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SYSTEMS WITH PARAMETERS, OR EFFICIENTLY
SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS:
33 YEARS LATER. I

A. L. Chistov* UDC 513.6, 518.5

Consider a system of polynomial equations with parametric coefficients over an arbitrary ground
field. We show that the variety of parameters can be represented as a union of strata. For values
of parameters from each stratum, the solutions of the system are given by algebraic formulas
depending only on this stratum. FEach stratum is a quasiprojective algebraic variety with degree
bounded from above by a subexponential function in the size of the input data. Also, the number
of strata is subexponential in the size of the input data. Thus, here we avoid double exponential
upper bounds on the degrees and solve a long-standing problem. Bibliography: 11 titles.

INTRODUCTION

Let k be an arbitrary field of characteristic exponent p containing sufficiently many elements.
Denote by k an algebraic closure of k. Let v be a nonnegative integer. Let ai,...,a, be a
family of independent variables (or parameters) over k. Denote by A¥(k) the affine space
of parameters with the coordinate functions aq,...,a, (in a more general situation, one can

consider an algebraic variety of parameters V C A”(k), but this case can easily be reduced to
the special case of V = A¥(k)).

In this paper, we consider the problem of solving systems of polynomial equations with
parametric coefficients from klaq,...,a,]. At the output, we obtain solutions depending on
these parameters; precise statements are given below, see Theorems 1 and 2. To obtain the
required results, we rely on our algorithms from [2, 3, 7] for solving usual systems of polynomial
equations. They have the best known complexity bounds in the general case. But it turns
out that they are not sufficiently explicit for the aims of the present paper. So, in this paper
we significantly revise the algorithms from [2, 3, 7] and give a new, probably more clear and
succinct, background for them (although the main ideas remain the same). Actually, in this
paper, as the special case v = 0 of our main result on systems with parameters, we obtain
improved and more explicit versions of the algorithms from [2, 3, 7] for solving systems of
polynomial equations. Also, we give a self-contained background for these new versions. Now,
for the reader’s convenience, we would like to list the improvements in these new versions of
the algorithms for solving polynomial systems as compared with [2, 3, 7].

1) We consider separable bases of transcendence of the fields of rational functions of
irreducible components of the variety of solutions, see Lemma 7 in Sec. 4'.

2) A more explicit reduction to the zero-dimensional case is described. Everything is
reduced to the computation of some determinants and resultants (which, of course, are
also determinants).
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3) We suggest a new explicit construction of generic points of irreducible components of
the variety of solutions. The coordinates of these generic points are represented as
quotients of some partial derivatives, see Secs. 3 and 6.

4) We suggest a new explicit and clear construction of systems of polynomial equations
giving irreducible components of the variety of solutions, see (xii) below. This con-
struction is valid even for arbitrary equidimensional algebraic varieties, see (xi) below
and Lemma 8 in Sec. 4.

5) We obtain a decomposition of the variety of solutions into a union of equidimensional
algebraic varieties. In nonzero characteristic, we obtain an explicit decomposition of
the variety of solutions into a union of equidimensional algebraic varieties defined over
the fields k'/P" where r is a nonnegative integer, see (v) below.

6) We obtain an explicit criterion to decide whether linear forms Yj,...,Y; give a sepa-
rable basis of transcendence Y1 /Yy, ..., Y, /Yy of the field of rational functions of every
irreducible component of dimension s of the variety of solutions of the original system,
see Lemma 15 in Sec. 6.

7) More presice estimates for the degrees, lengths of coefficients, and running time of the
algorithm are given. For example, we use D!, ., D,_s (see below) in place of d"~*, cf.
[2, 3, 7].

8) Only polynomials in one variable are to be factored into irreducibles, i.e., it suffices to
have factorization algorithms only for one-variable polynomials.

9) We have fixed an inaccuracy in Lemma 2.11 of [2] (one should delete this lemma from
that paper), see Remark 8 in Sec. 4. Actually, this correction is simple, and it is made
in [7, p. 221], but one cannot find it in English. Still, it is strange that nobody (to the
author’s knowledge) has noticed this inaccuracy.

Now we return to systems with parameters. Let m,n > 1 be integers. Let fo,..., fmm—1 €
klai,...,a,, Xo,...,X,] be polynomials homogeneous with respect to Xp,...,X,. Assume
that

degXo,...,Xn fl = dl < d7 degal,...,au f < d/ (1)

for some integers dg > dy > ... > dy—1 > 0 and d,d’ > 2.
Hence each polynomial f; can be represented in the form

J— E . o PRI v Y JO ]
fZ - flyzly---ylln]()wn,]na“l “e aVVXO “e Xnn, (2)
il?"'7iV207 7'1++legd,7
J055Jn 20, o+ Fjn=d;

where 0 <@ <m — 1, all i1,...,%,, jo,...,jn are integers, and f;;, i, jo.....in € K-

Let a* = (af,...,a}) € A¥(k). Denote by V= C P"(k) the variety of all solutions of the
system of polynomial equations

fo(aT,...,a;,Xo,...,Xn) = ... :fm_l(a’{,...,a,”j,XQ,...,Xn) =0 (3)

(if v = 0, then A¥(k) = {()} is a one-clement set; if a(®) = () € A¥(k), then the sequence
ago), e ,a,,o is empty and we assume that fi(ago), e ,a,(jo),Xo, ..., Xp) = fi for all 4; we adopt
a similar convention also for other polynomials with parametric coefficients in the case where
v =0).

For every point a* € A¥(k), for every integer s, where 0 < s < n, denote by Vg« s the
union of all irreducible components W of the variety V,+ such that dim W = s. For example,
Vars =@ ifn>mand s <n—m.
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Let ¢ and ¢ be integers such that —1 < ¢ < n and 0 < ¢ < max{0,c}. Put Va(f,’c) -
U Vaxs. Thus Va(f -©) is the union of all irreducible components W of the variety V, = such
c/<s<c
that ¢ < dim W < c¢. In particular, Va(*o’n) = Vo, Va(*o’o) = Vg* 0, and Va(f)’_l) =J.

Denote by U, the subset of all a* € A¥(k) such that dim V+ < ¢. One can prove that it is a

subset of A¥(k) open in the Zariski topology. Hence if a* € UL, then V= = Va(g ) Ifa* € U_1,
then V« = @.
Consider the problem of representing the set of parameters

Ue= | Wa (4)

as a union of finitely many (i.e., #A < +00) quasiprojective algebraic varieties W, satisfying
*

the following properties. For every a € A, for all a* = (aj,...,a}) € W,, the subvariety of

solutions Va(f ") i given uniformly, i.e., by some algebraic formulas (similarly to [2], see below
for details) everywhere defined on W, and depending on aj,...,a} as on parameters.

For an arbitrary polynomial f € k[ai,...,a,, Xo,...,X,] and a point a* = (a},...,a}) €
A”(k), we write f(a*, Xo,...,X,) = f(al,...,a}, Xo,...,X,) and use other similar notation.

Denote by kq« the field generated over k by the coordinates of the point a*, i.e., ko =
k(ai,...,a;) (if v = 0, we assume that k,» = k for a* € A¥(k); recall that #A”(k) = 1 for
v =0). Thus all the polynomials f;(a*, Xo,...,X,) lie in ke [Xo, ..., X,].

Let Z(fi(a*, Xo,...,Xpn), 0 < i < m — 1) denote the set of all common zeros of the
polynomials under consideration in P"(k). Then Vo« = Z(fi(a*, Xo,..., Xyn), 0<i <m —1).
We will also use other similar notation.

Remark 1. In what follows, we assume that d,,_1 > 1. Let us show that this involves no
loss of generality. Indeed, assume that there are ¢ > 1 polynomials f; with d; = 0. Then
for each i with degy,  x, fi = d; = 0, it suffices to replace the polynomial f; by the family

of polynomials {X; f;}o<j<n and m by m + gn. After that, for every a* € A”(k) the newly
obtained system (3) is equivalent to the original system (3).

