
Journal of Mathematical Sciences, Vol. 233, No. 1, August, 2018

THE LEIBNIZ DIFFERENTIAL AND THE PERRON–STIELTJES INTEGRAL

E. V. Shchepin UDC 517.22+517.3+517.518.12+517.518.126

Abstract. We implement Leibniz’s idea about the differential as the length of an infinitesimally small
elementary interval (a monad) in a form satisfying modern standards of rigor. The concept of sequential
differential introduced in this paper is shown to be in good alignment with the standard convention of
the integral calculus. As an application of this concept we simplify and generalize the construction of the
Perron–Stieltjes integral.

1. Introduction

The very first exposition of mathematical analysis in the famous book by Marquis de L’Hôpital [1]
was in essence axiomatic. Among the axioms of the infinitesimal calculus formulated by de L’Hôpital,
there is a geometric axiom that asserts that each curved line is a polygonal line with infinitely small
rectilinear segments. This axiom fits well with Cavalieri’s method of indivisibles (which appeared before
the emergence of the differential calculus), who perceived that a rectilinear interval consists not of points,
but rather of infinitely small indivisible intervals. These perceptions brought to life the key concept of
calculus—the concept of the Leibniz differential and the Leibniz notation for the integral and the derivative
(which are based on this concept). Leibniz’s wonderful notation was never abandoned since, despite the
revision of the entire foundation of the calculus. It was simply given a new sense, which is sometimes
quite far from the original meaning. The key concept in Leibniz’s infinitesimal calculus (as distinct from
Newton’s calculus) is the differential, through which both the integral and the derivative are expressed.
The Leibniz differential of an independent variable is an infinitely small constant. However, in the modern
development of the subject, the differential is a function (a differential form). Differential forms are known
to be contravariant (when changing an integration variable), whereas both the differential in Leibniz’s
sense and the differential put forward in the present paper are covariant.

Leibniz assumed that the points of the real line that represent a variable quantity x are indeed
infinitely small intervals of fixed infinitely small length—the so-called monads of an interval. The length
of a monad, denoted by dx, was called the differential of a variable x. The differential of a function f(x)
with a fixed x meant the variation of a function on the corresponding infinitely small interval df(x).

We put all these intuitive perceptions of Leibniz in a rigorous form in the sense of Cauchy, who
interpreted an infinitely small quantity as a sequence tending to zero. It should be noted that the
“nonstandard analysis,” which proposed a rigorous conception of infinitely small quantities, did not give
an adequate interpretation of the Leibniz differential. In the nonstandard analysis, a monad of a standard
point, which is defined as the set of infinitely close points, has no length. The concept of the Leibniz
differential naturally leads us to the construction of an integral in the sense of Perron. In the present
paper, this concept of an integral is given in the form of the integral of infinitesimal distributions. Note
that distributions of this kind are also capable of representing generalized functions. This being so, the
emerging concept of the integral is to some extent superior to all the existing concepts.

Under this approach, the differential forms are replaced by the infinitesimal forms, which are functions
associating number sequences with infinitely small intervals. The integration of Stieltjes-type infinitesimal
forms leads exactly to the well-known concept of the Perron–Stieltjes integral [6].
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The after-Leibnizian history of the integral, which started with the Riemann integral and ended
with the Kurzweil–Henstock integral, eventually led to the concept of the differential [3, 4]—however,
this concept was overcomplicated and defined on the basis of the integral. The concept of the Leibniz
differential, which we put forward below, rehabilitates the priority of the differential with respect to the
integral.

The fairly general concept of the Leibniz integral was successfully implemented by Kolmogorov [2] in
a form meeting all the modern requirements of rigor; however, he did not introduce the concept of the
differential, even though he used the differential in his notation.

In the present paper, the author’s aim was not only to further generalize the concept of an integral,
however being concerned only with the integration over intervals on the real line, but rather precisely
reproduce Leibniz’s intuitive perceptions, which he followed in introducing his remarkable notation. The
most important contribution of Leibniz to mathematics was the introduction of the notation

∫
f(x) dx

for the integral. At first sight, the introduction of dx seems superfluous—indeed, all the information
required for integral evaluation is already contained in f(x). However, the presence of a differential in
the integrand allows one to correctly transform the integral when changing the integration variable. The
proposed concept of the differential fits perfectly with the well-established system of notation, giving them
their original clear and transparent sense, which perfectly matches the modern generally accepted sense.

2. The Structure of the Continuum

What is the continuum made of? Points, infinitely small intervals? A question of this sort was of
special relevance for the 18th century mathematicians. An inexperienced reader might think that there
is really no difference. This is nothing but philosophy. However, the difference between a point and an
interval is as follows: all sizes of a point are zero, whereas infinitely small quantities may well have finite
relations. For example, a two-fold increase in all sizes corresponds to doubling the length of an infinitely
small interval, while a point will be transformed into the same sizeless point. This is why Leibniz and
Euler’s intuitive perceptions about the continuum are better matched to the position expressed by the de
L’Hôpital’s geometric axiom. Later Dedekind put forward an elegant theory of real numbers, which put
an end to the historic controversy. It looked like the scales had finally tipped towards points. The concept
of the continuum, which we introduce below, rehabilitates the concept of infinitely small intervals, without
affecting the entitlement of points. In other words, our answer to the “points-or-intervals” alternative is
as follows: both points and intervals.

