‖x‖→∞

V (x) = ±∞.

Then problem (4.1)-(4.2) has at least one T -periodic solution.
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4. S.V. Kornev and V.V. Obukhovskĭı, “On integral guiding functions for functional differential
inclusions,” In: Topol. Methods Nonlin. Anal., Voronezh. Gos. Univ., Voronezh, 87–107 (2000).
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7. M.A. Krasnosel’skĭı, Displacement Operators along Trajectories of Differential Equations [in Rus-
sian], Nauka, Moscow (1966).
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