Now we are going to give a precise meaning to the uniformity of algebraic formulas related
to (4). Namely, the following properties hold.

(i) For every a € A, the variety W, is nonempty. For all oy, ag € A, if a1 # a9 then
Wa, 1 Wy, = O, i.e., these varieties W, are pairwise disjoint; thus we will call them
strata, and the union (4) will be called a stratification.

(ii) One can represent W, in the form

Wa =W\ | W)
2<B<pta

where W,gﬁ) = Z(zp(ﬁ) ,w&%aﬁ), 1 < B < e, is the set of all common zeros of the

a,l
polynomials 1[)(()5?, . ,@z}g’f)%ﬁ € klay,...,a,] in the affine space A” (k) and mq g > 1 is

an integer.

Let a € A be arbitrary. Let s be an arbitrary integer such that ¢ < s < ¢ (if ¢ = —1, then
there are no such integers s).

(ili) If Vo s = @ for some a* € W,, then V,« ; = @ for all a* € W,, (if s # n, then the last
implication follows also from (iv)).
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If m —1 < n, then we put d; =1 for m —1 < i <n (but in this case, the polynomials f;
are not defined for these 7). Set

D;—s:dodl'---'dn—s—la 0<s<n-—1,

and D) _.=1if s =n.

Put ps =0 if p=1, and ps = log, D!, _, otherwise.

In what follows, all the constants in O(...) are absolute.

Let Z,, be a finite subset of £\ {0} with the number of elements #7,, = s+ 1. Let s be an
integer, 0 < s <n—1. Put

M}f:{ Z Xy EI%}, M'&%:{ Z ATTIXG sy EI%}. (5)
0<i<n s+1<i<n
These are finite sets of linear forms with coefficients from k.
Put 505 = 2(n — s)D;,_, + s and 505 = (n — s)D},_,(D),_, — 1)/2. For every s, where
0<s<n—1,set
Ls= M, , L= M.

S,2,5°
In (iv)—(xii) below, we assume additionally that s is arbitrary such that ¢ <s<min{e,n — 1}.
For every such s there are linear forms Yy, ...,Y; € L; and Y4 € £, (depending on « and s;
we will also write Y; = Y ; if the dependence on s is important, so (Y 0,...,Ys s41) € L3t L)
satisfying the following properties.
(iv) For every a* € W, the intersection Vs« s N Z(Yp, ..., Ys) is empty in P (k).
(v) The linear forms Yy, ..., Ys ;1 are linearly independent. For every integer r, 0 < r < pq,
there is a nonzero polynomial ®, s, € klai,...,a,,Yp,...,Ys11] homogeneous with
respect to Yp, ..., Ysyq such that for every a* € W,

0< dngO,...,Y5+1 (I)Ousﬂ“ = dng5+1 (1)0178,7“(a*> YO? s ?Ys+1) < D;w—s/prv

the leading coefficient lcy, , ®q s, lies in k[aq, ..., a,], and
1/p" r 7
H éa{é)’T(a*’}/op y ’}/SIL‘I)
0<r<ps
is a nonzero polynomial from k[Yp,...,Ysy1] of minimum degree vanishing on the

projective algebraic variety V,« 5. Furthermore,

degVar s = > degy,,, Pasr
0<r<ps
Finally, denote by A, s, the discriminant of the polynomial ®, ., with respect to
Ys+1 (by definition, A, g, = 1 if degy,,, Posr = 0). Then for every a* € W,, the
polynomial A, s -(a*,Yp,...,Ys) is nonzero.
Denote by Vi« s, 0 < 7 < pg, the union of all components E irreducible over k of

the algebraic variety Vg« s such that @4, (a*, YT r, . ,Yﬁ:l) vanishes on E. Thus we

have Vo= s = |J Var sy, and if 1 # 7o then the varieties Vi« 5, and Vi« 5, do not

0<r<ps
have common irreducible components.
The algebraic variety Vg« 5, is defined over the field k:cll{p .

(vi) Let Z be a new variable. There is a finite (or empty) family of polynomials H; €

klai,...,au, Z], j € Jasr, satisfying the following properties. The inequalities

1 <degz H; < D,_./p"

hold. Denote by A; the discriminant of the polynomial H; with respect to Z. Then
Aj(a*) # 0 for every a* € W,. Denote by Z; 4+ the family of roots from £ of the
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separable polynomial H;(a*, 7). We assume that the sets of indices J, s, are pairwise
disjoint.

(vii) There is a family of polynomials ®; € kla1,...,a,,Z,Yo,...,Ys1], j € Jasr, and
polynomials Ay 51,0, Aa,s,r1 € kla1, ..., a,] satisfying the following properties. For ev-
ery a* € W,, the polynomials ®; are homogeneous with respect to Yy, ..., Y41, the
degrees satisfy the inequalities degZ(I> < degZ j» the leading Coefﬁ(31ent ley,, @,
lies in k[ag,...,a,], all the polynomials ®;(a*, &, Yo,...,Ysq1), £ € Ejax, J € Jasr
are irreducible over k in the ring k[Xo, ... ,Xn] (in particular, they have degree > 1),
Aa,sro(@®) #0, Agsr1(a*) #0, and

*

* aer a
CDa,s,r(a 7%)"'aY;+1) )\ CL* H <I> gayvov"'ayvs—i-l)-
asrl ]eJa.s’lv

ge“g a*

Vo @5 <degyy v, Pasy < Dl _./p".

(viii) For every a* € Wa, for every r, where 0 < r < py, the irreducible components over k of
the projective algebraic variety V,« ,, are in a natural one-to-one correspondence with
the pairs (&, j) where £ € Ej 4+, j € Jas,. Denote by W; 4« ¢ the irreducible (over k)
component of the algebraic variety Vg 5, corresponding to the pair (§,7). We have
deg Wj,a*,{ = degysH <I>j.

(ix) Let Y and Z be variables, t1,...,ts be a family of algebraically independent elements

over k, j be a index from Ja,s,r» and 6 be an algebraic element over E(tl, ...,ts) such
that ®;(a*, &, 1, tzfr, ...t ,9P")=0. Then there are polynomials

Gjek[al,...,a,,,tl,...,ts], GMEk[al,...,a,,,Z,tl,...,ts,Y], 0<e<n,

Hence 1 < degy,

satisfying the following properties. The polynomial G(a*,t1,...,ts) is nonzero for
every a* € W, the inequalities degy G;; < degy Hj, degy Gj; < degy,  ®; hold,
and all degrees deg;, ; Gj, deg;, ., Gj; are bounded from above by (D! /p")°W,
Furthermore, there is a k-isomorphism of fields

k(Wiarg) = k(tr,... . 5)[0]
such that YV; /Yy —t;, 1 <i<s, Ys11/Yy — 0,
(Xi/Yo)P = Gja(a*, &, 87 .40 0P")/Gi(a* & ..., #), 0<i<n.
Hence this isomorphism gives a generic point of the algebraic variety W ,«¢. The

projective algebraic variety W 4« ¢ is defined over the field k‘l/ P [€] (it is well known

that in this case £/7" € k‘cllfp [€]).
(x) Moreover, there are polynomials

Ga,s,rEk[a17---7auat17---7t8]a Ga,s,r,iek[alw--7a1/7t17---7t87Y]7 O§Z§n7
satisfying the following properties. Put
d = degZ J d = dngO’ Y CDJ, da,s,?‘,i = degy Ga’s77«7i.
For every i, 0 < ¢ < n, we have degy Gq 5., < dngo,...,Ys+1 Dy 5.7
Ga787r7i < 2(D7/’L—S)27 degtl,,t Ga,s,r < 2(D:’L—S)2'