Infinitesimal Intervals. Curly brackets will be used to denote the sets consisting of the elements inside
the brackets. By an infinitely small or infinitesimal interval we shall mean a sequence of nested intervals
{[ak, bk]}1 whose lengths tend to zero. The length of an infinitely small interval is the sequence of the
lengths of these intervals {bk − ak}. So, the length of an infinitely small interval is a sequence that
monotonically tends to zero.

Infinitesimal Partitions. By square brackets [x0, x1, . . . , xn] we shall denote the set of intervals of the
real line, whose end-points lie in the set {x0, x1, . . . , xn} and whose interiors do not contain points of
this set. A set of intervals [x0, x1, . . . , xn] is called a partition of an interval [a, b] generated by a set
{x0, x1, . . . , xn} if a and b are, respectively, the smallest and largest elements of this set. If the points
of a set {x0, x1, . . . , xn} are arranged in an increasing order (xi ≤ xi+1), then x0 = a, xn = b, and so
[x0, x1, . . . , xn] is the set of intervals {[xi, xi+1]}.

If a set of points is denoted by one letter, say P , then by [P ] we will denote the partition of an interval
generated by this set. If one set of points is contained in another one, P1 ⊂ P2, and if both P1 and P2

generate partitions [P1] and [P2] of the same interval, then the second partition is called a refinement of

1It would be more correct to write {[ak, bk]}∞k=1 or at least {[ak, bk]}k, but our convention is that the presence of
a subscript k without more specific information in an expression in curly brackets means that the range of its variation is N,
the set of positive integers.
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the first one. A sequence of partitions [P1], . . . , [Pn], . . . of increasing refinement of an interval [a, b] is
called a refinement of this interval. A nested sequence of intervals {Ik} is called a monad of a refinement
[P1], . . . , [Pn], . . . if Ik ∈ [Sk] for any k. A refinement of an interval is called infinitesimal if all its monads

are infinitely small. For a given interval, nonterminal points from the union
∞⋃

k=1

Pk are called cutting

points for a refinement [P1], . . . , [Pn], . . . . For each cutting point x its order is defined as the minimum
of k for which x ∈ Pk.

Together with partitions of intervals, we can also consider partitions of the entire line or noncompact
intervals. Moreover, one may also consider partitions with infinite number of points of a fixed order. For
example, we let P0 agree with the set of integers Z and define Pk as the set decimal fractions of the form
n/10k, where n ∈ Z. In this case, the sequence {[Pk]} forms an infinitesimal partition of the real line,
which is called the decimal partition.

Points and Monads. For given infinitesimal partition on an interval, boldface Latin lower case letters
will be used to denote monads of this partition; the corresponding normal-weight letters will denote the
points. Under this convention, the same letter will be used to denote a point and the monad that has
this point as a limit. For example, for the monad x we denote by x its limit point. In general, a monad x
is not uniquely determined by a point x. However, the uniqueness here is secured if a limit point x is
internal for all intervals representing the monad of a sequence. If a limit point of a monad is a cutting
point of a partition, then there are exactly two monads of the partition whose limit is this point: the left
and right ones.

For an infinitesimal partition [P1], [P2], . . . of an interval [a, b] and a point x ∈ [a, b], we let x + 0
denote the sequence in which the kth term is the point from Pk that is nearest to x, distinct from x and
lying to the right of x. We denote by x− 0 the sequence in which the kth term is the point from Pk that
is nearest to x, distinct from this point, and lying to the left of x.

This convention provides the means for denoting various infinitesimal intervals that have x as their
limit point. Namely, given x − 0 = {ak} and x + 0 = {bk}, we have three infinitesimal intervals {[ak, x]},
{[x, bk]}, and {[ak, bk]}, which will be written for brevity as [x − 0, x], [x, x + 0], and [x − 0, x + 0],
respectively.

If a point x is a cutting point of a partition, then [x − 0, x] and [x, x + 0] agree, starting from some
number (of order x), with the left and right monads of the partition that have x as their limit point.
The corresponding monads, which are called one-sided, will be denoted, respectively, as x ± 0. If x is
neither a cutting point of a partition nor a terminal point for the interval, then [x− 0, x+0] is the unique
monad of the partition that has x as its limit point. Such a monad is called two-sided. In this case, the
infinitesimal intervals [x − 0, x] and [x, x + 0] will be called half-monads.

The monads of the decimal partition of the unit interval [0, 1] on the real line are in a one-to-one
correspondence with the infinite decimal fractions; the points with nonunique decimal notation as exactly
the limit points for pairs of one-sided monads.

3. Sequential Distributions

Monadic Distributions. By a monadic sequential distribution we shall mean a mapping assigning with
any monad of some refinement a number1 sequence.

A most important example of a monadic distribution is furnished by the sequential differential of
length, which associates with any monad x its length—the sequence (written dx) of lengths of the intervals
that it contains.

The sequential2 differential of a function f(x) on a monad x = {[ak, bk]} of some refinement (written
df(x)) is defined as the sequence of differences {f(bk)−f(ak)}. However, when speaking of the differential

1In the present paper, we consider only real numbers.
2In what follows we shall drop the adjective “sequential,” because in the present paper there will be no other distributions

and differentials.
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of a function at a point, there is an ambiguity due to an ambiguous correspondence between points
and monads. This, in turn, gives us the notion of the right and left differentials at cutting points of
a refinement.

