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We study the behavior of solutions to the Dirichlet problem for the p(x)-Laplacian with

a continuous boundary function. We prove the existence of a weak solution under the

assumption that p is separated from 1 and ∞. We present a necessary and sufficient

Wiener type condition for regularity of a boundary point provided that the exponent p

has the logarithmic modulus of continuity at this point. Bibliography: 24 titles.

Dedicated to the memory of Vasilii Vasil’evich Zhikov

1 Introduction

Let D be a bounded domain in R
n, n � 2. This paper is devoted to the behavior of the solutions

to the Dirichlet problem in D for the equation

Lu = div (|∇u|p(x)−2∇u) = 0 (1.1)

at a boundary point, where the exponent p is measurable and such that

1 < α � p(x) � β for almost all x ∈ D. (1.2)

Equations of the form (1.1) first arose in works of Zhikov [1, 2] in connection with homoge-

nization of integrands of the form |∇u|p(x). Such equation also arise in mathematical modeling of

fluids whose properties change under the action of electromagnetic field or temperature [3]–[5].

To define a solution to Equation (1.1), we introduce the class of functions

W (D) =
{
u ∈ W 1,1(D) : |∇u|p(x) ∈ L1(D)

}
,
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where W 1,1(D) is the Sobolev space of integrable functions in D, together with the first order

generalized derivatives. We say that a sequence uj ∈ W (D) converges in W (D) to a function

u ∈ W (D) if uj → u in L1(D) and

lim
j→∞

∫

D

|∇u−∇uj |p(x)dx = 0. (1.3)

By the Scheffe or Riesz theorem, the last convergence is equivalent to the convergence of ∇uj
to ∇u almost everywhere in D, together with the energy convergence

∫

D

|∇uj |p(x)dx →
∫

D

|∇u|p(x)dx.

We say that u ∈ W (D) belongs to the class W0(D) if there exists a sequence of functions

uj ∈ W (D) compactly supported inD such that (1.3) holds. We say that a sequence uj ∈ W0(D)

converges in W0(D) to a function u ∈ W0(D) if (1.3) holds.

We are interested in the function classes H(D) and H0(D) that are the completions in W (D)

and W0(D) of smooth functions in D relative to the above convergences. Namely, we set

H(D) = {u ∈ W (D) : ∃uj ∈ C∞(D) ∩W (D), uj → u in W (D)},
H0(D) = {u ∈ W (D) : ∃uj ∈ C∞

0 (D), uj → u in W0(D)}.

From the results of [2] it follows that only the assumption (1.2) is not sufficient for smooth

functions to be dense in W (D) and W0(D). The density of smooth functions in these classes is

guaranteed by the known logarithmic condition

|p(x)− p(y)| � k0

(
ln

1

|x− y|
)−1

, x, y ∈ D, |x− y| < 1/2, (1.4)

which was obtained by Zhikov [6].

If smooth functions are not dense in the set of solutions to Equation (1.1), then the related

boundary value problems can be understood in different senses [6].

The most important types of solutions are the so-called H-solutions and W -solutions. We

say that a function u ∈ H(D) (u ∈ W (D)) is an H-solution (W -solution) to Equation (1.1) if

the integral identity ∫

D

|∇u|p(x)−2∇u · ∇ψdx = 0 (1.5)

holds for test functions ψ ∈ H0(D) (ψ ∈ W0(D)).

We consider the Dirichlet problem

Lu = 0 in D, u ∈ H(D), f ∈ H(D), (u− f) ∈ H0(D). (1.6)

The solution to this problem is connected by the relation u = w + f with the minimizer w of

the variational problem

inf
w∈C∞

0 (D)
F (w + f) = min

w∈H0(D)
F (w + f), F (v) =

∫

D

|∇v|p(x)
p(x)

dx. (1.7)
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In addition to the problem (1.6), we consider the problem

Lu = 0 in D, u ∈ W (D), f ∈ W (D), (u− f) ∈ W0(D). (1.8)

In turn, a solution to the problem (1.8) is connected by the relation u = w+f with the minimizer

of the variational problem

min
w∈W0(D)

F (w + f). (1.9)

The unique solvability of the Dirichlet problem (1.6), (1.8) is well known (cf. for example,

[7]). In Section 2, we present a simpler proof of this fact. If the boundary function f is only

continuous, then it is possible to construct a weak solution to the Dirichlet problem

Lu = 0 in D, u|∂D = f ∈ C(∂D). (1.10)

For this purpose we extend the function f by continuity to the whole space. Let fk ∈ C∞(D)

be a sequence of functions that uniformly converges to f in D. We construct solutions uk to

the Dirichlet problem (1.6) (or (1.8)) with the boundary functions fk. In Section 4 it is shown

that the sequence uk converges to a function uf , bounded by the maximum of the absolute

value of the boundary function, and uf is an H-solution (a W -solution) to Equation (1.1) in

any subdomain D′ � D. This limit function, called a weak solution to the Dirichlet problem

(1.10), is uniquely determined independently of the way of extending f and the choice of its

smooth approximation Moreover, it is unclear in what sense the constructed weak solution to

the Dirichlet problem (1.10) takes the value f on the boundary.

Definition 1.1. A boundary point x0 ∈ ∂D is called regular if ess lim
D�x→x0

uf (x) = f(x0) for

any continuous function f on ∂D.

In 1913, Lebesgue [8] published an example of a boundary point for the Laplace equation

that is not regular. The notion of the regularity of a boundary point is also due to Lebesgue. The

criterion for regularity of a boundary point for the Laplace equation was obtained by Wiener,

[9, 10]. For linear divergence form uniformly elliptic equations of the second order a similar result

was obtained in [11]. A sufficient Wiener type condition for regularity of a boundary point and

an estimate for the modulus of continuity of solutions near the boundary for the p-Laplacian

were proved by Maz’ya [12]. These estimates were extended in [13] to a large class of quasilinear

elliptic equations of p-Laplacian type. The necessity of the Maz’ya condition for regularity of a

boundary point for p-Laplacian type equations was established in [14] in the case n− 1 < p � n

and in [15] in the general case. The criterion for regularity of a boundary point for Equation

(1.1) with the condition (1.4) was obtained in [7].

The goal of this paper is to study the behavior at a boundary point of a solution uf to

the generalized Dirichlet problem with continuous boundary function f . This solution can be

a W -solution, as well as an H-solution. In what follows, we simply call it a solution to the

Dirichlet problem.

Assume that, in addition to (1.2), the following condition holds:

|p(x)− p(x0)| � k0

(
ln

1

|x− x0|
)−1

, x ∈ D, |x− x0| < 1/2. (1.11)

We note that for a point x0 inside D the condition (1.11) guarantees the Hölder continuity of

the solution at this point [16].
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To formulate the results, we introduce the notion of a capacity. First, we extend the exponent

p to the space R
n with preserving the properties (1.2), (1.11) and denote by Bx0

R the open ball

with radius R and center x0. The H-capacity of a compact set K ⊂ BR with respect to BR is

the number

Cp(K,Bx0
R ) = inf

∫

BR

|∇ϕ|p(x)
p(x)

dx, (1.12)

where the greatest lower bound is taken over the set of functions ϕ ∈ H0(B
x0
R ) that are larger

than or equal to 1 almost everywhere on K. The W -capacity of a compact set is defined by the

equality (1.12), where the greatest lower bound is taken over the set of functions ϕ ∈ W0(B
x0
R )

that are larger than or equal to 1 almost everywhere on K. By a capacity we will mean the

H-capacity in the case of H-solutions or the W -capacity in the case of W -solutions.

