
Journal of Mathematical Sciences, Vol. 233, No. 1, August, 2018

INDEXING AND QUERYING CHARACTER SETS
IN ONE- AND TWO-DIMENSIONAL WORDS

D. Belazzougui, R. Kolpakov, and M. Raffinot UDC 519.712.43

Abstract. We give a detailed review of results obtained for a relatively new problem of finding, indexing,
and querying character sets, which are called fingerprints in fragments of one- and two-dimensional words,
and explain basic ideas used for obtaining these results.

1. One-Dimensional Fingerprints

Let Σ be a finite ordered alphabet of size σ, and S = s1 . . . sn be a string of n letters from Σ. The
length n of the string S is denoted by |S|. The set of all strings over Σ (including the empty string) is
denoted by Σ∗. For convenience, we range all letters from Σ by their ranks between 0 and σ − 1. The
rank of a letter a in Σ is denoted by rΣ(a). A substring sisi+1 . . . sj is called a factor of S and denoted
by S〈i; j〉. The fingerprint f(S) of a string S is the set of all distinct letters in S. By extension of
the fingerprint notion, the fingerprint fS(i, j) is the set f(sisi+1 . . . sj) of all distinct letters in the factor
S〈i; j〉. The factor S〈i; j〉 is called a location of the fingerprint fS(i, j). A location S〈i; j〉 of a fingerprint f
is called maximal if

(1) si−1 /∈ f for i > 1;
(2) sj+1 /∈ f for j < n.

Note that any location of a fingerprint is uniquely extended to some maximal location of this fingerprint.
We denote by F(S) the set

{f ⊆ Σ | ∃ i, j : f = fS〈i, j〉}
of all distinct fingerprints for factors of S, and by L(S) the set of all maximal locations for all fingerprints
from F(S). It is not hard to show that |F(S)| ≤ |L(S)| ≤ n|Σ|. In this paper, given a string S, we
consider the following three algorithmic problems:

(1) compute the set F(S);
(2) for a given f ⊆ Σ, check if f ∈ F(S);
(3) for a given f ⊆ Σ, find all maximal locations of f in S if f ∈ F(S).

Efficient solution of these problems has many applications in information retrieval, computational biology,
and natural language processing. Further we naturally assume that the alphabet Σ is the alphabet of the
string S, i.e., |Σ| ≤ n.

The first question arising in relation to the considered problems is an effective representation of
fingerprints. Note that a fingerprint f can be represented by a binary table of F of size σ, called the
fingerprint array : if f contains a character α, then F [rΣ(α)] = 1, otherwise F [rΣ(α)] = 0. However, in
the most interesting case for an alphabet Σ of big size, this representation can be too memory expensive.
In [2], the naming technique for fingerprints representation was introduced. The naming technique is used
to give a unique name to each fingerprint of a substring of S. For describing this technique, we assume
for simplicity, but without loss of generality, that σ is a power of two. To name a given fingerprint, we
consider a stack of log σ + 1 arrays F0, F1, . . . , Flog σ on top of each other (by logarithm we assume the
logarithm to base 2). The lowest array F0 is the fingerprint array containing only the values [0] or [1].

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 20, No. 6, pp. 3–16, 2015.

1072–3374/18/2331–0001 c© 2018 Springer Science+Business Media, LLC 1

DOI 10.1007/s10958-018-3921-y

Each other array Fi contains half the number of names that the array Fi−1 immediately below it, i.e., each
name in Fi corresponds to a pair of consecutive names in Fi−1. Thus, the array Fi contains the names
of subarrays of length 2i in the fingerprint array, and these names are computed proceeding from pairs
of names of the fingerprint subarrays of length 2i−1 that are contained in Fi−1. The highest array Flog σ

contains a single name that is assigned to the fingerprint and is called the fingerprint name. Figure 1
shows a simple example with |Σ| = 8.

[7]
[5] [6]

[2] [2] [3] [4]
[1] [0] [1] [0] [1] [1] [0] [0]

Fig. 1. Naming example.