Any number function f(x) on a refined interval generates in a natural way a monadic distributions
by associating with a monad x a constant sequence of values of a function at the limit point of the
monad. In other words, the distribution generated by the function f(x) can be described by the formula
f(x)k = f(x) for all k.

However, for discontinuous functions at ordinary discontinuities (if such points are cutting points of
a refinement) it is more natural to define the value of a function at the left and right monads of a point
of discontinuity as, respectively, its limits on the left and right; that is,

f(x + 0) = lim
t→x+0

f(t) and f(x − 0) = lim
t→x−0

f(t).

For example, for infinite decimal fractions, which represent monads of a decimal refinement of the
real line, it is reasonable to define the integer part as the number appearing before the decimal point.
(For instance, we assume in this way that the integer part of the monad 0.9999 . . . is zero.)

A monadic distribution is also generated by any sequence of functions {fk(x)}. For example, with
the monad x one may associate the sequence {fk(x)}. This being so, since sequences of functions are
capable of representing generalized functions, the language of monadic distributions is applicable to the
description of calculations involving generalized functions.

Another way of generation of a monadic distribution for the conventional and generalized function
α(x) is as follows: to a monad x = {[ak, bk]} one assigns a sequence of the averaged values of α(x) on the
monad intervals, that is, by the formula

α(x) =
{

1
bk − ak

bk∫

ak

α(x) dx

}

. (1)

Arithmetic operations with monadic distributions are determined termwise for the corresponding
sequences.

So, for any pair of functions f(x), g(x) on a refined interval, the monadic distributions f(x) dg(x)
and g(x) df(x) are defined.

Function Linearity of the Definite Differential. Consider an interval [a,b] with fixed infinitesimal
partition. It is easily seen that, for any pair of functions f(x), g(x) on [a, b] and any constants λ, μ, for any
x ∈ [a,b] the differential of the linear combination of these functions is equal to the linear combination
of their differentials (the linearity of the differential)

d
(
λf(x) + μg(x)

)
= λ df(x) + μdg(x). (2)

Comparison of Differentials. A sequence having only a finite number of nonpositive terms is called
eventually nonnegative. A monadic distribution is called eventually nonnegative if so are all its values.

Lemma 3.1. If differential of a function f(x) on some refinement of an interval [a, b] is eventually
nonnegative, then f(b) ≥ f(a).

Proof. Assume on the contrary that f(b) < f(a). Consider the partition of the interval [a, b] from the
given refinement. Let a = x0 < x1 < · · · < xn = b be the sequence of end-points of the intervals from
this partition. We have f(xn) < f(x0), and hence, the inequalities f(xk+1) ≥ f(xk) cannot hold for
all k < n. Therefore, there exists an interval [a1, b1] of the first partition, for which the value of the
function at the right end-point is smaller than the value at the left end-point. The second partition of the
interval refines the first one, and hence, a similar argument shows that inside the interval [a1, b1] there is
an interval [a2, b2] of the second partition, for which the value at the right end-point is smaller than the
value at the left end-point. Continuing in this way, we define the monad {[ak, bk]} with negative sequence
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of differences {f(bk) − f(ak)}, which however contradicts the assumption about eventual nonnegativity
of the differential.

A number sequence {xk} will be said to eventually majorize another sequence {yk} (written
{xk} � {yk}) if the inequality xk > yk holds for all sufficiently large k. We say that one monadic distri-
bution eventually majorizes another one if the value of the first one on any monad eventually majorizes
the value of the second distribution on the same monad.

Theorem 3.1 (comparison). If df(x) � dg(x) for all monads of a given infinitesimal partition on an
interval [a, b], then f(b) − f(a) ≥ g(b) − g(a)

Proof. Indeed, the differential of the difference d
(
f(x) − g(x)

)
in this case is nonnegative. Hence,

f(b) − g(b) ≥ f(a) − g(a) by Lemma 3.1.

4. Integration of Distributions

The Upper Integral. The set of monads of an interval [a, b] with fixed infinitesimal partition will be
denoted by [a,b]. The upper integral

∗
b∫

a

Φ(x)

of a distribution Φ(x), x ∈ [a,b], is defined as the infimum of the differences f(b) − f(a) of functions,
whose differentials eventually majorize Φ(x). From Theorem 3.1 it follows that, for any function f(x) on
an interval [a, b],

∗
b∫

a

df(x) = f(b) − f(a). (3)

Monotonicity of the Integral. As a direct consequence of the definition of the upper integral, we have
the following rule for integration of inequalities:

if Φ(x) ≺ Ψ(x) for all x ∈ [a,b], then ∗
b∫

a

Φ(x) ≤ ∗
b∫

a

Ψ(x). (4)

Sublinearity of the Upper Integral. Let Φ1 and Φ2 be two infinitesimal distributions on the same
infinitesimal partition of an interval [a,b]. Then

∗
b∫

a

(
Φ1(x) + Φ2(x)

) ≤ ∗
b∫

a

Φ1(x) + ∗
b∫

a

Φ2(x). (5)

Homogeneity of the Upper Integral. Let λ be an arbitrary positive constant and Φ(x), x ∈ [a,b],
be any distribution. Then