From Lemmas 3.1 and 3.2 below it follows that in the definition of H-solutions one can take

functions ϕ ∈ C∞
0 (Bx0

R ) that are equal to 1 in a neighborhood of K.

For x0 ∈ ∂D we set

p0 = p(x0), γ(t) = (Cp(B
x0

t \D,Bx0
2t )t

p0−n)1/(p0−1), (1.13)

where Bx0
t denotes the ball with radius t and center x0.

The main result of this paper is formulated in the following theorem.

Theorem 1.1. If the conditions (1.2), (1.11) hold and
∫

0

γ(t)t−1dt = ∞, (1.14)

then the boundary point x0 ∈ ∂D is regular.

As is shown in [7], if the exponent p satisfies the logarithmic condition (1.4), then (1.14) is a

necessary condition for regularity of a point x0. In Section 7, we describe the slightly modified

proof in [7] to obtain the necessity of the condition (1.14) for regularity of a boundary point in

our case.

Theorem 1.2. If the conditions (1.2) and (1.11) hold, then the condition (1.14) is necessary

for regularity of a boundary point x0 ∈ ∂D.

In the case p0 > n, the condition (1.14) always holds, which follows from the capacity

estimate

Cp({x0}, Bx0
t ) � C(n, p)tn−p0 .

Any point x0 ∈ ∂D, where p(x0) > n and the condition (1.11) holds, is regular. Using the

Sobolev embedding theorem, for sufficiently small ρ and r � ρ/4 we can prove the estimate

ess sup
D∩Bx0

r

|uf (x)− f(x0)| � osc
∂D∩Bx0

ρ

f + C(n, p) osc
∂D

f(r/ρ)1−n/p0

which implies the continuity uf at the point x0. The proof is the same as in the case of constant

exponent (cf. details in [7]).

In what follows, we assume that p0 � n. In this case, the key role in the proof of Theorem

1.1 is played by the estimate for oscillation of the solution u to the problem (1.6) with smooth

in D boundary function f in balls of sufficiently small radius. In the following assertion, u is a

solution to the Dirichlet problem (1.6) with a smooth function f .
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Lemma 1.1. In the ball Bx0
4r , r < 1/16, the following inequality holds:

ess osc
D∩Bx0

r

u � (1− δγ(r))ess osc
D∩Bx0

4r

u+ δγ(r) osc
∂D∩Bx0

4r

f + r, (1.15)

where δ depends only on n, max
∂D

|f |, and the constant in the conditions (1.2) and (1.11).

We prove this lemma below. The following assertion is obtained in a standard way.

Theorem 1.3. Let u be a solution to the generalized Dirichlet problem (1.10). Then there

exist positive constants θ and C that depend only on n, p, max
∂D

|f | and for ρ � ρ0(n, p), r � ρ/4

ess sup
D∩Bx0

r

|u− f(x0)| � C

(

osc
∂D∩Bx0

ρ

f + ρ+ exp

(

−θ

ρ∫

r

γ(t)t−1dt

))

. (1.16)

Here, the dependence on p is determined by the constant in the conditions (1.2) and (1.11).

We first note that for smooth boundary functions, iterating (1.15), we obtain the estimate

ess osc
D∩Bx0

r

u � C

(

osc
∂D∩Bx0

ρ

f + ρ+ exp

(

−θ

ρ∫

r

γ(t)t−1dt

))

.

By this estimate, the limit of u(x) as x → x0 exists if the condition (1.14) holds. Then it is

proved that this limit coincides with f(x0). Indeed, assume the contrary. Then there are positive

numbers ρ and ε such that |u(x) − f(x0)| > ε for all x ∈ D ∩ Bx0
ρ . We consider the function

w = (u− f)/ε. It is obvious that it takes the zero value on ∂D in the sense of the corresponding

spaces, i.e., belongs to W0(D) or H0(D) depending on what solutions we consider. We extend w

by zero outside D and consider the function v = min(w, 1). It is obvious that v = 1 in D ∩Bx0
ρ

and v = 0 on ∂D and in Bx0
ρ \D. Since ∇v = 0 in Bx0

ρ \D and almost everywhere in D ∩Bx0
ρ ,

we have ∇v = 0 almost everywhere in Bx0
ρ . Since 1 − v = 0 in D ∩ Bx0

ρ , |D ∩ Bx0
ρ | > 0 and

∇(1− v) = 0 almost everywhere in Bx0
ρ , according to the De Giorgi–Poincaré estimate, we have

|Bx0
ρ \D| =

∫

B
x0
ρ

(1− v)dx � C(n)ρn+1|D ∩Bx0
ρ |−1

∫

B
x0
ρ

|∇(1− v)|dx = 0.

Let ϕ ∈ C∞
0 (Bx0

ρ ) be such that 0 � ϕ � 1 and ϕ = 1 in a neighborhood of Bx0
ρ /2. The function

(1− v)ϕ is admissible in the definition of a capacity. Hence

Cp(B
x0

ρ/2 \D,Bx0
ρ ) �

∫

B
x0
ρ

|∇(1− v)ϕ|p(x)
p(x)

dx

=

∫

B
x0
ρ

|(1− v)∇ϕ|p(x)
p(x)

dx =

∫

B
x0
ρ \D

|∇ϕ|p(x)
p(x)

dx = 0

because the measure of the integration set is equal to zero. This contradict the divergence

of the integral (1.14) in the formulation of Theorem 1.1. This implies (1.16) in the case of
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smooth boundary functions. Passing to the limit along the sequence of solutions uk to the

Dirichlet problem (4.1) with smooth fk, we conclude that (1.16) also holds for solutions to the

generalized Dirichlet problem (1.10) (cf. details in [7]).

The paper is organized as follows. In Section 2, we prove the existence and uniqueness of a

solution to the Dirichlet problem (1.6), (1.8) with variational boundary data. Section 3 contains

auxiliary results about functions of the spaces W (D) and H(D). In Section 4, we prove the

existence and uniqueness of a weak solution to the Dirichlet problem (1.10). In Section 5, we

formulate and prove the weak type Harnack inequality. The results of this section serve as the

keystone of the proof of Lemma 1.1. In Section 6, we prove Lemma 1.1. At the end of the

paper, we formulate rather standard geometric conditions for regularity of a boundary point for

H-solutions.

2 The Dirichlet Problem with Variational Boundary Data

The existence and uniqueness of minimizers of the variational problem (1.7), (1.9) in an

arbitrary bounded domain D is established in [7, Theorem 3.1]. This implies the existence and

uniqueness of solutions to the Dirichlet problem (1.6), (1.8) (cf. [7, Theorem 3.2]). We give a

simpler proof. We first establish the strong convergence of a minimizing sequence {uj} in W (D).

For this purpose we need the Clarkson inequality in the form (cf. [17])

|b|p − |a|p � p|a|p−2a(b− a) +
|b− a|p
2p−1 − 1

, p � 2,

|b|p − |a|p � p|a|p−2a(b− a) +
3p(p− 1)

16

|b− a|2
(|a|+ |b|)2−p

, 1 < p < 2,

for arbitrary vectors a, b ∈ R
n that do not vanish simultaneously. We apply this inequality

to b = uj , a = (uj + uk)/2 and b = uk, a = (uj + uk)/2 and add the results. Denoting

c0 = 3α(α− 1)/16. we get
∫

{x∈D:p(x)�2}

|∇(uj − uk)|p(x)
2p(x)p(x)

dx+
c0
2

∫

{x∈D:p(x)<2}

|∇(uj − uk)|2
(3(|∇uj |+ |∇uk|)/2)2−p(x)p(x)

dx

�
∫

D

|∇uj |p(x)
p(x)

dx+

∫

D

|∇uk|p(x)
p(x)

dx− 2

∫

D

|∇(uj + uk)/2|p(x)
p(x)

dx.