Put &) = ®;(a1,...,a,Z,1,t1,...,t5,Y). For every j € Js,, we have

degth___ t

vs S

(ICYSJ,-I(D )max{da s,7y0 d +1, O}Ga7s,7‘z — A/ @/ + G; i
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where A%, G, € klay,...,ay,Z,t1,...,t5,Y] and degy G ; = d}, < d;. Furthermore,
(lCij)maX{d;'vi_dj—H’O}G;-’Z' = AjHj + Gjﬂ; where Aj S k[al, Y //P 2 TR Y]
Finally,
G] — (ICY8+1@].)max{d&,s,r,i_d;“rl:o} . (ICZH])maX{d;,z_d]+170} . GO&,S,T'
Therefore, if s = 0, then by (ix) for every a* € W, for all j € Jo 0.4, § € Eax5, 0 <7 < po,
Wiar g = 2(Gjila”. Y] ~ Gi(a")X]", 0<i <n).
If s = n — 1, then for every a* € W, for all j € Jopn—1,, § € Earj, 0 < 7 < py_1, obviously,
Wj7a*7§ = Z(Q.ﬂ(a*7 5’ }/Op rc ’}/Slzi‘l)) and Va*,s,r = Z(¢a7s7T(a*’ }/Op ot ’}/SIL‘I))'
Let YO, 0 < i< x5, be all pairwise distinct linear forms from L. Note that for every
Y@ e L, the linear forms Yy, ..., Ys, Y@ are linearly independent over k. Let t be an element

algebraically independent over k. One can extend the ground field k to k(¢). In (xi) and (xii)
below, we assume that 0 < s <n — 2.

(xi) There are polynomials W 5,40, € klat,...,a,,6,Y0,...,Ys, Z], 0 < i1 < 309,
s+ 2 < i < n, homogeneous with respect to Yy,...,Ys, Z and satisfying the following
properties. For every a* € W, for 0 < i1 < 3004, s +2 < i3 < n, the polynomial
Vo sminis (a1, Y0, ..., Ys, Z) is nonzero and such that

\Ija,s,r,il,iz (a*a tpra }/E)pra LR Y;p") (Y(“) + tXi2 )p")

vanishes on the algebraic variety Vg« 5 ,(k(t)). Furthermore, for all s,r, the variety
Var s, coincides with the set

2 (Waorivia (77 Y YE (V) 10X )7) Vi) 0P (R). (6)
The leading coefficient lczWq 514, i, lies in klaq,...,a,], and for every a* € W, we
have (IczWq s ri1,i0)(a”) # 0. The degrees satisfy the inequalities

degy Was,rinis < degz Vo srinis < degy, | Pasr < Dy /p"
Let us write
\Ila,s,r,il,ig = Z \Ila,s,r,il,ig,igtzg)
0§i3§degt \Ija,s,r,il,ig
where W, ¢ 110005 € Kla1,...,a0,Y0,..., Y, y (i), Xi,] (note that now the linear forms
Yo, ..., Ys, Y X, are linearly independent over k). Then (since the set (6) coincides
with Vi« 5 ) we have

* p" T i T p" . . . .
z (\I/aysmihimis (a ’YO ""’Ysp ,(Y( 1))p 7Xi2 ) »vzlaZQJB) = Va*,s,r-

Thus we obtain a system of polynomial equations with the set of zeros Vi« ,,. This
system consists of at most (n—s—1)n(D’,_,)3/(2p") homogeneous equations of degree
at most DJ,_..

(xii) For every j € Jus,, 0 <17 < ps, there are polynomials

\Ilj,il,ig Ek[ala'--a GV,Z,t,%,...,}/;,Zl],

0 < i1 < m,, s+ 2 < i3 < n, homogeneous with respect to Yp,...,Y,,Z; and
satisfying the following properties. The inequalities deg, ¥;;, ;, < deg, H; hold. For
every a* € W, for every £ € Sy« j, for 0 <41 < 594, s +2 < 7 < n, the polynomial
U,iiin(a*, &8, Y0, ..., Ys, Z) is nonzero and such that
\Ilj,ihlé (a*a &, tpr> }/E]p s szp’"’ (Y(Zl) + tXiQ )p’")
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vanishes on the algebraic variety W .« ¢(k(t) ). Furthermore, the variety Wj 4« ¢ coin-
cides with the set

2 (Wiinia (a7, 687 Y0 Y (V) 40X3,)7) Vi ia) NP (R). (7)
The leading coefficient lcz W ;, i, lies in k[ay,. .., a,], and for every a* € W, we have
(lez¥; i, .i,)(a*) # 0. The inequalities

deg, Wi, < degy Vi 4, < degy,, ®; < D;_/p"

hold.
Let us write ¥ ;, 4, = > W, i1 ia,igt™® where
0<iz<deg; ¥ iy iy

\Ilj,il,iz,ig S k[ala ey Gy, Z7 }/07 cee 7}/:97 Y(i1)7 Xlz]
Then (since the set (7) coincides with W .« ¢) we have

Z <\Ilj,i17i27i3 <a*v 3 Y()prv s ’Yspra (Y(il))pra XZ) , Vi, dg, Z'3> = Wj,a*ﬁ‘

Thus we obtain a system of polynomial equations with the set of zeroes W ,« ¢. This
system consists of at most (n—s—1)n(D’,_,)3/(2p") homogeneous equations of degree
at most D/, __.

Let a* € W,. By definition, put ¢, = max{dim Va(f /’C), ¢ —1}. Hence ¢, depends only on «
and does not depend on the choice of the point a*.

(xiii) There are an integer ¢/, and homogeneous polynomials ¢, i, € k[Xo,...,X,], for
1<i<n-—d,0<i <m—1, satisfying the following properties. The inequalities
d—1<d, <e, hold. Put

. /
hai= E Qa,iinfir, 1<i<n—c,.
0<i <m—1

Set () = degy, . x, ha, for all i. Then d® < d;_y, and for all i; we have

degx,,.. x, Qs = AV — diy

provided that g, 4, 7# 0.

For every a* € Wy, put he=i = Y. qaii fir(@*, Xo,...,Xy). Then
0<i;<m—1

Z(ha*J, ceey ha*yn_cfy) - Va(*c ) U Ea*,c’

where F,« s is a projective algebraic variety with dim E,« » < ¢ — 1. Furthermore, for
every integer ¢’ such that ¢, < ¢’ <¢,

Z(ha*,la o 7ha*,n—c”) = Va(*c ) U Ea*,c”7

where Eg« . is a projective algebraic variety such that dim Eq- v = ¢’ and each
irreducible (over k) component of E,« . is not an irreducible component of V.

Note that if F,- » = @, then Va(f ) = Var. Furthermore, one can easily deduce from (xiii)
that hg»; # 0 for every 4, 1 <i < ¢, and every a* € W,
For every integer s such that 0 < s <n —1, put

D, — <do + . Hdy_e1+ 1)

n—s
(this is a binomial coefficient). If s = n, put D,,_s = 1. Also set D, 11 = D,,.
183



The (bitwise) length of an integer z € Z is defined by the formula 1(z) = 1 + [log,(|z]| 4+ 1)]
(here [...] stands for the integral part of a real number). If f; € Z[aq,...,a,, Xo,. .., Xx],
then, by definition, the length of integer coefficients of the polynomial f; is equal to

1(fi) = max 1(fii,...iv,jo,uin)s

150050,

J0se-dn

see (2). The lengths of integer coefficients of other polynomials with integer coefficients are
defined in a similar way.

In the statements of Theorems 1 and 2 below, we assume that the field k has sufficiently
many elements. More precisely, it suffices that #k > Dg_ . for some absolute constant C' > 0
(it can be easily computed if necessary).

Now we are able to state our main result.