∗
b∫

a

λΦ(x) = λ∗
b∫

a

Φ(x). (6)
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The Lower Integral. The lower integral of a distribution can be defined from the following equality:

∗

b∫

a

Φ(x) = −∗
b∫

a

−Φ(x). (7)

The properties of the lower integral are similar to those of the upper integral. In particular, a positive
factor can be taken out before the lower integral sign, and moreover, the union theorem for integrals also
holds for the lower integral. However, in contrast to the upper integral, the lower integral of the sum of
distributions satisfies the opposite inequality:

∗

b∫

a

(
Φ1(x) + Φ2(x)

) ≥ ∗

b∫

a

Φ1(x) + ∗

b∫

a

Φ2(x). (8)

Interval Additivity. If {[Pk]} ({[Qk]}) is an infinitesimal partition of an interval [a, b] (respectively,
[b, c]), then, clearly, {[Pk ∪ Qk]} is an infinitesimal partition of the interval [a, c], the monads of the
partitions being united:

[a,b] ∪ [b, c] = [a, c]. (9)

If (9), then, for any distribution Φ(x) on [a, c],

∗
b∫

a

Φ(x) + ∗
c∫

b

Φ(x) = ∗
c∫

a

Φ(x), ∗

b∫

a

Φ(x) + ∗

c∫

b

Φ(x) = ∗

c∫

a

Φ(x). (10)

The Exact Integral. It is easily seen that, for any distribution,

∗

b∫

a

Φ(x) ≤ ∗
b∫

a

Φ(x). (11)

If the upper and lower integrals of a distributions are equal, then the distribution is called integrable, and
the common value of the upper and lower integrals is called the (exact) integral of this distribution. The
exact integral exists for the differential of any function; it is equal to the difference of the values of the
function at the interval terminals.

Hereditarity of Integrability. If (9) holds, then for any distribution Φ(x) we have that

b∫

a

Φ(x) +

c∫

b

Φ(x) =

c∫

a

Φ(x) (12)

by the interval additivity of one-sided integrals. Moreover, this equality holds unconditionally, that is, the
existence of the left-hand side implies the existence of the right-hand side, and vice versa. In particular,
this is why the integrability property is hereditary in subintervals—the integrability on some interval
implies that on any subinterval of this interval.

Linearity of the Integral. If distributions Φ(x) and Ψ(x) are integrable on [a,b], then, for any constants
λ and μ, so is their linear combination λΦ(x) + μΨ(x), and moreover,

b∫

a

(
λΦ(x) + μΨ(x)

)
= λ

b∫

a

Φ(x) + μ

b∫

a

Ψ(x).
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5. Integration of Infinitesimal Forms

The Indefinite Differential of a Function. The differential of a function, in the way it was treated
above, assumed definite values on monads of a given infinitesimal partition of an interval. Moreover, the
formula in terms of which the differential of a given monad was defined was independent of a partition.
This formula defines a function that associates with any infinitesimal interval {[ak, bk]} the sequence
of differences {f(bk) − f(ak)}. This function of an infinitesimal interval will be called the indefinite
(sequential) differential of a function f(x). The differential of a function on an infinitesimal interval
{[ak, bk]} with a limit point x is equal to the sum of its values on the left {[ak, x]} and right {[x, bk]}
halves of this interval. Hence, we may restrict the domain of a differential by considering only one-sided
infinitesimal intervals. The good point of the one-sided intervals is that they are uniquely characterized
by their limit point and length. Thus, the differential of a function f(x) can be defined as a function of
two variables: a point x and a sequence of increments dx, the latter having the values

f(x + dx) − f(x) or f(x) − f(x − dx)

depending on whether x is the left- or the right-end of this interval. If dx is allowed to assume negative
values, then the formula for the differential can be put in a unified way as follows:

df(x, dx) = sgn(dx)
(
f(x + dx) − f(x)

)
. (13)

However, in what follows, we shall write for brevity df(x) to denote the differential of a function without
explicitly indicating its dependence on dx. So, for a fixed x, the differential df(x) is a function of an
infinitesimal sequence of increments. In particular, the differential dx of an identity function x is an
x-independent function of an increment.

Infinitesimal Forms. By an infinitesimal form at a point x we shall mean a function associating with
any infinitesimal interval for which x is a boundary point some number sequence. The product f(x) dg(x)
of the differential of one function of real variable g(x) by another f(x) serves as a basic example of an
infinitesimal form. Here, the value of a function f(x) on an infinitesimal interval is defined as its value at
the limit point of this interval. Such forms will be also called Stieltjes forms.

Infinitesimal forms can be added, multiplied, and divided, and hence any arithmetic expression involv-
ing functions and their differentials is an infinitesimal form. Moreover, if an infinitesimal form D1(x, dx)
assumes infinitely small values, then it can be substituted instead of dx in another infinitesimal form
D2(x, dx), thereby forming the superposition D2

(
x, D1(x, dx)

)
, which is also an infinitesimal form.

