
Journal of Mathematical Sciences, Vol. 232, No. 6, August, 2018

ORTHOGONALITY GRAPHS OF MATRICES OVER
SKEW FIELDS

A. E. Guterman∗ and O. V. Markova∗ UDC 512.643

The paper is devoted to studying the orthogonality graph of the matrix ring over a skew field.
It is shown that for n ≥ 3 and an arbitrary skew field D, the orthogonality graph of the ring
Mn(D) of n × n matrices over a skew field D is connected and has diameter 4. If n = 2, then
the graph of the ring Mn(D) is a disjoint union of connected components of diameters 1 and 2.
As a corollary, the corresponding results on the orthogonality graphs of simple Artinian rings are
obtained. Bibliography: 14 titles.

1. Introduction

Binary relations on associative rings and, in particular, on the matrix ring is an important
topic in modern mathematics, which is studied and used in numerous applications. At present,
one of efficient approaches to investigating such a relation is to study the so-called relation
graph, whose vertices are the elements of a certain set, and two vertices are connected by an
edge if and only if the corresponding elements are in this relation.

The study of algebraic structures based on their relation graphs has been the focus of
attention for the last 20 years. For example, the commuting graph (that is, the graph of the
commutativity relation) and the zero-divisor graph are intensively studied, see [1–5] and the
references therein. These relations are closely related to the orthogonality relation examined in
the present paper. Recall that elements r, s of a ring R are said to be orthogonal if rs = sr = 0.
The orthogonality relation is used in [12–14], where some partial orders on the matrix algebra
and matrix mappings monotone with respect to these orders are considered. The notion of
orthogonal completeness [8, 9], based on the orthogonality relation, plays an important part
in the theory of rings. The orthogonality relation also arises in linear algebra and functional
analysis in studying projectors (projection operators).

The graph of the orthogonality relation was introduced by the authors in [7]. Also, in
that paper, possible diameters of the orthogonality graphs of commutative Artinian rings
were described, the orthogonality graph of the full matrix algebra over an arbitrary field was
investigated, the connectedness of the orthogonality graphs of some classical matrix families
was established, and their diameters were computed.

Recall some definitions from graph theory. For the notions of graph theory used in this
paper, see, for example, [10, Chapter 2].

A graph Γ is a nonempty set of vertices V (Γ) and a set of edges E (Γ), that is, a set of
unordered pairs of vertices.

If v1, v2 are two vertices and e = (v1, v2) is the edge connecting them, then the vertex v1
and the edge e are said to be incident ; the vertex v2 and the edge e also are incident .

A loop is an edge that connects a vertex with itself. Note that in this paper, a graph is
understood as a graph without multiple edges, but it is allowed to have loops. A graph free
of loops is referred to as a simple graph.

A path (walk) in a graph Γ is a sequence of vertices and edges of the form v0, e1, v1, e2,
v2, . . . , ek, vk in which any two neighbor elements are incident.
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The length of a path, denoted by d, is the number of edges in it, each being counted as many
times as it occurs in the path.

A path is said to be elementary if all the edges are distinct.
A graph is said to be connected if arbitrary two vertices are connected by a path.
A connected component of a graph Γ is a maximal (with respect to inclusion) connected

subgraph of the graph Γ.
The distance d (u, v) between two distinct vertices u and v is the length of the shortest

elementary path between them. If u and v are unreachable from each other, then d (u, v) = ∞;
it is stipulated that d (u, u) = 0 for any vertex u.

The diameter diam (Γ) of a graph Γ is the maximum of the distances between distinct
vertices of the graph.

A complete graph is a simple graph in which every two distinct vertices are incident to an
edge.

A graph Γ is called a complete graph with loops if every two vertices (including coinciding
ones) are incident to an edge.