Theorem 1. Let polynomials fo,..., fm—1 € kla1,...,a,,X1,...,Xy,], integers ¢, ¢, and a
Zariski-open set U, be as above. Then there is a stratification (4) satisfying properties (i)—(xiii)
and such that

(a) the number of elements #A and all the integers 1o, mq,g are bounded from above by
(d’)”DO@ with an absolute constant in O(v);

n—c

b) the degrees in aq, ..., a, of all polynomials d)(ﬂ), . ,11),(3267)71 are bounded from above by
a,l M,
d' DY) with an absolute constant in 0(1);

n—c’
(¢) for every s such that ¢ < s < min{c,n—1}, the degrees in ay, ..., a, of all polynomials

(I)oa,s,ry Hj; cI)j; A01,8,1”,07)\04,5,7“,17 Gj7 Gj,i7 Ga,s,r; Ga,s,r,i; \Ila,s,r,il,ig; \Ilj,h,iz, J € Ja,s,ry
o(1)

0 <r < ps, are bounded from above by d'D, " with an absolute constant in O(1).

Consider also the following property.
() The field k is Q, and in (2), for 0 <i < m — 1, we have
fi S Z[al,.. . ,a,/,Xo,.. . ,Xn]

and 1(f;) < M for some real number M > 1.
Further, for every » > 0 we take Z,, = {1,2,...,%x+ 1}.

Then, additionally,

(d) under condition (1), the coefficients from k of all polynomials from (b) and (c) actually
belong to Z. The lengths of integer coefficients of all polynomials from (b) are bounded
from above by

(M + ¢+ vlogy d') D) (8)

(&
with an absolute constant in O(1). The lengths of integer coefficients of all polynomials
from (c) are bounded from above by

(M + ¢ + vlog, ) DY) (9)

with an absolute constant in O(1).

Under condition (I), we will also give good estimates for all lengths 1(hq,;).

Note that if ¢ = —1, only the stratification (4) itself and the polynomials hq 1, ..., hant1
(from (xiii)) appear in the statement of Theorem 1, there are no other objects in this case.

Let ¢ =n. Then Vg« ,, = P"(k) for some a* € W, if and only if ¢, = ¢, = n (since haxi # 0
for 1 <i<n-—d,, see (xiii)), i.e., if and only if no polynomials h,; correspond to a.

Let ¢ < s <min{e,n—1}. Then V,+ ; = @ if and only if @, 5, € k[ay,...,a,] for 0 < r < py,
i.e., if and only if J, , = @ for 0 <r < p,.
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Note also that one can write A as a disjoint union A = J,_;,<.Ai such that for every
a € A;, for every a* € W, we have dimV,« =i if ¢ <i<e¢, and dim V- <iifi=¢ — 1.

For the problem under consideration, all previously known bounds on the degrees were
double exponential, cf. [1, 9].

We mention again that the algorithm from [2, Chap. 2] can be viewed as an analog of the
construction of the present paper for ¥ = 0 (in this case, one can omit a* in the notation).

Remark 2. We need to state also a modified version of Theorem 1 for the case of a covering
instead of a stratification, i.e., when condition (i) does not necessarily hold.

Namely, if in the statement of Theorem 1 one replaces “(i)—(xiil)” by “(ii)—(xiii)”, then one
can claim additionally in (a) that po = 2 for every a € A.

A similar remark is true for Theorem 1 of [6], see the introduction of [6]. It is important in
the present paper.

In the next Theorem 2, we make Theorem 1 effective, in the sense that we suggest an algo-
rithm for constructing a stratification (4) (and also a corresponding covering, see Remark 2)
and all related objects in time subexponential in the size of the input data. But first we need
to give explicitly the field k.

We assume that the field k is finitely generated over the subfield kg where kg = Q if p =1
and kg = e is a finite field of order p® if p > 1. In the latter case, € is a positive integer
and the field Fpe is given by a basis with a multiplication table over the field F), = Z/pZ. Set
ki =Zifp=1and ky = ko if p > 1. If char(kg) = p > 1 and z € ko, then, by definition, the
length of z is 1(z) = €(1 + [logy(p — 1)]).

We assume that &k = ko(71,...,7)[741] where [ is a nonnegative integer and 7,...,7;
are algebraically independent elements over the field kg. Furthermore, there is a nonzero
polynomial ¢ € ki[ry,..., 7, Z] such that deg, ¢ > 1, lczp = 1, the polynomial ¢ is irreducible
in the ring ko(71,...,7)[Z], and @(71,...,741) = 0. We assume that deg,, . ,¢ < d” for
some integer d” > 2. If char(k) = 0, then, additionally, 1(¢) < M; where M; > 1. If
char(k) > 0, put My = €(1 + [logy(p — 1)]).

If char(k) = 0, then for any polynomial g with integer coefficients, the length of integer
coefficients (or of coefficients from ki, or just the length of coefficients if this will not lead to
an ambiguity) of ¢ is defined to be the maximum of the lengths of integer coefficients of g.

If char(k) > 0, then for any polynomial g with coefficients in kg, the length of coefficients
from k; (or just the length of coefficients if this will not lead to an ambiguity) of g is defined
by the formula 1(g) = €(1 + [logy(p — 1)]).

Let z € ko(71,...,7)[7+1] be an arbitrary element. Then we represent it as
z= (1/2(0)) Z ZiTli+1
0<i<deg, ¢
where 29z, € k [T1,.-,T1]s 2(0) # 0, and the greatest common divisor of all elements
20 2, ... ) Zdeg; p—1 15 1 in the ring ky[71,...,7]. In the case where char(k) = p > 0, the

element 2 is uniquely defined up to a nonzero factor from ko. If char(k) = 0, then 2(©) is
uniquely defined up to a factor +1. In any case, if we fix (%) then all z; are uniquely defined.
To fix 2(9), we will assume that the iterated leading coefficient satisfies the condition

oy _ J 1 if char(k) =p >0,
leq ler, .. ey (27) = { >0 if char(k) = 0.

We define the degree deg, .z = max {deg, . 2® deg. . z} and the length of
15571 0§i<degzg0 1y--5T1 1yeeeyT]
coefficients 1(z) = max  {1(z(9),1(z)}.
0<i<deg ¢
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By definition, the degree deg,, . (fi) of the polynomial f; is the maximum of

deng,...,Tl (fiyil"'7iu7j07'”7jn)

over all indices 41 ...,17,, Jo,-..,Jn. The degrees in 7,...,7; of other polynomials with coeffi-
cients in k are defined in a similar way.

Let us return to the case of arbitrary characteristic. In this paper, we will assume that
fi7i1~~~7il/7j07“‘7jn € kl [Tla s aTH-l] for all ia ilv s ailh jOa s ajn-

We assume that for 0 <i < m — 1, we have deg,, . f; < d" for some integer d” > 2 and
1(fi) < My where My > 1. Thus we can take Ms = €(1 + [logy(p — 1)]) if char(k) > 0.

In [2, 3], in the case of nonzero characteristic, the role of the field kg is played by a finite
field H. Then, in order to apply the algorithms from [2, 3] for solving systems of polynomial
equations, the field H must have sufficiently many elements (for example, we assume that
Z1yes Zp—mea € H[Xo,...,X,], see the statement of the main theorem of Chap. I in [2]
and Theorem 1 in [3]). Thus we extend the finite field H if necessary, see Remark 1 in [3].
Actually, the estimates on the lengths of coefficients from H (or H in the notation of [3]) give
bounds on the number of elements of the extended field H, although we do not emphasize
this in [2, 3] (since for the number of elements of H, even better bounds can be obtained in
nonzero characteristic).

In the last two papers, we obtain systems of polynomial equations giving the irreducible
components of the variety of solutions and generic points of these irreducible components. In
[2], we also discuss how to return from these systems and generic points involving the extended
field H to those with the original field H if [ > 0. Note that in the case [ = 0, there is no such
reduction for systems of polynomial equations giving the irreducible components: we need to
extend H (if the number of elements of H is small) to obtain such systems of equations with
the required bound on their size, see the remark at the end of [2].