Integration of an Infinitesimal Form. For any infinitesimal partition of an interval [a,b], the infini-
tesimal form D(x, dx) generates the monadic distribution D(x) by the formula

D(x) = D(x, d[x − 0, x]) + D(x, d[x, x + 0]), (14)

where d[x − 0, x] and d[x, x + 0] denote the lengths of the corresponding half-monads.
In particular, the indefinite differential df(x) of a function generates the definite differential—this is

the monadic distribution df(x), whose integral equals the difference of the values of the function f(x) at
the end-points of the interval for any infinitesimal partition of this interval. The following definition is
motivated by this remark.

An infinitesimal form D(x, dx) is called Leibniz integrable on an interval [a, b] if, for any infinitesimal
partition of [a, b], the monadic distribution D(x) generated by it is integrable and all the integrals obtained
for various partitions are equal. The common value of the integrals of these distributions is denoted by

b∫

a

D(x, dx)

and is called the definite integral of an infinitesimal form D(x, dx) over the interval [a, b].
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The upper integral of an infinitesimal form D(x, dx) over an interval [a, b] is, by definition, the supre-
mum of the upper integrals over all monadic distributions generated by it. Similarly the lower integral of
an infinitesimal form D(x, dx) over an interval [a, b] is the infimum of the lower integrals over all monadic
distributions generated by it. Clearly, this definition preserves all the conventional relations between
one-sided integrals.

Comparison of Infinitesimal Forms. An infinitesimal form D1(x, dx) will be said to eventually ma-
jorize an infinitesimal form D2(x, dx) at a point x (written D1(x, dx) � D2(x, dx)) if, for any infinitely
small sequence dx, we have the eventual majorization D1(x, dx) � D2(x, dx).

The majorization relation of forms D1(x, dx) � D2(x, dx), when satisfied for all x ∈ [a, b], implies
the majorization relation for the monadic distributions D1(x) � D2(x) generated by them. In turn, the
latter majorization, as is seen directly from the definition of the integral of a distribution, implies the
corresponding inequality for the upper, lower, and exact integrals over an interval on which D1(x, dx) �
D2(x, dx). Hence, we have

b∫

a

D1(x, dx) ≥
b∫

a

D2(x, dx).

Linearity and Additivity. The linearity and interval additivity of the integral for infinitesimal forms
are similar to the corresponding properties of the integrals of distributions and directly follow from these
properties.

6. Transformation of the Integral

Integration by Parts. The following identity is easily verified for any functions:

f(x) dg(x) = g(x) df(x) + d
(
f(x)g(x)

)
+ df(x) dg(x). (15)

As an immediate consequence of this identity, we have the following theorem for the Leibniz integral.

Theorem 6.1. Let
b∫

a

|df(x) dg(x)| = 0.

Then the Stieltjes form f(x) dg(x) is integrable on an interval [a, b] if and only if the form g(x) df(x) is
integrable and

b∫

a

f(x) dg(x) = f(b)g(b) − f(a)g(a) −
b∫

a

g(x) df(x). (16)

For the classical Riemann–Stieltjes integral, the corresponding theorem has the same statement, but
without the condition on the integral of the product of differentials. The reason is that the mere existence
of the Riemann–Stieltjes integral

b∫

a

f(x) dg(x)

already implies that the Leibniz integral
b∫

a

df(x) dg(x)

is zero—this can be readily checked by representing an integral as the limit of integral sums, as will be
done in the last section of the paper. Assume that f(x) is continuous (that is, if df(x, dx) is infinitely
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small with infinitely small dx, x ∈ [a, b]) and that g(x) has finite variation (that is,
b∫

a
|dg(x)| < ∞)—these

are the standard conditions implying the existence of the Riemann–Stieltjes integral. Then the equality

b∫

a

|df(x) dg(x)| = 0 (17)

follows, first, on integrating the eventual inequality

|df(x) dg(x)| ≺ ε|dg(x)|,
which holds for any ε > 0, and second, by making ε → 0.

Change of the Integration Variable.

Theorem 6.2. Let x(t) be an increasing continuous mapping, x(t0) = x0 and x(t1) = x1. Then

∗
x1∫

x0

D(x, dx) = ∗
t1∫

t0

D
(
x(t), dx(t, dt)

)
.

Proof. We consider an infinitesimal partition of the interval [t0, t1]. Its image under x(t) is an infinitesimal
partition of the image interval [x0,x1].

Given ε > 0, we fix a function g(x) such that, for all x ∈ [x0,x1],

D(x) ≺ dg(x) and ∗
x1∫

x0

D(x) + ε > g(x1) − g(x0).

Hence, for all t ∈ [t1, t2],

D
(
x(t), dx(t, dt)

) ≺ dg
(
x(t)

)
and ∗

t1∫

t0

D
(
x(t)

)
+ ε > g

(
x(t1)

) − g
(
x(t0)

)
.

Since ε is arbitrary and since g
(
x(t1)

) − g
(
x(t0)

)
= g(x1) − g(x0), it follows that the integrals agree:

∗
x1∫

x0

D(x) = ∗
t1∫

t0

D
(
x(t)

)
.

Therefore, the sets of numbers representing the upper integrals of the above forms over various infinitesimal
partitions of the corresponding intervals are equal. Hence, their suprema are also equal. In other words,
the integral

∗
t1∫

t0

D
(
x(t), dx(t, dt)

)

is equal to the integral

∗
x1∫

x0

D(x, dx).
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Replacement of the Differential.