A graph Γ = (V,E) is said to be bipartite if its vertex set can be subdivided into two
nonempty disjoint subsets V = V1 ∪ V2 such that the vertices in V1 are not connected with
each other and the vertices in V2 are not connected with each other. The sets of vertices V1

and V2 are called the parts of the bipartite graph Γ.
A complete bipartite graph is a bipartite graph in which every two vertices u ∈ V1 and v ∈ V2

are incident to an edge (u, v) ∈ E.
All rings considered in this paper are assumed to be associative. Recall that an element a

of a ring R is called a left (right) zero divisor if there exists a nonzero element b ∈ R such that
ab = 0 (respectively, ba = 0). An element a that is both a left and a right zero divisor is called
a two-sided zero divisor. A ring without zero divisors is a ring that contains no zero divisors
other than 0, that is, ab = 0 implies that either a = 0 or b = 0.

Recall the main definitions related to the graph of the orthogonality relation of a given ring
R (for more details, see [7]).

Definition 1.1. Two elements r1 ∈ R and r2 ∈ R are said to be orthogonal if r1r2 = r2r1 = 0.
For a subset X in R, by OR (X) we denote the set of elements from R orthogonal to all

elements from X; also we denote O0
R (X) = OR (X) \ {0}.

Remark 1.2. The zero element 0 ∈ R is orthogonal to all elements of the ring. Conversely,
if an element r ∈ R is not a zero divisor, then there is no nonzero element x ∈ R such that
xr = rx = 0, whence no nonzero element is orthogonal to r in the ring R. For this reason, in
studying the orthogonality graph, from the set of vertices we exclude 0 and the elements that
are not (at least one-sided) zero divisors.

Definition 1.3 ([7, Definition 2.15]). With every ring R one can associate the orthogonality
graph O(R) whose vertex set consists of all nonzero two-sided zero divisors of the ring R and
in which two vertices are connected by an edge if and only if the corresponding elements of R
are orthogonal.

Lemma 1.4 ([7, Lemma 2.17]). The vertex set of O(R) is empty if and only if R is a ring
without zero divisors.

The paper is devoted to studying the orthogonality graph of the matrix ring over a skew
field. The methods used in this research differ significantly, in some cases, from those used in
studying matrix rings over fields in [7], although the ultimate results are similar. It is proved
that for n ≥ 3 and an arbitrary skew field D, the orthogonality graph of the ring Mn(D) of
n × n matrices over D is connected and has diameter 4. For n = 2, the graph of the ring
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Mn(D) is a disjoint union of connected components of diameters 1 and 2. As implications,
the connectedness of the orthogonality graphs of simple Artinian rings is established and the
diameters of their connected components are found.

2. The orthogonality graph of the matrix ring O (Mn (D))

We show that the results on the orthogonality graph of the full matrix ring over a field [7,
Lemma 4.1, Theorem 4.5] can be extended to the case of the matrix ring over a skew field.

Theorem 2.1. Let D be an arbitrary skew field. Then, for n ≥ 3, the orthogonality graph
O (Mn (D)) is connected, and diam O (Mn (D)) = 4.

Proof. I. In order to establish the connectedness of the graph O (Mn (D)), we demonstrate that
arbitrary vertices A and B in O (Mn (D)) are connected by a path of length at most 4. By
definition, A and B are two-sided zero divisors in Mn (D), that is, there exist nonzero matrices
X,Y,U, V ∈ Mn(D) such that

XA = 0, AY = 0, UB = 0, BV = 0.

Let yc, vc be arbitrary nonzero columns of the matrices Y and V , respectively, and let xr, ur

be some nonzero rows of the matrices X and U . Then we set

R1 = ycxr, R3 = vcur.

The associativity of the matrix multiplication implies that

AR1 = A(ycxr) = (Ayc)xr = 0cxr = 0,

R1A = (ycxr)A = yc(xrA) = yc0r = 0,
and, similarly,

R3B = BR3 = 0.
Consider a system of two linear equations{

xrzc = 0,
urzc = 0

(1)

over D in n unknowns (with the column vector of unknowns zc). System (1) over a skew
field can be solved by Gaussian elimination [6, Chapter I, Sec. 5] (by performing elementary
operations with rows of the coefficient matrix). Since n ≥ 3, that is, there are more unknowns
than equations, system (1) has a nonzero solution z̃c. Therefore,

R1z̃c = (ycxr)z̃c = yc(xr z̃c) = 0,

R3z̃c = (vcur)z̃c = vc(ur z̃c) = 0.