By Remark 1 of [3], if [ > 0, then, alternatively, one can choose linear forms 71, ..., Z,_ 12
with coefficients in H[T1,...,T;] (in [3], the elements T1,...,T; play the role of 7q,...,7;) and
do not extend the field H. But in [2, 3] we do not give explicit estimates on the degrees in
Ty,...,T; of all objects (it is especially interesting for systems of polynomial equations giving
the irreducible components) in this case. Of course, the running time of the algorithms from
[2, 3] remains the same for this alternative choice of linear forms.

In this paper, to take into account all cases, we use a slightly more general approach to
representing elements from the ground field k.

Assume that char(k) > 0. Then if [ > 0, put

() :min{beZ : <b—£l>elog2pzlog2(%+ 1) &bZO}, 0<x€eZ. (10)

In this case, according to (10), we choose and fix Z,, to be a subset of the set of polynomials
from kg[r1,..., 7] of degree at most €(x).

For every 5,0 <s<n—1,set e, =0if €(sr1,) =0, and €5 = 1 if €(3¢1 ) > 1.

If | =0 or char(k) = 0, then set ¢, = 0 for all s.

Recall that we assume that the field k& has sufficiently many elements, see above. Hence if
[ =0, then the field kg[r1] has sufficiently many elements.

Put

_ s+v+I+2
D= max Onsm

Thus D depends on ¢, ¢’. Obviously, D < d("+t1)(et¥+42) (this estimate does not depend on ¢).

Theorem 2. Under the conditions described above, one can construct a stratification (4)
satisfying properties (1)—(xiii) (respectively, a covering (4) satisfying properties (ii)—(xiii)) and
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all the related objects from (iv)—(xiii), see assertions (a)—(c) of Theorem 1 (respectively, of the
modified version of Theorem 1, see Remark 2). Furthermore, the following assertions hold.

(a) All polynomials 11)(()5?, . ,wé’ij)q@a,ﬁ from assertion (b) of Theorem 1 (respectively, of the

modified version of Theorem 1) belong to ki[ri,..., 741,01, -..,a,]. The degrees in
T,...,7 of all these polynomials are bounded from above by
(@" + e+ (d")) DL (1)

If char(k) = 0, then the lengths of integer coefficients of all these polynomials are
bounded from above by

(My + Mod" + 2 + vlogyd + (I + 1) logy(d"d”)) DY) (12)

n—c'"

(b) For every s, ¢ < s < min{c,n — 1}, the coefficients from k of all polynomials from
assertion (c) of Theorem 1 (respectively, of the modified version of Theorem 1) actually
belong to k[r1,...,7i11]. The degrees in 11, ..., of all these polynomials are bounded
from above by

(d" + ey + (d”)2)DO(1). (13)

If char(k) = 0, then the lengths of integer coefficients of all these polynomials are
bounded from above by

(My + Mad” + ¢ + vlogyd + (1 + 1) logy(d"d")) DOV, (14)

n—s

(¢) The running time of this algorithm for constructing a stratification (4) (respectively, a
covering (4)) is polynomial in D, (d'), (d")F1, (d")H, My, My, and m.

Remark 3. In the case of zero characteristic, one can modify the construction of a stratifica-
tion (4) (respectively, a covering (4)) as follows. The linear forms Y ;, 0 < i < s+1, can be re-
placed by some linear forms Y, s ; € Z[Xo, ..., X,], with lengths of integer coefficients bounded
from above by O(logy Dy,—s) for 0 < i < s+ 1 (now, the condition (Yo s0,...,Yass4+1) €
L3+ % £ does not necessarily hold).

In the case of nonzero characteristic and [ > 0, the linear forms Y,;, 0 < ¢ < s+ 1,
can be replaced by some linear forms Y, ; € ko[r1,...,7][Xo0, ..., Xy] (they are linear forms
in Xo,...,X,) with degrees in 71,...,7 at most €(s) where s is bounded from above by
O(logy Dy,—s) for 0 < i < s+ 1.

Then for the ground field of arbitrary characteristic, one can also replace ¢ by ¢ in (8), (9),
(11)—(14), and all the assertions of Theorems 1 and 2 remain true. But we will not prove these
new versions of Theorems 1 and 2 in the present paper (we leave this to an interested reader;
this is not very difficult).

Note also that if n — ¢ > C7 logy n for an absolute constant C7 > 0, then, obviously, one can
omit ¢, c?ey, c?es in (8), (9), (11)—(14).

Remark 4. A small correction to [6]. In this paper, we consider a ground field k£ with at least
2d? + 1 elements. But, in fact, for the construction described in [6], the field k£ must contain
at least d°? elements for an absolute constant Cy > 0. On the other hand, one can remove all
restrictions on the number of elements #k in [6], replacing there the field k by k(t) where ¢
is a transcendental element over k (this requires only minor modifications of the construction
described in [6]).
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1. SOLVING LINEAR SYSTEMS WITH PARAMETRIC COEFFICIENTS

It is known that one can apply the Gaussian elimination algorithm for solving linear systems
in such a way that at each step, all the entries of the matrix being transformed are quotients
of some minors of the original extended matrix of the linear system under consideration. This
gives an algorithm corresponding to a computation forest for solving linear systems with good
estimates on the degrees in the parameters.

Still, here we describe a modification of this algorithm in a form convenient for our purposes.
Consider a linear system

Z ai,ij = ai7m+1, 1 S 7 § n, (15)
1<j<m

where a; ; € k. Denote by A the extended matrix (@i j)i1<i<n,1<j<m+1 of this linear system.
We will use recursion on r, where 0 < r < min{n,m} — 1.
(**) Assume that indices 1 < i3 < ... <1 <n,1<j; <...<j, <m+ 1 are constructed
and det((ai, j;)1<a,6<r) 7 0
Our aim is to construct i,41, jr+1 such that property (**) is fulfilled for +1 in place of r or to
establish that there is no such pair é,41, jr-+1. For convenience, we may assume without loss of
generality (only in the description of the recursion step) that i, = o, jg =0 for 1 <, < 7.
Denote by A, the adjoint matrix to A4, = (aa.8)i<a,p<r- Put 6, = det(A,) # 0. Let E,, be
the identity matrix of order w where w > 1. Put

e Av?"? 0 el _ 51"Er7 Br
= < 0. 6B ) A =G = < 6.Cr. 8D, )

— g"‘v 0 " __ _ (S«,«ET, B'r
Cr = < —C,Ar, 6.En_, > o A =G A= < 0, F, )

Here B,,C;, D,, F, are uniquely defined matrices with entries in k. Note that all entries of
the matrix F, are (up to a sign) some minors of order r + 1 of the matrix A.

Now, if F,. = 0, then there does not exist a required pair 4,41, jr+1. In this case, put p =r,
G =G, A" = AJ. We have p = rank(A).

If

Fr = (frij)ri1<i<n, re1<j<ms1 # 0,

then put j,41 = min{j : Ji(frs; # 0)}, tpp1 = min{e : fr;,., # 0}, and J, = {(i,]) :
(r+1<j<jr)&(r+1<i<n))V(([Jj=7jrs1)&(r+1<i<iy1))}. Then f,;; =0 for
all (i,7) € Jr.

Thus, one can eventually transform the matrix A to the canonical trapezoidal form A” (up to
a permutation of rows and columns of the matrix A”) with F), = 0, applying a nondegenerate
transformation of rows of A. This transformation is the multiplication of A by the matrix
G = (9i,j)1<i,j<n from the left. Therefore, one can construct a fundamental family of solutions
of the linear system (15) (or to establish that this system have no solutions). Note also that
the indices ji,...,j, are the smallest possible such that property (**) holds. This follows
immediately from the described recursive construction.