Theorem 6.3. If

∗
b∫

a

|g(x)| dx < ∞,

then, for any differentiable function f(x), the Leibniz integrals are equal:

∗
b∫

a

g(x)f ′(x) dx = ∗
b∫

a

g(x) df(x).

Proof. Given a positive ε, we have the following inequalities for the infinitesimal forms:

−ε dx ≺ f ′(x) dx − df(x) ≺ ε dx. (18)

Hence,
−ε|g(x)| dx ≺ g(x)f ′(x) dx − g(x) df(x) ≺ ε|g(x)| dx. (19)

As a result, we have
g(x)f ′(x) dx ≺ g(x) df(x) + ε|g(x)| dx.

Integrating this inequality, we obtain

∗
b∫

a

g(x)f ′(x) dx ≤ ∗
b∫

a

g(x) df(x) + ε∗
b∫

a

|g(x)| dx.

Making ε → 0 in this inequality, we find that

∗
b∫

a

g(x)f ′(x) dx ≤ ∗
b∫

a

g(x) df(x). (20)

On the other hand, using (19), one may get the opposite inequality:

g(x) df(x) ≺ g(x)f ′(x) dx + ε|g(x)| dx.

Integrating this inequality and making ε → 0, we get the reverse inequality to (20).

By using in combination the theorem on the change-of-variable in an infinitesimal form and the
change-of-differential theorem, we arrive at the following formula for the change of variable in an integral
of a function:

∗
b∫

a

f(x) dx = ∗
β∫

α

f
(
x(t)

)
x′(t) dt (21)

in the case where x(t) is an increasing mapping of an interval [α, β] onto [a, b] and

∗
b∫

a

|f(x)| dx < ∞.

In particular, if f(x) is identically 1, then we get the fundamental theorem of calculus (the Newton–Leibniz
formula).

Corollary 6.4. If a function f(x) is differentiable on an interval [a, b], then the Stieltjes form f ′(x) dx
is Leibniz integrable on [a, b] and

b∫

a

f ′(x) dx = f(b) − f(a).
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7. Integration of Difference Forms

Difference Forms. Of primary interest for integration are infinitesimal forms generated by difference
forms. Namely, by a difference form we shall mean a real function D(x,Δx) of two real variables, of which
the first one is known as a (base) point, while the second one is called an increment. For example, by
Δf(x) we denote the (indefinite) difference of a function f(x), which is defined as

Δf(x) = f(x + Δx) − f(x).

Given a pair of functions f(x), g(x), the Stieltjes difference form f(x)Δg(x) is defined. Any difference
form D(x,Δx) generates the infinitesimal form D∗(x, dx) by the formula

D∗(x, dx) = {D(x, dxk)}∞k=1, (22)

where dx = {dxk}. So, the infinitesimal Stieltjes form f(x) dg(x) is generated by the corresponding
difference form.

Lemma 7.1. If infinitesimal forms D∗
1(x, dx) and D∗

2(x, dx) are generated by difference forms D1(x,Δx)
and D2(x,Δx), respectively, and if D∗

1(x, dx) ≺ D∗
2(x, dx) at a point x, then there exists ε > 0 such that

D1(x, δ) ≤ D2(x, δ)

for any δ such that |δ| ≤ ε.

Proof. Assuming the contrary, we get a sequence {δk} tending to zero for which the reverse inequality
holds. From this sequence one may take a monotone decreasing subsequence on which the condition of
eventual domination of the infinitesimal forms would be violated.

A difference form D1(x,Δx) will be said to infinitesimally majorize another difference form D2(x,Δx)
at a point x, which we write as

D1(x,Δx) � D2(x,Δx),

if there exists ε > 0 such that, for all δ ∈ [−ε, ε],

D1(x, δ) ≥ D2(x, δ). (23)

By Lemma 7.1, the infinitesimal majorization for difference forms is equivalent to the eventual majorization
of the corresponding infinitesimal forms.

The Perron–Stieltjes Integral of a Difference Form. We define the upper Perron–Stieltjes integral
of a difference form D(x,Δx) as follows:

∗
b∫

a

D(x,Δx) = inf{F (b) − F (a) | ΔF (x) � D(x,Δx)}, (24)

where the infimum is taken over all majorants of the form (a function is a majorant of a form if its
difference infinitesimally majorizes this form). The lower and exact Perron–Stieltjes integrals are defined
in the standard way on the basis of the upper one.

Theorem 7.1. The upper Perron–Stieltjes integral of a difference form D(x,Δx) is equal to the upper
Leibniz integral of the associated infinitesimal form D∗(x, dx).

Proof. If ΔF (x) � D(x,Δx) for all x ∈ [a, b], then dF (x) � D∗(x, dx) by Lemma 7.1. Hence, for any
infinitesimal partition of [a, b], we have the inequality

∗
b∫

a

D(x, dx) ≤ F (b) − F (a),
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which, since both F (x) and the partition are arbitrary, implies the inequality for the integrals,

∗
b∫

a

D(x, dx) ≤ ∗
b∫

a

D(x,Δx).

To prove the reverse inequality, we consider the upper Leibniz integral of the infinitesimal form

F (y) = ∗
y∫

a

D∗(x, dx)

as a function of the upper limit. For any positive ε, the differential of F (y) + εy infinitesimally majorizes
D(x,Δx), and hence, it will allow one to estimate from above the integral of the difference form in terms
of the integral of the infinitesimal form plus ε(b−a). Making ε tend to zero, we conclude that the integral
of the difference form is not greater than the integral of the corresponding infinitesimal form.