Similarly, consider a system {
wryc = 0,
wrvc = 0

(2)

over D in n unknowns (with the row vector of unknowns wr). It can also be solved by Gaussian
elimination (by performing elementary operations with columns of the coefficient matrix).
Once again, since n ≥ 3, that is, there are more unknowns than equations, system (2) has a
nonzero solution w̃r, whence

w̃rR1 = w̃r(ycxr) = (w̃ryc)xr = 0,

w̃rR3 = w̃r(vcur) = (w̃rvc)ur = 0.
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Then the matrix R2 = z̃cw̃r is nonzero and satisfies the relations

R1R2 = R2R1 = R3R2 = R2R3 = 0.

This yields the desired path
A − R1 − R2 − R3 − B

of length 4.
II. In order to prove that the diameter of the graph O (Mn (D)) is equal to 4, it remains to

provide an elementary path of length 4. We show that as in the case of matrices over a field,

the desired path is that between J and J t, where J =
n−1∑
i=1

Ei,i+1 (the Jordan block) and J t is

the transpose of J .
1. Show that d(J, J t) > 3. Let 0 �= A ∈ OMn(D)(J). By definition, this means that

JA = AJ = 0. The equality JA = 0 implies that the rows 2, . . . , n of the matrix A are zero
because the multiplication by J on the left moves the rows of the matrix A up by one position,
whereas the equality AJ = 0 similarly implies that the columns 1, . . . , n − 1 of the matrix A
are zero. Thus, only the entry of the matrix A in position (1, n) can be nonzero. Consequently,
OMn(D)(J) = {αE1n |α ∈ D}. Similarly, we obtain that OMn(D)(J

t) = {αEn1 |α ∈ D}. Since
E1nEn1 �= 0, it follows that d(J, J t) ≥ 4.

2. Present a path of length 4. As a direct computation shows, J −E1n −E22 −En1 − J t is
the desired path in O (Mn (D)).

Thus, d (J, J t) = 4. �
In what follows, we consider the remaining small values of n separately.

Lemma 2.2. Let D be a noncommutative skew field. For n = 1, the orthogonality graph
O (Mn (D)) is empty. For n = 2, the graph O (Mn (D)) is disconnected, and it is a union of
the connected components with the following sets of vertices:

(1) the set V1 = V1a ∪ V1b, where

V1a =
{(

a 0
0 0

) ∣∣∣ a ∈ D
∗
}

, V1b =
{(

0 0
0 b

) ∣∣∣ b ∈ D
∗
}

;

(2) the set

V2 =
{(

0 0
a 0

) ∣∣∣ a ∈ D
∗
}

;

(3) the set

V3 =
{(

0 a
0 0

) ∣∣∣ a ∈ D
∗
}

;

(4) the set V4,α = V4,α,a ∪ V4,α,b, where α ∈ D
∗ is arbitrary,

V4,α,a =
{(

c cα
0 0

) ∣∣∣ c ∈ D
∗
}

, V4,α,b =
{(

0 −αd
0 d

) ∣∣∣ d ∈ D
∗
}

;

(5) the set V5,α = V5,α,a ∪ V5,α,b, where α ∈ D
∗ is arbitrary,

V5,α,a =
{(

0 0
c cα

) ∣∣∣ c ∈ D
∗
}

, V5,α,b =
{(−αd 0

d 0

) ∣∣∣ d ∈ D
∗
}

;

(6) the set V6,α,β = V6,α,β,a ∪ V6,α,β,b, where α, β ∈ D
∗ and {α, β} is an arbitrary pair,

V6,α,β,a =
{( −aα a

−βaα βa

) ∣∣∣ a ∈ D
∗
}

, V6,α,β,b =
{( −bβ b

−αbβ αb

) ∣∣∣ b ∈ D
∗
}

.