It is easy to note that the naming technique can be used for naming all fingerprints in S so that all
identical subarrays of fingerprints are named by the same name. In this case, if we have two fingerprints
f and f ′ that differ by only one letter, then for computing the name of f ′ from the name of f it is
enough to recompute no more than log σ names of subarrays of f ′. Using this observation, in [2] an
O(nσ log σ log n) time algorithm for solving problem (1) was proposed. Problems (2) and (3) are solved,
respectively, in [2] in O(σ log n) time and O(σ log n+K) time, where K is the size of output. Further the
naming was improved in [6]. The improvement consists in synchronous recomputations of names for all
fingerprint subarrays of the same length required for computation of names of all fingerprints in S. By
this improvement the time complexity of solving problem (1) was decreased to O(min{nσ log σ, n2}).

Further improvements in solving of problems (1)–(3) were obtained in [7]. One of motivations for these
improvements is that the complexity bounds for solving problem (1) obtained in [2,6] are independent of
the sizes of F(S) and L(S), although many string families have few fingerprints or few maximal locations.
As an example, we can consider a family of strings {W1, W2, . . .}, where Wk is the string over the alphabet
Σk = {a1, a2, . . . , ak} defined by recursive relations W1 = a1 and Wk = Wk−1akWk−1 for k > 1. It can
be checked that |Wk| · |Σk| = k · (2k − 1) and |L(Wk)| = 2k+1 − (k + 2), so |L(Wk)| = o(|Wk| · |Σk|). To
describe the algorithm proposed in [7] for solving problem (1), we have to give some auxiliary definitions.

Without loss of generality, we assume that the input string S does not contain two consecutive
occurrences of the same character. For the sake of convenience, we add to the string S a last character
sn+1 = # that does not appear in the string S, i.e., S = s1 . . . sn#n+1. Let i and j be positions in S such
that 1 ≤ i ≤ j ≤ n+1. We define foS(i, j) as the string formed by concatenating the leftmost occurrences
of all distinct characters in the factor S〈i; j〉 considered from left to the right. For instance, if

S = a1b2a3c4e5a6b7a8c9d10#,

then foS(3, 9) = aceb and foS(5, 10) = eabcd. Let, for some position i in S, j be the minimum position
greater than i such that sj = si if it exists, and j = n+2 otherwise. Then we define lfoS(i) = foS(i, j−1).
For instance, if

S = a1b2c3a4d5a6b7a8c9b10e11#12,

then lfoS(1) = abc and lfoS(5) = dabce#. By lfo′S(i) we denote the string lfoS(i) without the last symbol.
It can be shown that there exists an one-to-one correspondence between all maximal locations from L(S)
and prefixes of all strings lfo′S(i) such that the set of symbols of the prefix corresponding to a maximal
location is the fingerprint of this location. Thus, for finding all fingerprints from F(S) we can compute
all strings lfoS(i) for S. It can be done in O(|L(S)| + n) by traversing symbols of S from left to the
right (see Fig. 2). Then we compute the names of all fingerprints in F(S), using the naming technique
from [6], which can be done in O

(
(|L(S)|+ n) log σ

)
time. Thus, the total time for solving of problem (1)

is O
(
(|L(S)|+n) log σ

)
. A slight improvement O(|L(S)| log σ+n) for this time bound was obtained in [8].

2

a c a c e f g b h g b d a
1 2 3 4 5 6 7 8 9 10 11 12 13

a
1 2 3 4 5 6 7 8 9 10 11 12 13

c
c

a
a

c
c

e
e

e

f
f

f
f

g

g
g

g

g
b

b
b

b
b

b

h
h

h
h

h
h

h

g
g

g

b
b

b

d
d

d
d

d
d

d
d

a
1 2 3 4 5 6 7 8 9 10 11 12 13

c
c

a
a

c
c

e
e

e

f
f

f
f

g

g
g

g

g
b

b
b

b
b

b

h
h

h
h

h
h

h

g
g

g

b
b

b

d
d

d
d

d
d

d
d

a
a

a
a

a
a

a
a

a c a c e f g b h g b d a c a c e f g b h g b d a

Fig. 2. A (schematic) step of traversing the last symbol a in the procedure of computing
lfoS(i) for S = acacefgbhgbda. We add the character a in the table containing the strings
lfoS(i).