Now we change the notation. In what follows, we will assume that

a = {ai;}t1<i<n, 1<j<m+1

is a family of algebraically independent parameters over the field k. Let the affine space E(mﬂ)n

have the coordinate functions from the family a. We will denote by a* = {az j}léién, 1<j<m+1

n

an element of E(mﬂ . Denote by 2 the ring of polynomials over k with respect to all variables
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from the family a. For every ¢ € U, we will denote by deg, v the degree of ¢ with respect
to all variables from the family a. Now, all the matrices A, A,,G., A, G,, A, B,,C,,D,,G
introduced above have entries in 2, all the elements d,, g; ; are polynomials from 2. Denote by
15+ -0y, all pairwise distinct elements of the family {f.;;}, (i,7) € Jr, 1 <7 < p. Then each
9, is a minor of the matrix A (up to a sign). We will write G(a*) = Gla=a* = (9:,;(a"))1<i j<n
and use other similar notation.
We have proved the following lemma.

Lemma 1. If k = k, then the described construction defines a function

U E(m—i—l)n R U En27

n,m>1 n>1
a* — G(a*) if and only if a* € Z(81,...,8,)\ Z(d1-...-0,).

This function is an algorithm corresponding to a computation forest {Tp, ptmn>1. Each tree
T s a computation tree over k of level at most min{m + 1,n} with the input parameters
from the family a. For every leaf v € L(Ty, 1), the output corresponding to v is a matriz G with

entries in A such that deg, g; ; < min{m + 1,n} — 1 for all i,j. The quasiprojective algebraic

E(mﬂ)n corresponding to the leaf v has the form

Wy = Z( i,...,é&)\Z((Sy...-(Sp),
where p = rankA(a*). Besides, the indices 1 <i; < ... <i,<n,1<j1 <...<j,<m+1

correspond to the leaf v, and rank(A,(a*)) = p. For every a* € W, the matriz G(a*)A(a™)
has the canonical trapezoidal form (see above) up to a permutation of rows and columns.

variety W, C

Now, we would like to deduce some consequences from [8]. They are closely related to
solving linear systems. But first we introduce some notation. Let K be an arbitrary field. We
will denote by M, ,,(K) the set of all matrices with entries in K with n rows and m columns.

Lemma 2. Let k, K be fields and K D k. Let m,n,r > 1 be integers such that r < min{m,n}.
Assume that the field k contains at least min{(m —r)r,(n —r)r}+1 elements. Then there are
matrices B; = (bi,a,,@)lgagr,lgﬁgn S Mr,n(k)y 0<i< (n—r)r, and Cj = (Cj,a,ﬁ)lgagm,lgﬂgr S
My, r(k), 0 < j < (m—r)r, satisfying the following property.

Let A = (a;j)i<i<n,i<j<m € Mnm(K) be an arbitrary matriz. Then rank(A) > r if and
only if there are indices i and j, where 0 < i < (n—7)r and 0 < j < (m — r)r, such that
det(BiACj) ;ﬁ 0.

Or, equivalently, all minors of order r of the matriz A are zeros if and only if

det(BZ'ACj) =0
for alli,j.
Proof. In [8], a family of matrices D; € My, m(k), 0 < j < (m—r)r, is constructed satisfying
the following property.
e For every matrix Q € M, ,,(K) with rank(Q)) = r there is j, 0 < j < (m — r)r, such

that det < %j > # 0.

/

D’ ~
Let us construct a matrix D} € M, (k) such that J; = det < Dj ) # 0. Denote by D; the

/

D’ ~
DJ' . Let us represent it in the form D; = (Cj, Cj’)
j

where C; € M, (k), C: € M, m—r(k). Then <Q )D- = < @1, Q2 ) for some
1 € M (K), € € Mypues(b) @)D= (6 &

adjoint matrix to the square matrix
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matrices Q1,Q2. Hence Q1 = QC; and det(QC;) # 0. We will also write C; = Cj(-r’m),
0<j<(m—r)r.

Hence rank(A) > r if and only if there is j, 0 < j < r(m — r), such that rank(AC;) = r.
Denote by (AC;)! the transpose of the matrix AC;. Then, by what is proved above (with n
in place of m), there is 4, 0 < i < r(n — r), such that det((ACj)tCi(T’n)) # 0. Hence one can

take B; = (CZ-(T’n))t for 0 <i <r(n—r). The lemma is proved. O

Remark 5. One can use Lemma 2 in Sec. 3 of [6]. Namely, there we mentioned the following:
“Applying a result of [8], one can replace the minors A; by their linear combinations and in
what follows assume without loss of generality that ms = d°M).”

These minors A; are from formula (20) of [6]. Actually, to get mz = d°®, one should

apply Lemma 2 three times: first to Aq,..., A, then to Ay 41, .., Apy,, and, finally, to
JANSRTIS TRYA Ve
After that, one can simplify the construction of ¥(*) and ¥(®). Namely, one can put
60 = GCDyy xasen (D ViA F(X,0)) € k][X], (16)
1<i<my

w(Q) — G C D YQ,Yg,X,Ug,,...,vn <w(1)? Z Y2Z'2}/3isgi2 Z7«3) E ]{7['[)] [X] (17)

mi1<ia<mg,

ma<tz3<ms

One should not introduce the function s in Sec. 3 of [6]. Of course, the number of minors
A; linearly independent over k is bounded from above by D,? M We tried to use this fact
and defined the function . But this may seem slightly obscure (when one constructs the
corresponding computation forest) and requires additional explanations. For instance, one
can apply Lemma 1 to justify the construction involving the function s. Still, it is better to
apply Lemma 2 in [6].

Of course, to obtain the main result of [6], one can proceed in a simpler way. Namely, let
Z1, ..., Zms be new variables. Then in formula (16) for (1) (with arbitrary m;, we do not
use Lemma 2), it suffices to replace Y7, X, vs,...,v, by Z1,...,Zpn,, X, v3,...,v, and Yf by
Z;. In formula (17) for ¥ (with arbitrary mo, ms), it suffices to replace Ya, Y3, X, v3, ..., v,
by Zpmy 415+ Zmg, X, 03, ...,0, and Y;Q Y;Q by Zi,Z;,. But here there are too many variables
Z; if we wish to construct a stratification from Theorem 1 of [6] in subexponential time.

2. MULTIVALUED COMPUTATION TREES AND FORESTS

In [5], computation trees and forests are introduced. According to Sec. 1 of [5] (we use the
notation from there),

* *

(%) for every vertex v of a computation tree T, for every point a* = (aj,...,a}) € W,
*

there is at most one son w of v such that A,(aj,...,a)) = true.
In [5], property (*) is stated in an equivalent form, see formula (3) in Sec. 1 of that paper.
The definition of a multivalued computation tree is the same as in [5] with only one differ-
ence: property (%) does not necessarily hold. Thus, for a multivalued computation tree, all

the objects introduced in [5] are defined. In [5] (see formula (5) at the end of Sec. 1 there),
ST)y= J MW (18)
veL(T)

is a stratification of a constructive set S(T'), i.e., Wy, N W,, = @ for all pairwise distinct
v1,v9 € L(T). Now, for a multivalued computation tree, (18) is a covering of the set S(T).
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Similarly to [5] (we leave the details to the reader), a subtree of a multivalued computation
tree is defined. Any such subtree is a multivalued computation tree. A multivalued compu-
tation tree T is irredundant if and only if for any subtree 7" of T' such that 7" # T, we have
S(T") # S(T). If T is a computation tree in the sense of [5], then T is irredundant if and only
if T'=IRD(T), see Sec. 2 of [5].

For any multivalued computation tree T there is an irredundant subtree 7" of T with
S(T") = S(T), but this subtree is generally not unique.

Similarly to [5], one can define full signatures, signatures, and labels corresponding to mul-
tivalued computation trees and their vertices (we leave the details to the reader).