By the definition of a minimizing sequence, the right-hand side of the last inequality can be

made less than any positive number ε ∈ (0, 1) by taking sufficiently large j and k. Then
∫

{x∈D:p(x)�2}
|∇(uj − uk)|p(x)dx < Cε.

By the Young inequality,
∫

{x∈D:p(x)<2}
|∇(uj − uk)|p(x)dx � ε−1/2

∫

{x∈D:p(x)<2}

|∇(uj − uk)|2
(|∇uj |+ |∇uk|)2−p(x)

dx

+ ε1/2
∫

D

(|∇uj |+ |∇uk|)p(x)dx � C
√
ε,
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where the constant C is independent of j, k. Thus, the sequence {uj} is fundamental in D. We

denote by u the limit of this sequence. Using first the mean value theorem and then the Young

inequality, for any ε ∈ (0, 1) we find
∫

D

|∇u|p(x)
p(x)

dx �
∫

D

|∇uj |p(x)
p(x)

dx+

∫

D

(|∇uj |p(x)−1 + |∇u|p(x)−1)|∇uj −∇u|dx

�
∫

D

|∇uj |p(x)
p(x)

dx+ ε1/(β−1)

∫

D

(|∇uj |p(x) + |∇u|p(x))dx

+ ε−1

∫

D

|∇uj −∇u|p(x)dx.

By the arbitrariness of ε and j,
∫

D

|∇u|p(x)
p(x)

dx � lim inf
j→∞

∫

D

|∇uj |p(x)
p(x)

dx.

Thus, u is a minimizer. The uniqueness of a minimizer is obtained by the same arguments

as those made in derivation of the fundamental sequence {uj}: for two minimizers u, v and

w = (u− v)/2 we get
∫

{x∈D:p(x)�2}

|∇w|p(x)
p(x)

dx+ 2c0

∫

{x∈D:p(x)<2}

|∇w|2
(3(|∇u|+ |∇v|)/2)2−p(x)p(x)

dx

� F (u) + F (v)− 2F ((u+ v)/2) � 0 ⇒ w = 0.

It is easy to verify (the integrand satisfies the assumptions of the Lebesgue dominated conver-

gence theorem) that the Gateaux derivative of the functional F is expressed by

〈F ′(u), h〉 = lim
t→0

F (u+ th)− F (u)

t

= lim
t→0

∫

D

|∇(u+ th)|p(x) − |∇u|p(x)
t

dx =

∫

D

|∇u|p(x)−2∇u∇hdx

if h ∈ H0(D) (or h ∈ W0(D)). Thus, the constructed minimizer (1.7) ((1.9)) is a solution to the

Dirichlet problem (1.6) ((1.8)).

3 Cut-Off Functions, Inequality on the Boundary,
and Maximum Principle

In this section, we recall some facts concerning cut-off functions in Sobolev spaces. For the

Sobolev spaces with constant exponents these facts are well known, but should be proved in the

case under consideration. We begin with the following assertion.

Lemma 3.1. Let m ∈ R. If a sequence of functions uj converges to u in the space W (D),

then there is a sequence of functions vj ∈ W (D), vj � m, converging to min(u,m) in the same

space. If uj ∈ C∞(D), then vj ∈ C∞(D). If m � 0 and the functions uj have compact support

in D, then vj have compact support in D. If uj � m on the set E, then vj = m on E.
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Proof. Denote f(u) = min(u,m). We construct smooth approximations of f as follows. Let

ω ∈ C∞
0 (−1/2, 1/2), ω � 0, ω(−s) = ω(s),

1/2∫

−1/2

ω(s)ds = 1, ωε(s) = ε−1ω(sε−1).

We define the function

hε(t) = 1−
t∫

−∞
ωε(s−m+ ε/2)ds =

∞∫

t

ωε(s−m+ ε/2)ds =
1

2
+

m−ε/2∫

t

ωε(s−m+ ε/2)ds.

This function is smooth, is equal to 1 for t � m− ε, is equal to 0 for t � m, and monotonically

decreases in (m− ε,m). It is easy to see that

m∫

m−ε

hε(t)dt =

ε/2∫

−ε/2

dt

⎛

⎝1

2
+

0∫

t

ωε(s)ds

⎞

⎠ = ε/2.

Let

gε(t) = hε(t) +
ε

2
ωε(t−m+ ε/2), fε(t) = m−

∞∫

t

gε(s)ds.

It is easy to see that |gε| � 3/2, gε(t) = 1 for t � m− ε and gε(t) = 0 for t � m. Since

m∫

m−ε

gε(t)dt = ε,

we have fε(t) = f(t) for t � m and t � m− ε.

Let uj be a sequence of functions in W (D) (or C∞(D) in the case of H(D)) approximating u

in D. We consider functions fε(uj) possessing the properties indicated in the formulation of the

lemma. We show that, choosing ε and j in a suitable way, it is possible to make the difference

fε(uj)− f(u) arbitrarily small in W (D). By the triangle inequality,

I =

∫

D

|fε(uj)− u|+ |∇fε(uj)−∇f(u)|p(x)dx

�
∫

D

|fε(uj)− fε(u)|dx+

∫

D

|fε(u)− f(u)|dx+

∫

D

|f ′
ε(uj)|p(x)|∇uj −∇u|p(x)dx

+

∫

D

|f ′
ε(uj)− f ′

ε(u)|p(x)|∇u|p(x)dx+

∫

D

|f ′
ε(u)− f ′(u)|p(x)|∇u|p(x)dx =

5∑

k=1

Ik.

Let us estimate terms on the right-hand side of this inequality. It is easy to see that

I1 �
3

2

∫

D

|uj − u|dx, I2 � Cε|{m− ε < u < m}|.
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Further,

I3 � (3/2)β
∫

D

|∇uj −∇u|p(x)dx, I5 �
∫

{m−ε<u<m}
|∇u|p(x)dx.

It remains to estimate I4. We set Fε = {m − 2ε � u � m}. Then f ′
ε(uj) − f ′

ε(u) = 0 on the

complement to the set Fε ∪ {|uj − u| > ε}. Therefore,

I4 � C

∫

Fε

|∇u|p(x)dx+ C

∫

{|uj−u|>ε}
|∇u|p(x)dx.

The first integral on the right-hand side converges to zero as ε → 0, and the second integral

converges to zero as j → ∞ for any fixed ε > 0. Therefore, taking sufficiently small ε and then

sufficiently large j, we can made all Ik and, respectively, I as small as desired.

From Lemma 3.1 we obtain the following assertion.

Lemma 3.2. If u ∈ H(D) (u ∈ W (D)), then min(u,m) ∈ H(D) (min(u,m) ∈ W (D)). For

m � 0, if u ∈ H0(D) (u ∈ W0(D)), then min(u,m) ∈ H0(D) (min(u,m) ∈ W0(D)).

Thus, the set W (D), H(D), W0(D), H0(D) forms a lattice, i.e., for any u, v ∈ H(D) (W (D),

H0(D), W0(D))

min(u, v) = u+min(v − u, 0) ∈ H(D) (W (D), H0(D),W0(D)),

max(u, v) = u−min(u− v, 0) ∈ H(D) (W (D), H0(D),W0(D)).