In [7], the time for solving problems (2) and (3) was also improved, using a new data structure,
which is called a fingerprint tree. The fingerprint tree of S (denoted by FT(S)) is a binary tree data
structure formed by all fingerprint arrays from F(S), where common initial segments of fingerprint arrays
are merged. Thus, each edge of FT(S) corresponds to some subarray of a named fingerprint array. Note
that this subarray can be represented as the concatenation of some suffix U of a named subarray Fl

and some prefix V of a named subarray Fr, where the subarrays Fl and Fr can be chosen as minimal
as possible, i.e., |U | > |Fl| and |V | > |Fr|. Thus, the subarray corresponding to the edge of FT(S) is
uniquely identified by the tuple (nl, nr, l, r), where nl (nr) is the name of Fl (Fr) and l (r) is the length
of U (V) (see Fig. 3) and, moreover, can be computed from this tuple in O(l + r) time, so we label the
edge by this tuple.

rl

nl(
nr)

Fig. 3. Label of an edge. (nl, nr) is the pair of names of the shortest consecutive fingerprint
subarrays covering the segments U of length l and V of length r.

It is shown in [7] that FT(S) can be constructed in O(|F(S)| log σ) time and, for a given f ⊆ Σ, one
can check in O(σ) time if f is contained in FT(S). Thus, problems (2) and (3) can be solved, respectively,
in time O(σ) and O(σ + K), where K is the size of output.

The time complexity of solving problem (1) was further improved in [9]. We introduce the following
notions for describing this improvement. Two maximal locations S〈i; j〉 and S〈k; l〉 in S are called copies
if si . . . sj = sk . . . sl. For example, in the string

S′ = abacadcbacadceacdc

3

1 6

3

2 14

4

1

7

13

8

7

9

2

6

9

10

12

15

16

a

d

c

d

5

10

d

b

a

c
d e

a

c a

e

b

c

d

Fig. 4. The participation tree of S′′ = abaceabacd#.

the underlined maximal locations are copies. Note that the “copy” relation is obviously an equivalence
relation. We denote by LC(S) the set of equivalence classes for this relation in L(S). Note that |LC(S)|
can be significantly less than |L(S)|. As an example, we can consider a family of strings {W ′

1, W
′
2, . . .}

over the alphabet {a1, a2, . . .}, where W ′
1 = a1 and W ′

k = W ′
k−1(a1a2 . . . ak)k for k > 1. We can check that

|W ′
k| =

1
6
k(k + 1)(2k + 1),

|L(W ′
k)| =

1
12

k(3k3 + 2k2 − 9k + 16) = Θ(|W ′
k|4/3), |LC(W ′

k)| =
1
6
k(k2 + 5) = Θ(|W ′

k|),
so |LC(W ′

k)| = o(|L(W ′
k)|).

The participation tree of the string S (denoted by PT(S)) is a tree data structure formed by all strings
lfo′S(i), i = 1, 2, . . . , n, where common initial segments the strings are merged (for convenience each edge
of PT(S) is labeled by a single symbol). At Fig. 4 we give an example of the participation tree of the
string S′′ = abaceabacd#.

Since all fingerprints from F(S) correspond to prefixes of strings lfo′S(i), the tree PT(S) is actually
a compacted representation of all fingerprints from F(S), i.e., for each fingerprint f from F(S) there exists
at least one corresponding node of PT(S) such that f is the set of all symbols labeling edges contained
in the path from the root of PT(S) to this node and, moreover, each node of PT(S) corresponds to some
fingerprint from F(S). Thus, F(S) can be computed by construction of PT(S).

To construct PT(S), first we construct the suffix tree of S. The suffix tree of S (denoted by ST(S))
is a classical tree data structure formed by all suffixes of S, where common initial segments the suffixes
are merged. It is easy to see that edges of ST(S) correspond to some factors of S, which are uniquely
identified by their starting and final positions in S. So each edge of ST(S) is labeled by the starting and
final positions of some factor in S corresponding to this edge. Thus, ST(S) has size O(n) and, moreover,
can be constructed in O(n log σ) time (see, e.g., [10,13,14]). In Fig. 5 an example of the suffix tree of the
string S′′ is presented.

d

1

7

8

13

14

1

6

8

3

7

9

2

4

2

3

6

5

4

9

10

11

12

15

16

a

b

a

c

c

c

a

b

e

c

a

b

a
c

a
b

a

e

c

d

5

10

d

c
a

b
a

e
[4,4]

[10,11]
[5,11]

[5,11]

[5,11]

[5,11]

[10,11]

[9,9]

[10,11]

[2,4]

[10,11]

[2,4]

[1,1]

[10,11]

[5,11]

#

#

#

#

e

a

b

a

c

d

#

d
#

e

a

b

a

c

d

#

d

#

d

#

d

d

#

Fig. 5. The suffix tree of S′′ = abaceabacd#.