If α = β, then V6,α,α = V6,α,α,a = V6,α,α,b.
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Every connected component Y corresponding to the vertex sets V1, V4,α, V5,α, and V6,α,β

with β �= α is a complete bipartite graph with the parts Ya and Yb defined by the partition
Y = Ya ∪ Yb indicated above and with diameter 2.

Every connected component corresponding to the vertex sets V2, V3, and V6,α,α is a complete
graph with loops and has diameter 1.

Proof. For n = 1, the first assertion is obvious because the skew field D is a ring without zero
divisors.

Let n = 2.

(1) First we note that every two sets from those listed in the lemma are disjoint. Indeed,
the sets V1, V2, V3 consist of matrices with exactly three zero entries; the sets V4,α, V5,α

consist of matrices with exactly two zero entries, and the sets V6,α,β consist of matrices
with no zero entries. Taking into consideration the numbers of zeros in the matrices
and their location, we conclude that
(a) V1, V2, V3, V4,α1 , V5,α2 , and V6,α,β are pairwise disjoint for all fixed α1, α2, α, β ∈

D
∗.

(b) V4,α1 and V4,α2 are pairwise disjoint for all α1 �= α2.
(c) V5,α1 and V5,α2 are pairwise disjoint for all α1 �= α2.
(d) V6,α1,β1 and V6,α2,β2 are pairwise disjoint for all α1, α2, β1, β2 ∈ D

∗, except for the
case {α1, β1} = {α2, β2}.
Indeed, assume that V6,α1,β1,a and V6,α2,β2,a have a nonempty intersection, that is,
for some a1, a2 ∈ D

∗,( −a1α1 a1
−β1a1α1 β1a1

)
=

( −a2α2 a2
−β2a2α2 β2a2

)
.

Comparing the entries in position (1, 2), we conclude that a1 = a2, which implies
that β1 = β2 and α1 = α2. The case where V6,α1,β1,b and V6,α2,β2,b have a nonempty
intersection is considered similarly.
Without loss of generality, assume that V6,α1,β1,a and V6,α2,β2,b have a nonempty
intersection, that is,( −aα1 a

−β1aα1 β1a

)
=

( −bβ2 b
−α2bβ2 α2b

)
,

where a, b ∈ D
∗. Comparing the entries in position (1, 2), we conclude that a = b,

whence α1 = β2 (position (1, 1)) and β1 = α2 (position (2, 2)).
(2) The notion of rank is defined for matrices over skew fields; by virtue of the fundamental

theorem on the matrix rank, the rank equals, in particular, the left row rank and the
right column rank (see, for example, [6, Chapter I, Sec. 5]). If a nonzero matrix A ∈
M2(D) is a two-sided zero divisor, then it cannot be of full rank, whence rankA = 1.

It is clear that the sets indicated in the lemma contain all possible matrices of
rank 1 and only them. Prove that for any of the components W indicated above and
an arbitrary matrix A �= 0 from W , we have O0

M2(D)
(A) ⊂ W . This will imply that in

the graph O(M2(D)), the distinct components are connected by no edges.
We subdivide the matrices A of rank 1 into groups depending on the number of zero

entries in them and find O0
M2(D)

(A). Observe that by the symmetry of the orthogonality
relation, B ∈ O0

M2(D)
(A) implies A ∈ O0

M2(D)
(B). Therefore, rankB = 1. Then, by

using the row rank, we obtain ri = cir, where ri denotes the ith row of the matrix B,
i = 1, 2; r �= 0 is a row of length 2 over D, and c1, c2 ∈ D are not simultaneously equal
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to zero. Therefore, B = cr, c =
(

c1
c2

)
. Then

AB = 0 = A(cr) = (Ac)r,

and the equality to zero is possible for a nonzero row r if and only if Ac = 0. Similarly,
from the condition BA = 0 we infer that rA = 0.