We recall that ∇min(u, v) = χ{u�v}∇u + χ{u>v}∇v almost everywhere in D. Hereinafter,

χA denotes the characteristic function of a set A. We define by u+(x) = max(u(x), 0) =

−min(−u, 0) and u−(x) = max(−u(x), 0) = −min(u, 0) the positive and negative parts of

a function. By Lemma 3.2, for u ∈ H(D) (W (D), H0(D), W0(D)) we have u± ∈ H(D)

(W (D), H0(D), W0(D)). Furthermore, u ∈ W0(D) (u ∈ H0(D)) implies (u − k)+ ∈ W0(D)

((u − k)+ ∈ H0(D)) for all k � 0. Indeed, let uj be a sequence of functions with compact

support in W (D) (C∞
0 (D)) converging to u in W (D). Applying Lemma 3.1 with m = 0 to the

function k − u and the sequence k − uj converging to this function, we obtain the sequence of

functions vj converging to min(k − u, 0) with compact support in D.

We say that a function u ∈ W (D) (u ∈ H(D)) satisfies the inequality u � 0 on the boundary

of D if u− ∈ W0(D) (u− ∈ H0(D)). Respectively, u � v on the boundary of D if u − v � 0 on

∂D in the sense of this definition and u � v if v − u � 0 on ∂D. If it is additionally known

that the function u ∈ W (D) (u ∈ H(D)) is continuous in the closure of the domain, then the

inequality u � 0 on ∂D in the usual sense implies the same inequality in the sense of the above

definition. This fact is true because the functions (u+ ε)− vanish in a neighborhood of ∂D and

converge to u− in W (D).

The natural transitivity property holds: if u � v and v � w on ∂D in the sense of the above

definition, then u � w on ∂D. Indeed, it is obvious that (u − w)− � (u − v)− + (v − w)−. We

consider a sequence of functions ψj � 0 in H(D) (W (D)) with compact support in D converging

to (u− v)− + (v − w)− in W (D). Then it is easy to verify that the sequence min((u− v)−, ψj)

converges to (u− v)− in W (D). Therefore, (u− v)− ∈ H0(D) (W0(D)).

For solutions to the Dirichlet problem (1.6) the maximum principle holds (cf. [7]).
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Lemma 3.3 (maximum principle). If u1, u2 ∈ H(D) (u1, u2 ∈ W (D)) are solutions to the

Dirichlet problem (1.6) with the boundary functions f1, f2 and f1 � f2 on ∂D, then u1 � u2
almost everywhere in D.

We need another definition generalizing the above definition for inequalities on the boundary.

A set E of class W0(D,E) (H0(D,E)) is introduced as a set of functions in W (D) (H(D)) such

that there exists a sequence of functions uj ∈ W (D) (uj ∈ H(D)) vanishing in a neighborhood

of E ∩ D and converging to u in W (D). We say that u � 0 on the set E if u− ∈ W0(D,E)

(u− ∈ H0(D,E)). Other inequalities are defined in a similar way. In this case, the transitivity

property also takes place: if u � v and v � w on E, then u � w on E in the sense of this

definition.

We also use the following simple assertion.

Lemma 3.4. Assume that u ∈ H(D) (u ∈ W (D)), m � u � M , and f is a Lipschitz

function on [m,M ]. Then f(u) ∈ W (D) (f(u) ∈ H(D)).

Proof. For u ∈ W (D) the assertion is obvious. Let u ∈ H(D). Assume that uj ∈ C∞(D),

uj → u in W (D). We can assume that m � uj � M , which is proved as in Lemma 3.1. We

extend f by a constant outside [m,M ]. Let fε be a smoothing of f , so that fε → f , f ′
ε → f ′

almost everywhere, |f ′
ε| � sup |f ′|. Using the triangle inequality, we obtain the estimate

∫

D

|∇fε(uj)−∇f(u)|p(x)dx � C

∫

D

|∇fε(u)−∇f(u)|p(x)dx

+ C

∫

D

|∇fε(uj)− f ′
ε(uj)∇u|p(x)dx+ C

∫

D

|(f ′
ε(uj)− f ′

ε(u))∇u|p(x)dx.

The convergence of the first integral on the right-hand side to zero as ε → 0 follows from

the Lebesgue dominated convergence theorem. The convergence of the second integral to zero

as j → ∞ follows from the choice of {uj}. For fixed ε the third integral on the right-hand

side can be made small as desired by the suitable choice of j in view the Egorov theorem, the

absolute continuity of the Lebesgue integral, the continuity of f ′
ε, and the Lebesgue dominated

convergence theorem.

4 The Generalized Dirichlet Problem

If the boundary function is only continuous, it is possible to construct a solution to the gen-

eralized Dirichlet problem. The construction can be performed in different ways. For example,

one can approximate the domain by smooth ones as in [9, 10] or by using the Poincaré–Perron

method [18, 19]. For nonlinear equations the last method is presented in [20]. We will use a

simper construction described for linear equations in [21].

In this section, it is convenient to use the Lebesgue–Orlicz spaces of functions with variable

integrability exponent Lp(x)(Ω) = {v : |v|p(x) ∈ L1(Ω)} equipped with the Luxemburg norm

‖v‖Lp(x)(Ω) = inf

{

λ > 0 :

∫

Ω

(f/λ)p(x)dx � 1

}

.
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Under the assumption (1.2), the space Lp(x)(Ω) is a reflexive separable Banach space. The dual

is the space Lp′(x)(Ω), p′(x) = p(x)/(p(x) − 1). We need the following assertion which is not

different from the case of a constant exponent p (cf. [22]) and is proved in the same way.

Lemma 4.1. Let fj → f almost everywhere in Ω, and let

sup
j

∫

Ω

|fj |p(x)dx < ∞.

Then the sequence fj weakly converges to f in Lp(x)(Ω).

Let us show how to construct a solution to the generalized Dirichlet problem (1.10).

We extend the boundary function f ∈ C (∂D) by continuity to D, keeping the notation for

the extended function, and consider the sequence of infinitely differentiable functions fk in R
n

that uniformly converges to f on D. We solve the problem Dirichlet

Luk = 0 in D, uk ∈ H(D), (uk − fk) ∈ H0(D). (4.1)

Denote M = max
∂D

|f |. We can assume that |f | � M on D and |fk| � M on D. By the maximum

principle, |u| � M almost everywhere in the domain D. Let ξ ∈ C∞
0 (D). Taking the test

function uξβ in the integral identity (1.5), we get

∫

D

|∇uk|p(x)ξβdx = −
∫

D

βξβ−1uk|∇uk|p(x)−2∇u∇ξdx.

Applying the Young inequality, we find
∫

D

|∇uk|p(x)ξβdx � C(α, β)

∫

D

|uk|p(x)|∇ξ|p(x)ξβ−p(x)dx.

Hence for any subdomain D′ ⊂ D
∫

D′

|∇uk|p(x)dx � C(α, β, n,D′)(1 +Mβ).

Furthermore, by the maximum principle,

sup
D

|uk − um| � sup
∂D

|fk − fm|.

Thus, the sequence {uk} uniformly converges to some function u ∈ W 1,1
loc (D) in D; moreover,

|u| � M . From the properties of the Lebesgue space with variable integrability exponent it

follows that ∇uk weakly converges to ∇u in L
p(x)
loc (D). Therefore, for any subdomain D′ � D

∫

D′

|∇u|p(x)dx � C(D′).