4

1

7

8

13

14

1

6

8

3

7

9

2

4

2

3

6

5

4

9

10

11

12

15

16

a

d

c

d

5

10

d

ε

ε

b

a

c
d e

a

c a

e

b

c

d

ε

ε

ε

ε

1 6

3

2 14

4

1

7

13

8

7

9

2

6

9

10

12

15

16

a

d

c

d

5

10

d

b

a

c
d e

a

c a

e

b

c

d

Fig. 6. From suffix tree to the participation tree (right picture) of S′′ =
a1b2a3c4e5a6b7a8c9d10#11. New nodes are in gray. Attached suffixes are shown in square
boxes.

For the sake of convenience, by the label of an edge of ST(S) we will mean the factor corresponding to
the edge and considering as string by itself. By an ancestor of an edge e in ST(S) we mean any edge in the
path from the root of ST(S) to the edge e (including the edge e itself), and by the main ancestor of e we
mean the first edge on this path. Let a′ and a′′ be two (possibly identical) symbols contained, respectively,
in labels of edges e′ and e′′ in ST(S). We say that a′ is an ancestor of a′′ if either e′ and e′′ are distinct
edges and e′ is an ancestor of e′′ or e′ and e′′ are the same edge and a′ is before a′′ in the label of this edge.
In this case, a′ is called the main ancestor of a′′ if e′ is the main ancestor of e′′ and a′ is the first symbol
in the label of e′. To construct PT(S) from ST(S), we remove from labels of edges in ST(S) all symbols
that have the same symbols as ancestors or have as ancestors symbols that are not main ancestors but
identical to main ancestors. Using AVL-trees, this can be done by a bottom-up procedure from leaves to
the root of ST(S) in O(n log σ + |LC(S)|) time. Then, in the obtained tree we remove the last symbols of
all terminal edge labels (in this case, by a terminal edge we mean an edge that is labeled by a nonempty
string and is an ancestor for only edges labeled by empty strings besides the edge itself) and all edges with
empty labels by merging their endpoints, which can obviously be done in O(n) time and by inserting new
nodes replace edges labeled by strings of several symbols with chains of edges labeled by single symbols,
which can be done in O(|LC(S)|) time. For final computation of PT(S), we merge consecutively in the
obtained tree all edges that have common endpoints and are labeled by the same symbols. This can
be done in O(|LC(S)| log σ) time. In Fig. 6 we illustrate the computation of PT(S′′) from ST(S′′) for
the string S′′. Thus, PT(S) can be constructed from ST(S) in total O

(
(n + |LC(S)|) log σ

)
time, so

PT(S) can be constructed in O
(
(n + |LC(S)|) log σ

)
time. Then in O(|LC(S)| log σ) time we can name

all fingerprints presented in PT(S) using the naming technique from [6]. Thus, we can solve problem (1)
in O

(
(n + |LC(S)|) log σ

)
time.

We would like to note that the suffix tree can be simulated in O(n) time by using the suffix array [1],
so the time of construction of PT(S) can be reduced to O(n + |LC(S)| log σ). In this way, the time
complexity of solving problem (1) was improved to O(n + |LC(S)| log σ) in [3].

Further improvements for solving problems (2) and (3) were made in [5]. In this paper, the authors
use an additional data structure, which is called a backtracking tree. The construction of this tree is
based on the simple observation that for any fingerprint f ∈ F(S) one can find in F(S) a (possibly
empty) fingerprint f ′ obtained from f by removing only one symbol. Thus, any fingerprint f from F(S)
can be provided by an arc from f to f ′ labeled by the removed symbol. A backtracking tree for S is
a directed tree constructed in this way (the root of this tree is the empty fingerprint). This tree can
be constructed in O(|L(S)|) time. In [5], it is shown that, by using for S a simplified version of the
fingerprint tree (lexi-string trie), an additional backtracking tree, problem (2) (problem (3)) can be solved
in O

(|f | log(σ/|f |)) time and O(|F(S)|) space (O(|f | log(σ/|f |) + K) time and O(|L(S)|) space, where K
is the size of output).