As a corollary of this theorem, we immediately see that the Perron–Stieltjes integrability of a difference
form is equivalent to the Leibniz integrability of the infinitesimal form generated by it. Moreover, the
Perron–Stieltjes and Leibniz integrals for the corresponding forms are equal.

8. Integral as the Limit of Integral Sums

The Kurzweil–Henstock Integral. Eventually, the Riemann and Riemann–Stieltjes integral sums
were found to be adequate for the purposes of the theory of integral of functions of one variable. The
problem of convergence of integral sums to the integral was solved with the proposal of the variable-scale
Kurzweil–Henstock filter, which secured this convergence. At first sight, the problem of integration of
non-Stieltjes forms, like the form df(x) dg(x), does not call for the use of a markup on partitions, and
hence it becomes unclear what filter should be used. It turns out that a markup is also required in this
situation. Even though it has no effect on the integral sums, it is capable of controlling the sizes of the
intervals in a partition in order to ensure the convergence of integral sums.

A function associating with each interval of a partition some (marked) point of this interval will be
called a markup of the partition. By a marked partition we shall mean a pair consisting of a partition
and its markup. A marked point in an interval I will be denoted by I∗.

A scale (see [5]) on some set is any nonnegative function on this set. A positive scale is a scale
not assuming zero values. A scale δ1(x) is said to be smaller than another scale δ2(x) if the inequality
δ1(x) < δ2(x) is satisfied for all x from the set under consideration.

A scale of a marked partition of an interval [a, b] is a function defined on this interval that vanishes
outside the marked points of this partition and assumes at a marked point the value equal to the maximum
distance of this marked point from the end-points of the interval in which it is marked. The scale of
a marked partition [P ]∗ will be denoted by [P ]∗(x).

We define the value of a difference form D(x,Δx) on an interval I = [c, d] containing a base point x
as follows:

D(x, I) = D(x, d − x) + D(x, c − x). (25)

Let [P ] be a partition of an interval [a, b] with markup ∗. The integral sum over this marked partition
for a difference form D(x,Δx) is defined as

∑

I∈[S]
D(I∗, I). (26)

A difference form D(x,Δx) is said to be Kurzweil–Henstock integrable to an integral I if, for any
ε > 0, there exists a positive scale δ(x) such that the integral sum of this form over any marked partition
of smaller scale differs from I by less than ε.
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The Topology on Scales. Now we define a topology on the set of all scales as follows: this topology is
generated by open sets of the form {δ′(x) | δ′(x) < δ(x)}, where δ(x) is an arbitrary positive scale.

We let 0(x) denote the zero scale (that is, the function that is identically zero). In this case, the
Kurzweil–Henstock integral is defined as the limit of the integral sums:

b∫

a

D(x,Δx) = lim
[P ]∗(x)→0(x)

∑

I∈[P ]

D(I∗, I). (27)

Let Q∗ be some set from [a, b] consisting of nonoverlapping intervals with marked points. We say
that Q∗ is contained in a marked partition [P ]∗ of this interval (written Q∗ ⊂ [P ]∗) if [P ] contains Q and
if the markups from [P ]∗ and Q∗ coincide on all intervals from Q. By Q∗(x) we denote the scale of Q∗;
that is, the function that differs from zero only at marked points from Q∗.

Lemma 8.1. If a form D(x,Δx) is Kurzweil–Henstock integrable on [a, b], then, for any set of nonover-
lapping marked intervals Q∗,

lim
[P ]∗(x)→Q∗(x)

∑

I∈[P ]

D(I, I∗) =
∑

I∈[P ]\Q

∫

I

D(x,Δx) +
∑

I∈Q∗
D(I, I∗),

where the limit is taken over the set {P | [P ]∗ ⊃ Q∗}.
Proof. First of all, one verifies that the Kurzweil–Henstock integrability is hereditary in subintervals. The
further argument is an exercise in expanding definitions.

From the Leibniz Integral to the Kurzweil–Henstock Integral.

Lemma 8.2. If D∗
1(x, dx) ≺ D∗

2(x, dx) for any x ∈ [a, b], then for any ε > 0 there exists a positive
scale δ(x) such that the integral sum over any marked partition of smaller scale for the difference form
D1(x,Δx) is not greater than that for the form D2(x,Δx).

Proof. For any point x, by the condition D∗
1(x, dx) ≺ D∗

2(x, dx) and Lemma 7.1 there exists δ(x) such
that

D1(x, β) ≤ D2(x, β) (28)

for any x ∈ [a, b] with |β| < δ(x). In this case, each term of the integral sum of the form D1 will not
exceed the corresponding term of the form D2. Hence, the corresponding inequality is also satisfied for
the sums.

Theorem 8.1. If an infinitesimal form D∗(x, dx) is Leibniz integrable, then the difference form D(x,Δx)
that generates it is Kurzweil–Henstock integrable, the integrals agreeing

b∫

a

D(x,Δx) =

b∫

a

D∗(x, dx).