Consequently, u ∈ W (D′) for all D′ � D. If uk are H-solutions, then, by the Mazur theorem,

a sequence of convex combinations of uk that strongly converges in W (D)′ for any subdomain

D′ � D, which implies u ∈ H(D′). We also assume that |∇uk|p(x)−2∇uk weakly converges in
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L
p′(x)
loc (D) to some element ξ ∈ L

p′(x)
loc (D). We show that ξ ≡ |∇u|p(x)−2∇u by using the methods

of [22]. Let 0 � η ∈ C∞
0 (D). Applying the integral identity (1.5) for uk with the test function

(uk − u)η, we have

∫

D

(|∇uk|p(x)−2∇uk − |∇u|p(x)−2∇u) · (∇uk −∇u)ηdx

= −
∫

D

(uk − u)|∇uk|p(x)−2∇uk · ∇ηdx−
∫

D

η|∇u|p(x)−2∇u · (∇uk −∇u)dx → 0

as k → ∞. Consequently, (|∇uk|p(x)−2∇uk−|∇u|p(x)−2∇u) ·(∇uk−∇u) → 0 almost everywhere

in D as k → ∞. By the monotonicity property,

(|ξ|p(x)−2ξ − |η|p(x)−2η) · (ξ − η) > 0 ∀ ξ, η ∈ R
n, ξ �= η,

we find that ∇uk(x) converges to ∇u almost everywhere in D.

By Lemma 4.1, |∇uk|p(x)−2∇uk weakly converges to |∇u|p(x)−2∇u in Lp′(x)(D′) for any

D′ � D. Passing to the limit in the integral identity (1.5) for uk, we see that the limit function

u satisfies the integral identity (1.5) with test functions ψ ∈ H0(D). The limit function, called a

weak solution to the Dirichlet problem (1.10), is bounded in D and is independent of the method

of extending and approximating the boundary function f . In this construction, for p the only

condition (1.2) is required.

We show that uk also converge to the limit function u in the sense of W (D′) for any D′ � D.

We recall the Scheffe theorem.

Theorem (Scheffe). If a sequence of nonnegative functions fj converges to a function f

almost everywhere in D and ∫

D

fjdx →
∫

D

fdx,

then fj → f in L1(D).

For η ∈ C∞
0 (D), using the integral identity (1.5) for uk and then for u, we write

∫

D

|∇uk|p(x)ηdx = −
∫

D

uk|∇uk|p(x)−2∇uk∇ηdx

→ −
∫

D

u|∇u|p(x)−2∇u∇ηdx =

∫

D

|∇u|p(x)ηdx.

By the Scheffe theorem, |∇uk|p(x)η → |∇u|p(x)η in L1(D). Then the sequence |∇uk|p(x)η is

equicontinuous. Since

|∇uk −∇u|p(x)η � C|∇uk|p(x)η + C|∇u|p(x)η,

the convergence ∫

D

|∇uk −∇u|p(x)ηdx → 0
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follows from the convergence of integrands to zero almost everywhere in D and the Lebesgue

theorem. Thus, with an arbitrary continuous boundary function on ∂D we associate a solution

to Equation (1.1) in D. This solution is called a weak solution to the Dirichlet problem (1.10).

Depending on how the solutions uk to the original problem were regarded, as W -solutions or

H-solutions, the obtained solution is a W -solution or an H-solution respectively. However, it is

not known whether the solution takes the required value on the boundary.

We note that it is questionable if the Wiener method can be applied to the case under

consideration since the continuity of a solution is not guaranteed in any smooth domain if the

logarithmic condition on the exponent p fails.

5 The Weak Type Harnack Inequality

The proof of the estimate (1.15) is based on the weak type Harnack inequality of a special

form for the solution u to the problem (1.6) with a smooth boundary function f in D such that

0 � f � M on ∂D. We set

m = inf
∂D∩Bx0

4R

f, R < 1/16,

um(x) =

{
min (u(x),m), x ∈ D ∩Bx0

4R,

m, x ∈ Bx0
4R \D,

vm(x) = um(x) +R.

We extend p to R
n \D by a constant p0. We show that vm is a supersolution to Equation (1.1)

in R
n.

Lemma 5.1. For any nonnegative ϕ ∈ C∞
0 (Rn)

∫

D

|∇vm|p(x)−2∇vm∇ϕdx � 0. (5.1)

Proof. Let a nonnegative Lipschitz function Φε on the real axis be such that Φε(s) = 0 for

s � 0 and Φ′
ε � 0, Φε(s) = 1 for s � ε. Choosing a test function ϕΦε(m+R − vm) ∈ H0(D) in

the definition of a solution, we get

∫

D

Φε(m+R− vm)|∇u|p(x)−2∇u∇ϕdx =

∫

D

ϕΦ′
ε(m+R− vm)|∇u|p(x)dx � 0.

Letting ε → 0, we obtain (5.1).

In what follows, for a measurable set E ⊂ R
n and f ∈ L1(E) we introduce the notation

∫
−
E

fdx = |E|−1

∫

E

fdx,

where |E| is the Lebesgue measure of E. We will assume that R � 1.
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Theorem 5.1. For any 0 < q < n(p0 − 1)/(n− 1) and 0 < s < t < 3

(

−
∫

B
x0
tR

vqmdx

)1/q

� C(n, p, q,M, s, t) ess inf
B

x0
sR

vm. (5.2)

The proof of the estimate (5.2) in [7, Theorem 6.1] essentially uses the logarithmic condition

(1.4) in a neighborhood of the point x0. Since vm is a supersolution, the proof is a slightly

more complicated from the technical point of view version of the proof in [23] of the weak type

Harnack inequality. In the case under consideration, we use the John–Nirenberg lemma so that

we need the following estimate for the solution in balls with an arbitrary small radius and centers

in a neighborhood of the sought point:
∫

Bz
r

|∇ ln vm|dx � C(n, p,M)rn−1.

These estimate essentially depends on the validity of the condition (1.4). If only the condition

(1.11) holds, then such estimates are available only in balls with center x0.

We propose a new method, which allows us to prove Theorem 5.1 under a weaker assumption

than (1.11). The proof is based on a modified technique of [24], where an original method for

proving the weak type Harnack inequality was proposed for nonnegative solutions to nonuni-

formly degenerate linear elliptic equations of divergence form. We note that the assertion of

Theorem 5.1 remains valid if vm is replaced with an arbitrary nonnegative supersolution to

Equation (1.1) whose the greatest lower bound is not less than R, whereas the upper bound

does not exceed M +R.

We proceed by proving Theorem 5.1. The proof consists of two parts. Let σ be the greatest

lower bound of p over the ball Bx0
4R.

Lemma 5.2. For any 0 < s < t < 4

inf
B

x0
sR

vm � exp

(

C +−
∫

B
x0
tR

ln vmdx

)

(5.3)

where the constant C depends only on s, t, M , exponent p, and dimension n.

Proof. We set

ln k = −
∫

B
x0
tR

ln vmdx. (5.4)

By the Jensen inequality,

k = exp−
∫

B
x0
tR

ln vmdx � −
∫

B
x0
tR

vmdx � m+R.

In the integral identities (1.5), we take the test function

ψ =

(
ln

k

vm

)γ

+

v1−σ
m ηβ,
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where γ � 1, η ∈ C∞
0 (BR), 0 � η � 1. It is clear that ψ ∈ W0(D) and ψ = 0 in Bx0

R \D. By the

integral identity, we have

γ

∫

B
x0
R

|∇vm|p(x)v−σ
m

(
ln

k

vm

)γ−1

+

ηβdx+ (σ − 1)

∫

B
x0
R

|∇vm|p(x)v−σ
m

(
ln

k

vm

)γ

+

ηβdx

� β

∫

B
x0
R

|∇vm|p(x)−1v1−σ
m

(
ln

k

vm

)γ

+

ηβ−1|∇η|dx.

Applying the Young inequality to the integrand on the right-hand side of this estimate, we find

∫

B
x0
R

|∇vm|p(x)v−σ
m

(
ln

k

vm

)γ−1

+

ηβdx � C(β)

∫

B
x0
R

vp(x)−σ
m

(
ln

k

vm

)γ+p(x)−1

+

ηβ−p(x)|∇η|p(x)dx.