Let a},...,a’, be parameters algebraically independent over k and ¢y, ..., ¢, € kla},...,d.].
In [5], at the end of Sec. 2, the computation tree T'(¢) and the incomplete tree T”(c) corre-
sponding to a computation tree T' and a family of elements ¢ = {¢; }1<i<, are defined (actually,
T'(b) and T"(b) are defined there, but for convenience here we replace the notation b by ¢ and
p by 3). The tree T'(c) has the family of input parameters af, ..., a’,. Now assume that T is a
multivalued computation tree. Then, replacing everywhere in the definitions of T'(¢) and T"(c)
in [5] a computation tree T' by a multivalued computation tree T', we obtain (by definition) the
multivalued computation tree T'(c) and the incomplete multivalued tree T”(c) corresponding
to a multivalued computation tree T and a family of elements c¢. Roughly speaking, to obtain
T'(c), one should substitute cy,...,¢, for ai,...,a, everywhere in the objects related to T.
After that, in order to define T'(c), one glues a new root to T7"(c).

Let us replace computation trees by multivalued computation trees everywhere in the def-
inition of a computation forest. Then we obtain the definition of a multivalued computation
forest. Thus, a multivalued computation forest is a family {7, },ex of multivalued computation
trees.

In [5, Sec. 3], a function § : S(T) — K corresponding to a computation forest 7" is defined.

Now let T' be a multivalued computation forest. Let us replace a computation forest by a
multivalued computation forest (for which we use here the same notation 7°) in the definition
of this function § from [5, Sec. 3]. Then we obtain (in place of a function §) a binary relation
§ C S(T) x K corresponding to the multivalued computation forest T'. Here § can be regarded
as a multivalued function. We will write § = §(T').

By definition, the binary relation §(7") is an algorithm corresponding to the multivalued
computation forest T. An arbitrary binary relation £Q is an algorithm corresponding to a
multivalued computation forest if and only if there is a multivalued computation forest T such
that Q = (7).

As we have noted in [5], in practice, an algorithm corresponding to a computation forest
T arises from some algorithm in the usual sense. The latter has the set of inputs S(7'), its
outputs belong to K, and it computes the function F(7').

In a similar way, in practice, an algorithm corresponding to a multivalued computation
forest, say T = {1, }scx, arises from a multi-output algorithm. In the latter, at some steps
some objects are chosen (for example, linear forms or some matrices from given finite sets, see
the next sections). One considers all possible choices. But some of them give outputs (with a
prescribed signature, see [5] for details), and others not. Thus the outputs of this algorithm
depend on the choice of these objects. One obtains a multivalued function from the domain
of inputs of this algorithm to the range of outputs, or, which is the same, a binary relation £
(such that Q = F(T)).

Let us fix 0 € ¥. Assume that a step of the multi-output algorithm under consideration
containing a choice of objects corresponds to a vertex v’ of the tree T,. Then all sons v
of v/ are in a one-to-one correspondence with all possible choices of these objects. Denote
by L(v,T,) the set of leaves w of the computation tree T, such that w is a descendant of v.
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Then the choice of objects corresponding to v does not give any required output if and only
if Wy, = @ for every w € L(v,T,). Here is a somewhat informal explanation of this fact:
this multi-output algorithm solves some problem (e.g., determines all solutions of a system of
polynomial equations), and each its output from K gives a solution of this problem. There are
no other outputs.

Often, an algorithm £ corresponding to a multivalued computation forest determines an
algorithm in the usual (or classical) sense. Namely, assume that Q arises from a multi-output
algorithm. In this multi-output algorithm, some objects are chosen. In the corresponding
classical algorithm, these objects are enumerated until the first object that gives an output
appears (of course, one should specify the method of enumerating; note also that there can be
many steps with enumeration). The latter algorithm computes a function (in the usual sense)
Q' : S(T) — K, which is a restriction of the binary relation 9.

Conversely, let us be given an algorithm with enumerations in the usual sense computing a
function Q' : S — K. Then it determines a multi-output algorithm Q : & — K. To define £,
one should use all possible choices of the objects under consideration instead of enumerating
them. Thus, here again Q' is a restriction of the binary relation Q.

We will say that an algorithm with enumerations (in the usual sence) computing a function
' corresponds to a multivalued computation forest T' if and only if the related multi-valued
function £ is an algorithm corresponding to a computation forest 7. We will say that an
algorithm with enumerations (in the usual sence) corresponds to a multivalued computation
forest if there is a multivalued computation forest 7" such that this algorithm corresponds to 7.

Similarly to [5, Sec. 3], one can define the composition T5 o 77 of multivalued computation
forests T and Ts. It is defined if and only if the composition of binary relations §(7%) o §(71)
is defined. Moreover, in this case we have F(T2 0 T1) = §(12) o F(T1).

Similarly to [5, Sec. 3], one can define the N-tuple (T}, ..., Tx) of multivalued computation
forests T1,...,Tn. Thus (T1,...,Tx) is a multivalued computation forest.

Now we are going to state an analog of Theorem 1 of [5] for multivalued computation trees.
This analog is Theorem 3, see below. It can be regarded as a fundamental result in the theory
of multivalued computation trees and forests.

But first we need to strengthen Lemma 5 from Sec. 6 of [6]. In that paper, for a quasipro-
jective algebraic variety V' C A#(k), we use the following notation: D, (V) is the degree
(see Sec. 6 of [6] for details) of the union of all irreducible components of V' of dimen-

sion a where 0 < a < p; for an integer D > 2, put 61(V,D) = > D,(V)D* and
0<a<p
§(V.D)= 3> Da(V)(D**'—1)/(D —1).
0<a<p
In the statement of the following lemma there are two bounds on degrees, Dy and D, in
place of only one bound D in Lemma 5 of [6]. Nevertheless, assertions (b)—(d) of this lemma
coincide with the corresponding assertions (b)—(d) of Lemma 5 of [6].

Lemma 3. Let V be a quasiprojective algebraic variety in A*(k). Let {W,Y}yer‘ be a family of

quasiprojective algebraic varieties in A (k). Assume that for every v € T,

Wv = Z(T/}w,h ce 7"?%#%1) \ Z("‘p’y,uw-i-l’ s 71/17,;;7,2) C AM(E)

for some polynomials 1., ; € k[by,...,b,] such that degy, .5, ¥y < D1 for 1 <i < pyy and
degbl,...,bu Py <D for py1 +1 <0 < pyg, for some integers Dy > D > 2. Assume that

O V. en there is a family of quasiprojective algebraic varieties cB satisfying
W, D V. Then th ' 1) iprojecti lgebrai eties {Wg}g tisfyi
el

the following properties.
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(a) For every 8 € B,

1 1 i ; —
Ws =25, ol N U 205w, ) A
2<5j<mg

for an integer mg > 2 and some polynomials @b(ﬂjz € klby,... ,by) such that
1
degblv"'vbu wé,z <D

for1<i < pga and degy, w(ﬁjz <D for1<i<pgj, 2<j<mg.
(b) For every 8 € B, the integer mg is bounded from above by 61(V, D).
(c) {VNWg}sen is a stratification of the algebraic variety V, i.e., |J (VNWg) =V, and

BeB
(VWg, )N (VN Wg,) =@ for all pairwise distinct 3y, B2.
(d) For every 8 € B there is v € I' such that Wg C W,.
(e) The number of elements #B does not exceed 6(V, D).
Proof. The proof coincides with the proof of Lemma 5 in Sec. 6 of [6]. O
Theorem 3. Let T be a multivalued computation tree with input parameters aq,...,a, over

the ground field k and I(T) = w. Assume that for every vertex v of T, the condition A, has
the form

(Spv,l =0)A... A (‘Pv,uu,l =0) A ((‘Pv,uu,1+1 #£0) V...V (SO'UHU"U,Q #0)), (19)

where A, V denote the logical conjunction and disjunction, @, 3 € klai,...,a,], 1 < 5 < g2,
are polynomials for some integers py2 > w1 > 0, and deg,, . v < d for p1, <8 < poy

(see (19)) for an integer d > 2. Let S(T) = |J S, where S; are quasiprojective algebraic
1<j<N

varieties in A¥ (k). Then there is an irredundant multivalued subtree T' of the tree T such that
S(T") =S8(T) and

#L(T) < D 65, wd).