Proof. Assume that dF (x) � D∗(x, dx) � dG(x) are ε-close majorant and minorant of the form under
consideration (they exist because the form is integrable). By Lemma 8.2, we may find a pair of positive
scales δ1(x) and δ2(x), of which the first one, for partitions of smaller scale, secures that an estimate

from above for the Riemann–Stieltjes integral sums is not greater than the Leibniz integral
b∫

a
f(x) dg(x)

plus ε, while the second one gives an estimate from below by
b∫

a
f(x) dg(x) − ε. But since ε is arbitrary,

this implies the convergence of the integral sums to the Leibniz integral when the scale tends to zero.
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From Kurzweil–Henstock to Perron–Stieltjes. The proof of the converse theorem follows exactly
the same lines as that of Theorem 9.12 in [5] on the equivalence of the Perron and Kurzweil–Henstock
integrals, the only difference being that instead of the form f(x)Δx one takes an arbitrary difference form.
We give the proof for the convenience of the reader.

Lemma 8.3 (Saks and Henstock). If a form D(x,Δx) is integrable on [a, b] and a positive scale δ(x) is
such that the inequality

∣
∣
∣
∣

∑

I∈[P ]

D(I∗, I) −
b∫

a

D(x,Δx)
∣
∣
∣
∣ ≤ ε (29)

holds for any marked partition [P ]∗ of smaller scale with some ε > 0, then the inequality
∣
∣
∣
∣

∑

I∈P ∗
1

(

D(I∗, I) −
∫

I

D(x,Δx)
)∣

∣
∣
∣ ≤ ε (30)

also holds for any marked partition [P ]∗ of scale < δ(x) and any subset P ∗
1 ⊂ [P ]∗.

Proof. We consider the set P1 of marked partitions of the interval [a, b] that contains P ∗
1 . By Lemma 8.1,

under the condition P (x) → P ∗
1 (x) the limit over this set of the integral sums of the form D(x,Δx) equals

the mixed sum. But the difference between this sum and the integral of the form over the entire interval
[a, b] is exactly the left-hand side of inequality (30). Moreover, this limit may not be greater than ε,
because all the integral sums over partitions of smaller scale (than in the hypotheses of the lemma) satisfy
inequality (29).

Lemma 8.4 (Kolmogorov and Henstock). Assume that a form D(x,Δx) is integrable on [a, b] and a scale
δ(x) is such that inequality (29) holds with some ε > 0 for any marked partition [P ]∗ of this interval of
smaller scale. Then the inequality

∑

I∈[P ]

∣
∣
∣
∣D(I∗, I) −

b∫

a

D(x,Δx)
∣
∣
∣
∣ ≤ 2ε (31)

also holds for any marked partition [P ]∗ of this interval of smaller scale.

Proof. We set

P ∗
1 =

{

I ∈ [P ]∗
∣
∣
∣ D(I∗, I) ≥

∫

I

D(x,Δx)
}

and define P ∗
2 as the complement of P ∗

1 in [P ]∗. Applying the Saks–Henstock lemma in turn to P ∗
1 and

P ∗
2 and adding the resulting inequalities, we get the result required.

Theorem 8.2. If a difference form is Kurzweil–Henstock integrable, then it is Perron–Stieltjes integrable.

Proof. In the proof of this theorem, the integral of a difference form will be understood in the sense of
Kurzweil–Henstock. Assume that D(x,Δx) is Henstock integrable. Given ε > 0, we find a scale δ(x) such
that the integral sums over partitions of smaller scale differ from the integral by at most ε. Consider the
function

H(t) = sup
[Pt]∗

∑

I∈[Pt]∗

∥
∥
∥
∥D(I∗, I) −

∫

I

D(x,Δx)
∥
∥
∥
∥, (32)

where the supremum is taken over all marked partitions of the interval [a, t] of scale [P ]∗(x) < δ(x). We
set H(a) = 0. Then H(x) is a nondecreasing function. By the Kolmogorov–Henstock lemma, we have

0 ≤ H(x) ≤ 2ε. (33)
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Next, we fix an arbitrary point θ ∈ [a, b]. If θ ∈ [x1, x2] ⊂ [θ − δ(θ), θ + δ(θ)], then

H(x1) +
∣
∣
∣
∣D(θ, [x1, x2]) −

x2∫

x1

D(x,Δx)
∣
∣
∣
∣ ≤ H(x2). (34)

Indeed, replacing H(x1) in this inequality by an arbitrarily close sum of type (32), we get on the left-hand
side a sum of this type already for H(x2).

If we denote by F (x) the integral
x∫

a

D(t, Δt),

then the inequality (34) implies the eventual inequality for infinitesimal forms:

|D∗(x, dx) − dF (x)| ≺ dH(x).

As a result, we have that

dF (x) + dH(x) � D∗(x, dx) � dF (x) − dH(x).

So d
(
F (x) ± H(x)

)
can be looked upon as, respectively, the minorant and the majorant of the form

D∗(x, dx) with arbitrarily small difference in view of (33). This, in turn, implies its integrability to
F (b) − F (a).

Thus, the approaches to the definition of a difference form by means of integral sums (the Rie-
mann–Stieltjes–Kurzweil–Henstock approach) and differentials (the Leibniz–Perron–Stieltjes approach)
are shown to be equivalent.

This research was carried out with the financial support of the Russian Science Foundation (project
14-50-00005).
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