Setting

w =

(
ln

k

vm

)

+

,

From the last inequality it follows that
∫

B
x0
R

|∇w|p(x)vp(x)−σ
m wγ−1ηldx � C(β)

∫

B
x0
R

vp(x)−σ
m wγ+p(x)−1|∇η|p(x)dx. (5.5)

By the Young inequality,

|∇w|σ � |∇w|p(x)vp(x)−σ + v−σ
m .

It is clear that

vp(x)−σ
m � (M + 1)β ,

wp(x)−σ �
(
ln

m+R

R

)p(x)−σ

� C(k0)(M + 1)β .

Using these inequalities, from (5.5) we find

∫

B
x0
R

|∇w|σwγ−1ηβdx � C(p,M)

∫

B
x0
R

(wγ+σ−1|∇η|p(x) + wγ−1R−σηβ)dx.

Hence
∫

B
x0
R

|∇max(w, 1)|σ max(w, 1)γ−1ηβdx � C(p,M)

∫

B
x0
R

max(w, 1)γ+σ−1(|∇η|p(x) +R−σηβ)dx.

Using the Moser iteration, we obtain the estimate

sup
B

x0
sR

w � C(p,M, n, t, s)

(

1 +−
∫

B
x0
tR

wσdx

)1/σ

. (5.6)
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To estimate the integral

−
∫

B
x0
tR

wσ � −
∫

B
x0
tR

∣
∣∣∣ln

k

vm

∣
∣∣∣

σ

dx,

we take the test function ψ = (v1−σ
m − (m+R)1−σ)ηβ such that η ∈ C∞

0 (Bx0
4R), 0 � η � 1, η = 1

in Bx0
tR, |∇η| � C(n, t)(tR)−1 in the integral identity (1.5). From the integral identity (1.5) and

the inequality vm � m+R it follows that

∫

B
x0
4tR/3

|∇u|p(x)v−σ
m ηβdx � β

∫

B
x0
4tR/3

|∇u|p(x)−1v1−σ
m ηβ−1|∇η|dx.

By the Young inequality,

∫

B
x0
4R

|∇vm|p(x)v−σ
m ηβdx � C(β)

∫

B
x0
4R

vp(x)−σ
m ηβ−p(x)|∇η|p(x)dx.

Since |∇vm|σ � |∇vm|p(x) + 1, we obtain the estimate

∫

B
x0
tR

∣
∣∣∣∇ ln

k

vm

∣
∣∣∣

σ

ηβdx � C(n, p,M, t)(tR)n−σ.

By the choice of the constant k in (5.4), we have

∫

B
x0
tR

ln
k

vm
dx = 0.

Therefore, by the Poincaré inequality,

∫

B
x0
tR

∣∣
∣∣ln

k

vm

∣∣
∣∣

σ

dx � C(n, σ)(tR)σ
∫

B
x0
tR

∣∣
∣∣∇ ln

k

wm

∣∣
∣∣

σ

dx � C(n, p,M, t)(tR)n. (5.7)

The last estimate and (5.6) imply sup
B

x0
sR

w � C(n, p,M, t, s). Recalling the definition of w, we

arrive at the required assertion.

We pass to the proof of the second assertion, where p0 = p(x0).

Lemma 5.3. For any t/64 < τ < t < 4 and 0 < q < n(p0 − 1)/(n− 1)

(

−
∫

B
x0
τR

vqmdx

)1/q

� exp

(

C +−
∫

B
x0
tR

ln vmdx

)

, (5.8)

where the constant C depends only on τ , t, M , q, p, n.
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Proof. We set w =
(
ln

vm
k

)

+
, where k has the same sense as in the previous assertion. In the

integral identity (1.5), we take the test function ψ = max(w, c0(γ+σ))γ(v1−σ
m − (m+R)1−σ)ηβ ,

where γ � 0, η ∈ C∞
0 (Bx0

tR), 0 � η � 1, and c0 = 2/(σ − 1). We have

(σ − 1)

∫

B
x0
tR

|∇vm|p(x)v−σ
m max(w, c0(γ + σ))γηβdx

= γ

∫

B
x0
tR

|∇vm|p(x)v−σ
m χ{w>c0(γ+σ)}max(w, c0(γ + σ))γ−1ηβdx

+ β

∫

B
x0
tR

|∇vm|p(x)−2(v1−σ
m − (m+R)1−σ)max(w, c0(γ + σ))γηβ−1∇vm∇ηdx,

where we used the fact that ψ = 0 on the set, where u+R �= vm. Since

γ/max(w, c0(γ + σ)) � 1/c0 = (σ − 1)/2,

we find

∫

B
x0
tR

|∇vm|p(x)v−σ
m max(w, c0(γ + σ))γηβdx

� 2β

σ − 1

∫

B
x0
tR

|∇vm|p(x)−2(v1−σ
m − (m+R)1−σ)max(w, c0(γ + σ))γηβ−1∇u∇ηdx.

By the Young inequality,

∫

B
x0
tR

|∇vm|p(x)v−σ
m max(w, c0(γ + σ))γηβdx

� C(α, β)

∫

B
x0
tR

vp(x)−σ
m max(w, c0(γ + σ))γηβ−p(x)|∇η|p(x)dx.

Since

|∇u|σ � |∇u|p(x) + 1, vp(x)−σ
m � (M + 1)β ,

we obtain the inequality

∫

B
x0
tR

|∇vm|σv−σ
m max(w, c0(γ + σ))γηβdx

� C(α, β)(M + 1)β
∫

B
x0
tR

max(w, c0(γ + σ))γ(v−σ
m ηβ + |∇η|p(x))dx.
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Hence

(tR)σ−
∫

B
x0
tR

|∇(max(w, c0(γ + σ))1+γ/σηβ/σ)|σdx

� C(α, β)(M + 1)β−
∫

B
x0
tR

max(w, c0(γ + σ))γ+σ(tR|∇η|)σ + (vm/R)−σηβ + (tR|∇η|)p(x))dx.

We set κ = n/(n− 1). Applying the Sobolev inequality, we find

∫
−

B
x0
tR

max(w, c0(γ + σ))(γ+σ)κηβκdx

� C(α, β,M)

( ∫
−

B
x0
tR∩supp η

max(w, c0(γ + σ))γ+σ(1 + (tR|∇η|)p(x))dx
)κ

. (5.9)

We define cut-off functions η = ηj as follows. Assume that τ < s < t, rj = s + (t − s)2−j ,

j = 0, 1, 2, . . ., ηj ∈ C∞
0 (Bx0

rj ), 0 � ηj � 1, ηj = 1 in Bx0
rj+1

, and |∇ηj | � 2j+3(t− s)−1. We define

the sequence γj by the relation γj+1 + σ = (γj + σ)κ, γ0 = 0. Then from (5.9) with γ = γj ,

η = ηj we have

∫
−

B
x0
rj+1

max(w, c0(γj+1 + σ))γj+1+σdx � κ
γj+1+σ

∫
−

B
x0
rj+1

max(w, c0(γj + σ))γj+1+σdx

� C(α, β,M)κγj+1+σ(t− s)−βκ2jβκ

( ∫
−

B
x0
rj

max(w, c0(γj + σ))γj+σdx

)
κ

.

(5.10)

From (5.7) it follows that

−
∫

B
x0
tR

wγ0+σdx � C(p, n,M).