5

In [3], we investigate the application of the hashing technique for solving the considered problems.
Note that, for some properly chosen prime P , subsets f of Σ can be identified by hash functions

hX(f) =
∑

a∈f

XrΣ(a) (mod P),

where X ∈ {1, 2, . . . , P − 1}. It can be shown that, for any natural c, hX(f) can be computed in O(ct)
time using O(cσ1/c) space for a precomputed table. Let

HP = {hX | X ∈ [0; P − 1]}.
Then the following fact can be proved.

Lemma 1. Given a collection M of m subsets of Σ, a randomly chosen hash function hX ∈ HP for
P ≥ m2σ maps injectively the collection M to the interval [0; P − 1] with probability at least 1/2.

We use also the following result described in [12].

Lemma 2. Given a cardinal tree of N nodes over an alphabet of size σ, we can build a representation
that uses N

(
log σ +log e+o(1)

)
bits of space and supports the following operation in constant time: given

a node p and a character a, check whether p has a child labeled with the character a and return this child
if it exists.

For effective solving of problems (2) and (3), we use a tree data structure obtained from the par-
ticipation tree by merging all nodes corresponding to the same fingerprint. This data structure, which
is actually equivalent to a backtracking tree from [5], is called a fingerprint trie. After the procedure of
naming all fingerprints in F(S), a fingerprint trie of S can be obtained from PT(S) in O(|LC(S)|) time.
Note that we have a one-to-one correspondence between fingerprints of F(S) and nodes of the fingerprint
trie. We use actually two different representations of the fingerprint trie. The first representation is
a backtracking function that associates to each fingerprint f from F(S) the character labeling the last
edge of the path in the fingerprint trie from the root to the node corresponding to f . Using Lemma 1,
in O(|F(S)| time we can find a hash function hX such that the values hX(f) for all fingerprints f from
F(S) are different and implement the backtracking function as a function defined on hash values hX(f)
of fingerprints f . It follows from the results of [11] that this implementation of backtracking function can
be represented using just O

(
|F(S)| log σ

(
1 + o(1)

))
bits of space such that for any value hX(f) where

f ∈ F(S) the backtracking function value at f can be retrieved in constant time (if f /∈ F(S), the retrieved
value can be arbitrary). The second representation of the fingerprint trie, which is called a top-down trie
representation, is the cardinal tree representation proposed by Lemma 2. By Lemma 2, this fingerprint
trie representation requires only |F(S)|(log σ + log e + o(1)

)
bits of space and allows for any string U to

find in O(|U |) time the fingerprint trie node such that U is the string of symbols labeling the edges of the
path from the fingerprint trie root to this node if such node exists.

Problem (2) is solved in [3] by the following way. Let f be a given subset of Σ. First, we compute
in O(|f |) time the hash value hX(f) of f . At the second stage, proceeding from the value hX(f) using
the backtracking function representation, we compute in O(|f |) time the only possible string U that can
be a string of symbols labeling the edges of the path in the fingerprint trie from the root to the node
corresponding to a single fingerprint f ′ from F(S) such that hX(f ′) = hX(f) if f ′ exists. At the third
stage we compare f with the set of all symbols of U . This can be done in O(k|f |) time using O(σ1/k log σ)
bits of space, where k is any natural number, or in expected O(|f |) time with high probability using
only O(|f | log σ) bits of space. If f is not the set of all symbols of U , then we conclude that f /∈ F(S).
Otherwise, at the last stage we search in the fingerprint trie a node such that U is the string of symbols
labeling the edges of the path from the root to this node (using the top-down trie representation, this can
be done in O(|f |) time). If such node exists then we conclude that f ∈ F(S) (note that in this case f
is the fingerprint corresponding to this node), otherwise f /∈ F(S). The total time complexity of all the
stages of solving problem (2) is O(|f |).

6

To solve problem (3), we attach additionally to each node the top-down trie representation a list of
all maximal locations for the fingerprint corresponding to this node. Then after finding in the top-down
trie representation the node corresponding to the fingerprint f we can retrieve all maximal locations
for f in O(K) time, where K is the number of the maximal locations. Taking into account other various
improvements proposed in [3], the results of [3] can be summarized as follows.