(a) The set V1. First assume that A =
(

a 0
0 0

)
, a ∈ D

∗. Then r = (0, u), u ∈ D
∗;

c =
(

0
y

)
, y ∈ D

∗. It follows that B =
(

0 0
0 yu

)
, where y, u ∈ D

∗; and the product

yu can take an arbitrary value from D
∗, whence it can be replaced by a single

parameter b ∈ D
∗. Similarly, for A =

(
0 0
0 a

)
, a ∈ D

∗, we have r = (t, 0), t ∈ D
∗;

c =
(

x
0

)
, x ∈ D

∗. Consequently, B =
(

xt 0
0 0

)
, x, t ∈ D

∗, and the product xt can

take an arbitrary value from D
∗, whence it can be replaced by a single parameter

a ∈ D
∗. Thus, we have proved that for any matrix A ∈ V1, O0

M2(D)
(A) ⊂ V1.

(b) The set V2. Let A = aE21, a ∈ D
∗. Then r = (t, 0), t ∈ D

∗; c =
(

0
y

)
, y ∈ D

∗.

Consequently, B =
(

0 0
yt 0

)
, y, t ∈ D

∗, and the product yt can take an arbitrary

value from D
∗, whence it can be replaced by a single parameter b ∈ D

∗. Thus, we
have proved that O0

M2(D)
(A) ⊂ V2 for an arbitrary matrix A ∈ V2.

(c) The set V3. The case A = aE12 is analogous to item 2(b) and corresponds to the
component V3.

(d) The set V4,α. Let A = a

(
1 α
0 0

)
, a, α ∈ D

∗. Then r = (0, u), u ∈ D
∗;

c =
(−αy

y

)
, y ∈ D

∗. It follows that B =
(

0 −αyu
0 yu

)
, y, u ∈ D

∗, and the

product yu can take an arbitrary value from D
∗, whence it can be replaced by a

single parameter b ∈ D
∗.

Similarly, for A =
(

0 −α
0 1

)
b, where b ∈ D

∗, we have r = (t, tα), t ∈ D
∗; c =

(
x
0

)
,

x ∈ D
∗. Therefore, B =

(
xt xtα
0 0

)
, x, t ∈ D

∗, and the product xt can take an

arbitrary value from D
∗, whence it can be replaced by a single parameter a ∈ D

∗.
Consequently, we have proved that for any matrix A ∈ V4,α, OM2(D)(A) ⊂ V4,α.

(e) The set V5,α. Let A = a

(
0 0
1 α

)
, 0 �= a, α ∈ D

∗. Then r = (t, 0), t ∈ D
∗;

c =
(−αy

y

)
, y ∈ D

∗. It follows that B =
(−αyt 0

yt 0

)
, y, t ∈ D

∗, and the product

yt can take an arbitrary value from D
∗, whence it can be replaced by a single

parameter b ∈ D
∗.

Similarly, for A =
(−α 0

1 0

)
b, where b ∈ D

∗, we have r = (t, tα), t ∈ D
∗; c =

(
0
y

)
,

y ∈ D
∗, implying that B =

(
0 0
yt ytα

)
, y, t ∈ D

∗, and the product yt can take an

arbitrary value from D
∗, whence it can be replaced by a single parameter a ∈ D

∗.
Thus, we have proved that for any matrix A ∈ V5,α, OM2(D)(A) ⊂ V5,α.
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(f) The set V6,α,β. Let A =
( −aα a
−βaα βa

)
a, where α, β ∈ D

∗. Then r = (−uβ, u),

u ∈ D
∗; c =

(
x
αx

)
, x ∈ D

∗. It follows that B =
( −xuβ xu
−αxuβ αxu

)
, x, u ∈ D

∗, and

the product xu can take an arbitrary value from D
∗, whence it can be replaced

by a single parameter b ∈ D
∗.