Consequently,

−
∫

B
x0
tR

max(w, c0(γ0 + σ))γ0+σdx � C(n, p,M). (5.11)

Iterating (5.10) and taking into account (5.11), we obtain the estimate

−
∫

B
x0
rk

max(w, c0(γk + σ))γk+σdx � (C(t− s)−βκ)

k−1∑

j=1
κ
j

2
βκ

k−1∑

j=1
jκk−j−1

κ

k−1∑

j=1
(γj+1+σ)κk−1−j

. (5.12)

We have
k−1∑

j=1

κ
j =

κ
k − κ

κ − 1
,

k−1∑

j=1

jκk−j−1 � κ
k

(κ − 1)2
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and (since k = logκ
γk + σ

γ0 + σ
)

κ

k−1∑

j=1
(γj+1+σ)κk−1−j

= κ
k(γk+σ) =

(
γk + σ

γ0 + σ

)γk+σ

Thus,

−
∫

B
x0
sR

max(w, c0(γk + σ))γk+σdx � (C(t− s)−βκ)c(γk+σ)bγk+σ(γk + σ)γk+σ, (5.13)

where ln2 b = βκ(γ0+σ)−1(κ−1)−2. Let r be an integer in [γk−1+σ, γk+σ]. Using the Hölder

inequality and the Stirling formula for factorial, we get

−
∫

B
x0
sR

wr

r!
dx � 1

r!

(

−
∫

B
x0
sR

wγk+σdx

)r/(γk+σ)

� C((C(t− s)−βκ)cbκr)r(e/r)r = C((C(t− s)−βκ)cbκe)r. (5.14)

Consequently, taking sufficiently small δ0 = δ0(n, p,M, s, t), we find

−
∫

B
x0
sR

(wδ0)
r

r!
dx � C2−r.

Using the Hölder inequality, for 1 � r � γ0 + σ we find

−
∫

B
x0
sR

wr

r!
dx � 1

r!

(

−
∫

B
x0
tR

wγ0+σdx

)r/(γ0+σ)

� 1

r!
.

Thus,

−
∫

B
x0
sR

eδ0wdx =
∞∑

k=0

−
∫

B
x0
sR

(δ0w)
r

r!
dx � C(n, p,M, t, s).

By the definition of w, we find

(

−
∫

B
x0
sR

vδ0mdx

)1/δ0

� C(n, p,M, t, s)k. (5.15)

We show that for any q < n(p0 − 1)/(n− 1)

(

−
∫

B
x0
τR

vqmdx

)1/q

� C(n, p,M, τ, s, q, δ0)

(

−
∫

B
x0
sR

vδ0mdx

)1/δ0

.
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For this purpose, in the integral identity (1.5), we take the test function ψ = (v1−σ+γ
m − (m +

R)1−σ+γ)ηβ , 0 < γ < σ − 1, 0 � η � 1, η ∈ C∞
0 (Bx0

sR). Then

(σ − 1− γ)

∫

B
x0
sR

|∇vm|p(x)vγ−σ
m ηβdx

= β

∫

B
x0
sR

|∇u|p(x)−2(v1−σ+γ
m − (m+R)1−σ+γ)ηβ−1∇u∇ηdx

� β

∫

B
x0
sR

|∇vm|p(x)−1v1−σ+γ
m ηβ−1|∇β|dx.

Applying the Young inequality, we obtain the estimate
∫

B
x0
sR

|∇vm|p(x)vγ−σ
m ηβdx � C

∫

B
x0
sR

vp(x)−σ+γ
m |∇η|p(x)dx (5.16)

which, as above, implies
∫

B
x0
sR

|∇(vγ/σm ηβ/σ)|σdx � C(M + 1)β
∫

B
x0
sR

vγm(|∇η|p(x) + v−σ
m ηβ + |∇η|σ)dx. (5.17)

We set κ = n/(n− 1). Using the Sobolev inequality, from (5.17) we find

−
∫

B
x0
sR

(vγmηβ)κdx � C

(

(M + 1)β
∫
−

B
x0
sR∩supp η

vγm((R|∇η|)p(x) + 1)dx

)
κ

. (5.18)

Let j0 be the minimal natural number such that q � δ0κ
j0 . We set δ1 = qκ−j0 and rj = s−j(s−

τ)/(j0). Assume that ηj ∈ C∞
0 (Bx0

rj ), ηj = 1 on Bx0
rj+1

, 0 � ηj � 1, |∇ηj | � 2(j0 + 2)/(s − τ).

We write the inequality (5.18) for ηj , γ = γj = δ1κ
j , j = 0, 1, . . . , j0. Then

−
∫

B
x0
τR

vqmdx = −
∫

B
x0
rj0

v
γj0
m dx � C(n, p,M, t, s, q, δ0, j0)

(

−
∫

B
x0
sR

vδ1mdx

)γj0/δ1

� C(n, p,M, t, s, q, δ0, j0)

(

−
∫

B
x0
sR

vδ0mdx

)q/δ0

,

where we applied the Hölder inequality at the last step. Combining the last inequality with

(5.15), where s = (t+ τ)/2, we obtain the estimate

(

−
∫

B
x0
τR

vqmdx

)1/q

� C(M,p, n, t, τ, q)k,

which leads to the assertion of the lemma.
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Combining the estimates of Lemmas 5.2 and 5.3, where s = 1, t = 3, τ = 2, we obtain the

assertion of Theorem 5.1. We note that the upper bound for the exponent q in the assertions

of Theorem 5.1 and Lemma 5.3 is less than that in the case of a constant exponent p: 0 <

q < n(p − 1)/(n − p) for 1 < p < n and 0 < q < +∞ if p = n. This is done only for the

sake of convenience. Formulations remain valid for all 0 < q < n(p0 − 1)/(n − p0) in the case

1 < p0 < n and 0 < q < +∞ in the case p0 = n provided that R < R0(n, p). The difference

in the proof of Lemma 5.3 consists in the following. Let σ < n. For sufficiently small R we

have q < n(σ − 1)/(n − σ). Using the Sobolev inequality, from (5.17) we obtain (5.18) with

κ = n/(n − σ). Then we repeat the above arguments. If σ = n, then for κ we can take q/δ0,

γ0 = δ0, and the required estimate is obtained at one step.

To conclude the section, we formulate the weak type Harnack inequality for nonnegative

supersolutions.

Theorem 5.2. Assume that p0 = p(x0), 1 < p0 � n, R � 1, v is a nonnegative bounded

supersolution to Equation (1.1) in Bx0
4R such that v � R. Then for any 0 < q < n(p0−1)/(n−1)

and 0 < s < t < 3 (

−
∫

B
x0
tR

vqdx

)1/q

� C(n, p, q,max
B

x0
4R

v, s, t) ess inf
B

x0
sR

v. (5.19)

This estimate is also valid if p0 < n for all 0 < q < n(p0 − 1)/(n − p0) or p0 = n for all

0 < q < +∞ with sufficiently small R < R0(n, p, q).

The proof repeats that of Theorem 5.1. In Lemmas 5.2 and 5.3, in test functions containing

expressions of the form v1−σ
m − (m + R)1−σ the last difference is replaced with v1−σ and vm

is replaced with v in other places. Estimates of the form vm � M + R are replaced with the

estimate v � max
B

x0
4R

v.

6 Proof of Lemma 1.1

We begin with an important consequence of the weak type Harnack inequality.

Lemma 6.1.

−
∫

B
x0
2R

|∇vm|p(x)−1dx � C(n, p,M)R1−p0
(
inf
B

x0
R

vm
)p0−1

.

Proof. From the inequality (5.16) and Theorem 5.1 for 0 < γ < σ − 1 we get
∫

B
x0
2R

|∇vm|p(x)vγ−σ
m dx � C

∫

B
x0
2R

vp(x)−σ+γ
m R−p(x)dx � CRn−p0

∫

B
x0
2R

vp0−σ+γ
m vp(x)−p0

m dx

� C(n, p,M, σ, γ)Rn−p0
(
inf
B

x0
R

vm
)p0−σ+γ

.