• Problem 1 can be solved
– in O(n + |LC(S)| log σ) time and O(|L(S)| + |F(S)| log σ log n) bits of space;
– in O(|L(S)| log σ) time and O(|F(S)| log σ log n) bits of space;
– in O(|L(S)|) expected time and O(|F(S)| log n) bits of space with an extremely small proba-

bility of error.
• Using |F(S)|(2 log σ + log e)(1 + o(1)

)
bits of additional memory, problem (2) can be solved

– in worst-case O(|f |) time and O(σ1/ε log n) bits of working space for any positive integer ε;
– in O(|f |) expected time and O(|f | log n) bits of working space.

The time complexity bounds for problem (3) are the same as for problem (2) with adding the size K of
output.

2. Two-Dimensional Fingerprints

Let M be a two-dimensional array over the alphabet Σ

am1 am2 . . . am(n−1) amn

a(m−1)1 a(m−1)2 . . . a(m−1)(n−1) a(m−1)n
...

...
. . .

...
...

a21 a22 . . . a2(n−1) a2n

a11 a12 . . . a1(n−1) a1n

,

where, without loss of generality, m ≤ n. The fingerprint f(M) of M is the set

{a ∈ Σ | ∃ i, j : ai,j = a} ⊆ Σ

of all distinct letters in M .
Let 1 ≤ i′ ≤ i′′ ≤ m and 1 ≤ j′ ≤ j′′ ≤ n. Then by 〈i′, i′′; j′, j′′〉 we denote the two-dimensional array

ai′′j′ ai′′(j′+1) . . . ai′′j′′
...

...
. . .

...
a(i′+1)j′ a(i′+1)(j′+1) . . . a(i′+1)j′′

ai′j′ ai′(j′+1) . . . ai′j′′ ,

which is called a rectangle in M . The fingerprint fM 〈i′, i′′; j′, j′′〉 is the set f(〈i′, i′′; j′, j′′〉) of all distinct
letters in the rectangle 〈i′, i′′; j′, j′′〉. The rectangle 〈i′, i′′; j′, j′′〉 is called a location of the fingerprint
fM 〈i′, i′′; j′, j′′〉. By FR(M) we denote the set

{f ⊆ Σ | ∃ i′, i′′, j′, j′′ : f = fM 〈i′, i′′; j′, j′′〉}
of all distinct fingerprints for rectangles in M .

A rectangle 〈i′, i′′; j′, j′′〉 in M is called a maximal location of the fingerprint f = fM 〈i′, i′′; j′, j′′〉 if
this rectangle is not contained in a greater rectangle with the same fingerprint. Examples of maximal
locations are shown at Fig. 7.

The set of all maximal locations in M is denoted by LR(M). It can be shown that |FR(M)| ≤
|LR(M)| ≤ nm2σ.

A rectangle 〈i′, i′′; j′, j′′〉 is called a square if i′′ − i′ = j′′ − j′. By FS(M) we denote the set

{f ⊆ Σ | ∃ square 〈i′, i′′; j′, j′′〉 : f = fM 〈i′, i′′; j′, j′′〉}

7

b

ba

ab

a

a

b b

ba

c

d

d

c

b

ba

ab

a

a

b b

ba

c

d

d

c

b

ba

ab

a

a

b b

ba

c

d

d

c

b

ba

ab

a

a

b b

ba

c

d

d

cb b b b

Fig. 7. Examples of maximal locations (outlined by bold contours) in two-dimensional arrays.

of all distinct fingerprints for squares in M . A square in M is called a square maximal location if it is
not contained in a greater square with the same fingerprint. By LS(M) we denote the set of all square
maximal locations in M . It can be shown that |FS(M)| ≤ |LS(M)| ≤ nmσ.

Note that problems (1)–(3) can be naturally reformulated for rectangles and squares in two-dimen-
sional arrays. The considered problems for rectangles and squares were recently studied in [4], where the
following results were obtained.