Similarly, for A =
( −bβ b
−αbβ αb

)
, b ∈ D

∗, we obtain r = (−uα, u), u ∈ D
∗;

c =
(

x
βx

)
, x ∈ D

∗. Therefore, B =
( −xuα xu
−βxuα βxu

)
, x, u ∈ D

∗, and the product

xu can take an arbitrary value from D
∗, whence it can be replaced by a single

parameter a ∈ D
∗. Consequently, we have proved that O0

M2(D)
(A) ⊂ V6,α,β for all

matrices A ∈ V6,α,β.
(3) Prove the connectedness of the components Vi and find their diameters.

(a) Considering the numbers of zeros in matrices and their location, we conclude that
V1a ∩ V1b = ∅ and Vi,α,a ∩ Vi,α,b = ∅, i = 4, 5. The equality( −aα a

−βaα βa

)
=

( −bβ b
−αbβ αb

)
holds if and only if β = α and b = a; therefore, V6,α,β,a ∩ V6,α,β,b = ∅ for all
β ∈ D

∗ \ {α} but V6,α,α,a = V6,α,α,b.
From the proof of item 2 it follows that each of the components

Y ∈ {V1, V4,α, V5,α, V6,α,β| α, β ∈ D
∗}

partitioned as Y = Ya ∪ Yb and arbitrary vertices C ∈ Ya, D ∈ Yb satisfy the
relations O0

M2(D)
(C) = Yb and O0

M2(D)
(D) = Ya. Thus, every component

Y ∈ {V1, V4,α, V5,α, V6,α,β | α ∈ D
∗, β ∈ D

∗ \ {α}}
is a complete bipartite graph with the parts Ya and Yb. Note that the diameter of a
complete bipartite graph with at least three vertices is equal to 2. By construction,
we have |Ya| = |Yb| = |D∗|; consequently, the sets Ya and Yb are infinite by
Wedderburn’s theorem (see, for example, [11, Theorem 3.1.1]).
It remains to consider the components Y ∈ {V6,α,α, α ∈ D

∗}. As we have already
proved, an arbitrary vertex C ∈ Ya satisfies the relation O0

M2(D)
(C) = Yb. On the

other hand, Ya = Yb = Y ; therefore, every vertex of the graph O(Y ) is incident to a
loop, and, on excluding loops, the graph Y is complete, whence it has diameter 1.

(b) The component V2 is connected and has diameter 1 because the relations A1A2 =
A2A1 = 0 hold for the matrices A1 = a1E2,1, A2 = a2E2,1 ∈ V2 with arbitrary
a1, a2 ∈ D, a1 �= a2. Also A2 = 0 for any matrix A ∈ V2. Therefore, the graph V2

is a complete graph with loops. The argument for the component V3 is similar. �
By the Molin–Wedderburn–Artin theorem (see, for example, [11, Theorem 2.1.6]), for simple

Artinian rings the main result can be stated as follows.

Corollary 2.3. Let R be a simple Artinian ring, n be the cardinality of the maximal set
of pairwise orthogonal nonzero idempotents in R (one can also define n as dimDV , where
D = End RV , V is a simple left R-module).

Then
(1) for n = 1, the ring R is a ring without zero divisors, and the graph O(R) is empty;
(2) for n = 2, the graph O(R) is disconnected, and the connected components of O(R) have

diameters 1 and 2 if |D| ≥ 2 or 0 and 1 if D = Z2;
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(3) for n ≥ 3, the graph O(R) is connected and has diameter 4.

This work was supported by the Russian Science Foundation (grant No. 17-11-01124).

Translated by the authors.
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14. P. Šemrl, “Order-preserving maps on the poset of idempotent matrices,” Acta Sci. Math.

(Szeged), 69, 481–490 (2003).

804


	Abstract
	1. Introduction
	2. The orthogonality graph of the matrix ring O (Mn (D))
	REFERENCES