By the Young inequality, for any t > 0

−
∫

B
x0
2R

|∇vm|p(x)−1dx � −
∫

B
x0
2R

t|∇vm|p(x)vγ−σ
m dx+−

∫

B
x0
2R

t1−p(x)v(σ−γ)(σ−1)
m v(σ−γ)(p(x)−σ)

m dx. (6.1)
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We set t =
(
infBx0

R
vm

)σ−γ−1
R. Using the inequality vm � R and the logarithmic condition

(1.11), we obtain the estimate

t1−p(x) = R1−σ
(
inf
B

x0
R

vm
)(σ−1−γ)(1−σ)

Rσ−p(x)
(
inf
B

x0
R

vm
)(σ−1−γ)(σ−p(x))

� R1−σ
(
inf
B

x0
R

vm
)(σ−1−γ)(1−σ)

R(σ−γ)(σ−p(x)) � CR1−σ
(
inf
B

x0
R

vm
)(σ−1−γ)(1−σ)

.

Let γ be such that (σ− γ)(σ− 1) < n(p0 − 1)/(n− 1). It suffices that γ > σ− n/(n− 1). Thus,

we can take any γ ∈ (σ − n/(n− 1), σ − 1). By Theorem 5.1, from (6.1) it follows that

−
∫

B
x0
2R

|∇vm|p(x)−1dx � CR1−p0
(
inf
B

x0
R

vm
)p0−1

+ CR1−σ
(
inf
B

x0
R

vm
)σ−1

� C(n, p,M)R1−p0
(
inf
B

x0
R

vm
)p0−1

.

Here, we used the inequality Rp0−σ
(
infBx0

R
vm

)σ−p0 � 1.

In the following assertion, γ(R) has the same sense as in (1.13)

Lemma 6.2.

(m+R)γ(R) � C(n, p,M) inf
B

x0
R

vm.

Proof. Assume that η ∈ C∞
0 (Bx0

2R), η = 1 in Bx0
R , |∇η| � CR−1. Taking ψ = (m+R−vm)ησ

for a test function in the integral identity (1.5), we get

∫

B
x0
2R

|∇vm|p(x)ησdx = σ

∫

B
x0
2R

|∇vm|p(x)−2(m+R− vm)ησ−1∇vm∇ηdx

� C(p)(m+R)R−1

∫

B
x0
2R

|∇vm|p(x)−1dx.

Setting wm = vm/(m+R), we find

∫

B
x0
R

(m+R)p(x)|∇(wmη)|p(x)dx

� C(p)(m+R)R−1

∫

B
x0
2R

|∇vm|p(x)−1 + C(p)(m+R)

∫

B
x0
2R

vp(x)−1
m R−p(x). (6.2)

Since vm � R, we have

(m+R)p(x) � C(p)(m+R)p0 , R−p(x) � C(p)R−p0 , vp(x)−1
m � C(p,M)vp0−1

m
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in view of the logarithmic condition (1.11). Applying the last inequalities and assertions of

Theorem 5.1 and Lemma 6.1 to the estimate (6.2), we arrive at the inequality

(m+R)p0−1

∫

B
x0
2R

|∇(wmη)|p(x)dx � C(n, p,M)Rn−p0
(
inf
B

x0
R

vm
)p0−1

.

Let us estimate from below the left-hand side of the last expression by using the definition of

capacity:

(m+R)p0−1αCp(B
x0
R \D,Bx0

2R) � C(n, p,M)Rn−p0
(
inf
B

x0
R

vm
)p0−1

.

Raising both sides of the last inequality to the power 1/(p0−1), we get the required estimate.

By the definition of vm, from Lemma 6.2 it follows that

γ(R)( inf
∂D∩Bx0

4R

f +R) � C0(n, p,M)( inf
D∩Bx0

R

u+R). (6.3)

Proof of Lemma 1.1. We set

FR = sup
∂D∩Bx0

R

f, fR = inf
∂D∩Bx0

R

f, MR = sup
D∩Bx0

R

u, mR = inf
D∩Bx0

R

u.

Applying the estimate (6.3) to the functions M4R − u and u−m4R, we find

(M4R − F4R +R)γ(R) � C0(M4R −MR +R),

(f4R −m4R +R)γ(R) � C0(mR −m4R +R).

Adding these inequalities, we obtain the inequality

MR −mR � (1− C−1
0 γ(R))(M4R −m4R) + C−1

0 γ(R)(F4R − f4R) +R.

Thus, we obtain the estimate from Lemma 1.1.

7 Necessary Condition for Regularity of a Boundary Point

In this section, we comment Theorem 1.2. We show that the condition (1.14) in Theorem

1.1 is also necessary for regularity of a boundary point. We argue in the same way as in [7].

Let the condition (1.14) fail. Then for some 0 < r < ρ we consider a solution to the generalized

Dirichlet problem (1.10) with a smooth boundary function f that is equal to 3/2 on ∂D ∩Bx0

r/2,

vanishes outside Bx0
r , and satisfies the inequality 0 � f � 3/2 in ∂D ∩ Bx0

r \ Bx0
r . Then we

consider the Uρ–capacitory potential of the compact set B
x0

ρ \D with respect to Bx0
8ρ . We recall

that the capacitory potential of a compact set K with respect to a ball B is a function at which

the inifimum in the definition of a capacity is attained Such a function exists and is a solution

to Equation (1.1) in B \K with the value 0 on ∂B and 1 on K in the sense of the corresponding

Sobolev space.

By the results of [7, Theorem 8.1 and Lemma 8.3], if the condition (1.14) fails, then there is

a sufficiently small ρ and a nondecreasing sequence of numbers aj � 0 such that limj→∞ aj < 1

and for all j � 1

|{Uρ < aj} ∩Bx0

2−jρ
| > 1

2
|Bx0

2−jρ
|. (7.1)

228



To prove this property, only the logarithmic continuity of the exponent p at the point x0, i.e.,

the condition (1.11), is used, Therefore, the estimate (7.1) remains valid in our case.

If r is sufficiently small in comparison with ρ, then

uf � 1

2
+ Uρ almost everywhere in D ∩Bx0

8ρ . (7.2)

One can verify that the proof of this estimate given in [7] remains valid under the condition

(1.11). It suffices to verify that

sup
Bz

ρ/2

uf (x) � C(n, p)

( ∫

Bz
ρ

uf (x)dx+ ρ

)

,

where z ∈ ∂Bx0
8ρ ∩ D. It is easy to see that the proof of Lemma 6.6 in [7], where the required

estimate is contained as a particular case, remains valid if the estimate (1.4) is replaced with

(1.11). As in [7], the estimates (7.1) and (7.2) imply

ess inf
D�x→x0

uf � 1

2
+ lim

j→∞
aj <

3

2
.

Thus, if the condition (1.14) fails, then the boundary point x0 is not regular.

8 Geometric Regularity Conditions

We present geometric condition of regularity of a boundary point x0 for H-solutions to the

generalized Dirichlet problem (1.10). Assume that x0 coincides with the origin O. Let Rn \D
in a neighborhood of O has the form

{
x : 0 < xn < a,

n−1∑

i=1

x2i < g2(xn)

}
,

where g(t) is a continuous nondecreasing function such that tb � g(t) � t for t ∈ [0, a], where

b > 1.

Theorem 8.1. If n− 1 � p0 � n, then the boundary point O is regular. For p0 < n− 1 the

boundary point O is regular if and only if the following integral is divergent at the origin:

∫

0

(
g(t)

t

)n−1−p0
p0−1 dt

t
= ∞.

The proof is the same as in [7]. In the case g(t) � Ct, the domain satisfies the Poincaré

exterior cone condition and the condition (1.14) for any p0.
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