• FR(M) can be computed in O
(
nm2σ log(|LR(M)|/(nm2)+2)

)
time or in O(nm2σ) expected time

with polynomially small probability of error;
• FS(M) can be computed in O

(
nmσ log(|LS(M)|/(nm) + 2)

)
time or in O(nmσ) expected time

with polynomially small probability of error;
• problem (2) (problem (3)) for rectangles can be solved in O(|f | + log log n) time

(O(|f | + log log n + K) time, where K is the size of output) using O(nm log n + |FR(M)|)
(O(nm log n + |LR(M)|)) additional space;

• problem (2) (problem (3)) for squares can be solved in O(|f |+log log n) time (O(|f |+log log n+K)
time, where K is the size of output) using O(nm log n + |FS(M)|) (O(nm log n + |LS(M)|))
additional space.

This work was partially supported by Russian Foundation for Basic Research (grant 14-01-00598).

REFERENCES

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlenbusch, “Replacing suffix trees with enhanced suffix arrays,”
J. Discrete Algorithms, 2, No. 1, 53–86 (2004).

2. A. Amir, A. Apostolico, G. M. Landau, and G. Satta, “Efficient text fingerprinting via Parikh
mapping,” J. Discrete Algorithms, 1, No. 5-6, 409–421 (2003).

3. D. Belazzougui, R. Kolpakov, and M. Raffinot, “Various improvements to text fingerprinting,” J. Dis-
crete Algorithms, 22, 1–18 (2013).

4. D. Belazzougui, R. Kolpakov, and M. Raffinot, “Indexing and querying color sets of images,” Theor.
Comput. Sci., 647, 74–84 (2016).

5. C.-Y. Chan, H.-I. Yu, W.-K. Hon, and B.-F. Wang, “Faster query algorithms for the text fingerprint-
ing problem,” Inf. Comput., 209, No. 7, 1057–1069 (2011).

6. G. Didier, T. Schmidt, J. Stoye, and D. Tsur, “Character sets of strings,” J. Discrete Algorithms, 5,
No. 2 330–340 (2007).

7. R. Kolpakov and M. Raffinot, “New algorithms for text fingerprinting,” in: Combinatorial Pattern
Matching. 17th Annual Symp., CPM 2006, Barcelona, Spain, July 5–7, 2006. Proceedings, Lect.
Notes Comput. Sci., Vol. 4009, Springer, Berlin (2006), pp. 342–353.

8. R. Kolpakov and M. Raffinot, “New algorithms for text fingerprinting,” J. Discrete Algorithms, 6,
No. 2 243–255 (2008).

9. R. Kolpakov and M. Raffinot, “Faster text fingerprinting,” in: Proc. 15th Int. Symp. on String
Processing and Information Retrieval, Lect. Notes Comput. Sci., Vol. 5280, Springer, Berlin (2009),
pp. 15–26.

10. E. M. McCreight, “A space-economical suffix tree construction algorithm,” J. Algorithms, 23, No. 2,
262–272 (1976).

8

11. E. Porat, “An optimal bloom filter replacement based on matrix solving,” in: CSR ’09. Proc. Fourth
Int. Comput. Sci. Symp. in Russia on Comput. Sci. — Theory and Applications, Lect. Notes Comput.
Sci., Vol. 5675, Springer, Berlin (2009), pp. 263–273.

12. R. Raman, V. Raman, and S. Rao Satti, “Succinct indexable dictionaries with applications to encod-
ing k-ary trees, prefix sums and multisets,” ACM Trans. Algorithms, 3, No. 4, Art. No. 43 (2007).

13. E. Ukkonen, “Constructing suffix trees on-line in linear time,” in: Proc. IFIP 12th World Comput.
Congr. on Algorithms, Software, Architecture — Information Processing ’92, Vol. 1, North-Holland,
Amsterdam (1992), pp. 484–492.

14. P. Weiner, “Linear pattern matching algorithm,” in: SWAT ’73 Proc. 14th Annual Symp. on Switch-
ing and Automata Theory, IEEE Comput. Soc., Washington (1973), pp. 1–11.

Djamal Belazzougui
Department of Computer Science, University of Helsinki, Helsinki, Finland
E-mail: Djamal.Belazzougui@cs.helsinki.fi

Roman Kolpakov
Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
E-mail: foroman@mail.ru

Mathieu Raffinot
LIAFA, Université Paris Diderot–Paris 7, Paris, France
E-mail: raffinot@liafa.univ-paris-diderot.fr

9

	Abstract
	1. One-Dimensional Fingerprints
	2. Two-Dimensional Fingerprints
	References