1<j<N
In particular, if S(T) = A¥(k), then
d)u—i—l -1
LT < (wi
#L(T) < wd — 1

Proof. Let us apply Lemma 3 with y = v, V = S; for every j, D = wd, I' = L(T). Then
first we obtain a stratification of each variety S;, and then, by assertion (d) of the lemma, a

covering of each variety S;. This gives a covering {Wy}yer of S(T) = |J S withI" C T
1<j<N
and #I' < 3~ (Sj,wd). Now let T be the minimal multivalued subtree of T' such that
1<j<N
L(T") =T". For this subtree T", the assertion of the theorem holds. The theorem is proved. [J

As an example, observe that the covering from the modified version of Theorem 1 of [6] (see
Remark 2 in the introduction) can be obtained using a multivalued computation forest. We
leave the details to the reader.

3. THE CASE OF A FINITE NUMBER OF SOLUTIONS IN THE PROJECTIVE SPACE

First, we consider the case ¢ = 0. Now, for every a* € U, the system (3) has a finite (or
empty) set of solutions in P*(k). Put B = klai,...,a,]. Let Yy, Y1,...,Y, € B[Xo,...,X,]
be arbitrary linear forms in Xg,..., X, with coefficients in B. Let Uy, Ui,...,U, be new
variables. Put f,, = UgYy + Ur1Y1 + ...+ U,Y,.
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Let degy, . x, fi = difor0 <i<m—1. Putd,, = 1. Recall thatdy > dy > ... > d;,—1 > 1,

see Remark 1 in the introduction. Let D' = dy+ > (d;i—1). Let H;, 1 < i < m, (re-
1<i<min{m—1,n}

spectively, H) be the B[Uy,...,U,]-module of all polynomials g € B[Uy,...,U,][Xo, ..., Xn]

homogeneous with respect to Xo,..., X, of degree degyx, x,9 = D' — d; (respectively,

degx, .x,9 = D'). Then H; (respectively, H) is a free B[Uy,...,U,]-module of rank v; =

(D /_ndﬁ") (respectively, v = (D ;:r")) Consider the homomorphism of free B[Uy, ..., U,]-mo-
dules

HO@HI@---@Hm_)Ha (907---a9m)'_>90f0+---+gmfm- (20)
Let us choose a basis of each module H; (respectively, H) consisting of monomials in X, ..., X,

with coefficients 1 of degree D’ — d; (respectively, D). Then the homomorphism (20) is given
in these bases by a matrix A with 4 rows and ) ~; columns. One can represent A in the

0<i<m
form A = (A, A”) where A’ is a submatrix of A consisting of the first >, 7; columns.
0<i<m—1
Then the entries of A’ are elements of B, and the entries of A" are linear forms in Uy, ..., U,

with coefficients in B.

For every a* € A”(k), let A(a*) = Als;=az,....a,=a; be the result of substituting a; for a;,
1 <i <v,in A The matrices A'(a*), A”(a*) are defined in a similar way. Thus A’(a*) is

a matrix with entries in kq+, all entries of the matrix A”(a*) are linear forms in Uy, ...,U,
with coefficients from k,«, and A(a*) = (A'(a*), A”(a*)). Denote by A,+ the greatest common
divisor in the ring k= [Up, ..., U,] of all minors of order v of the matrix A(a*) (it is uniquely

defined up to a nonzero factor from kg»).
Let us state a result from [10, 11].

Lemma 4. Let a* € A¥(k). Let Vo« be the set of all solutions (or roots) of the system (3) in

P™(k). Then the following assertions hold.
(a) If # Vo= = 400 (or, which is the same, dim Vg= > 0), then Ay = 0.
(b) If #V4= < 400, then

A =X ] ( > UiYi(7707---a"7n)>en7

where e, > 1 is the multiplicity of a oot n of the system (3), 0 # X € k, and all n; lie

in k, 0 <i < n (note that here the linear forms 5. U;Yi(no,...,nn) € k[Uo, ..., U],
0<i<n

1 € V=, are not necessarily pairwise distinct, since Y; are arbitrary).
(¢) Assume that #V,« < +oo and for every solution n = (ny : ... : Np) € Var we have
> UiYi(no,...,mn) #0. Then degy,  , Aax = — rankA’(a*).
0<i<n
Proof. If Y; = X, for all 4, this is proved in [10, 11]. The case of arbitrary Y; can be easily
reduced to the special case of Y; = X;, 0 < ¢ < n, using a nondegenerate linear transformation
of linear forms and a substitution (we leave the details to the reader). O

Recall that the finite sets of linear forms Lo = M., ,, Ly = My, are defined in the

introduction. Also, recall that s g = 2nD], and 59 = nD, (D], —1)/2.

Lemma 5. Let a* € Uy. Then there is a pair of linear forms (Yo,Y1) € Lo x L{ such
that for every n € Vg« we have Yy(n) # 0 and for any two distinct ny,my € Vg we have

(Y1/Y0)(m) # (Y1/Y0)(12)-
Proof. This is straightforward, cf. [2]. O
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Let us weaken Theorem 1 (respectively, the modified version of Theorem 1) for ¢ = 0
as follows. In its statement replace “(i)—(xiii)” by “(i)—(ix)” (respectively, “(ii)—(xiii)” by
“(ii)~(ix)”), and in assertion (c) omit “Wo s i1 40, Vi, - Now we are going to construct
a multivalued computation forest Ty, to prove the weakened Theorem 1 (respectively, the
weakened modified version of Theorem 1) for ¢ = 0. Consider the system (3) with a* € Up.
First, we will describe an algorithm (with enumerations, see Sec. 2) for solving this system. It
follows the method from [10, 11] with some modifications. After that, we will see that it is an
algorithm corresponding to a multivalued computation forest in the sense of Sec. 2.

Let Yy, Y7 € k[Xy, ..., X,] be arbitrary linear forms. Put Y; = 0 for 2 < i < n. Our aim is to
find the polynomial A+, see Lemma 4. Let us construct the matrix A = (A, A”), see above.
Then, using Lemma 1, we construct a matrix G such that GA'(a*) has the canonical trapezoidal

form up to a permutation of rows and columns. Let GA'(a*) = 641 ) where rank(A;) =

rank(A’(a*)) is equal to the number of rows of A;. Hence, after a permutation of rows and
él’ ji > where all entries of the
matrices As, Aj are linear forms from kg« [Up, U] and rank(Asz) = v — rank(A'(a*)).

Now we apply Lemma 2 to the matrix Az (in place of A). By this lemma, we obtain a
family of matrices Cj, 0 < j < N, with entries in k such that A3C; is a square matrix for
every j. We enumerate the matrices C; for j =1,2,..., N. If det(A3C;) = 0 for every j, then
rank(A) < v and Ay = 0.

Let det(A3Cj,) # 0 for some jy and det(A3C;) =0 for 1 < j < jo. Then, by Lemma 4(c),
we have Ay = det(A3Cj,) (up to a nonzero factor from k,«; we will assume without loss of
generality that this factor is equal to 1). Thus we have computed the nonzero polynomial
Agx € kg [Uo, Ul].

Remark 6. Assume that v = 0, a(® € AY(k), Yy # 0. By definition, put
ﬁk;xo,,,,7xn;f07___7fm_l;y07y1 = A, where A ) is uniquely defined by the described construc-
tion.

Under these conditions, we also introduce the notation

A0 /leyy (Ay) i Ay #0,
Ak X0, Xnifo,ro 1Yo,V :{ 0" /1y (Ba00) iAo =0
. .

columns of the matrix GA(a*), this matrix has the form <

It will be used in the next sections.

Let a* € Uy. Now we enumerate the pairs of linear forms (Yp, Y1) € Lo x L. Put Y; =0 for
2 < i < n and compute the corresponding polynomial A.+ as described.

If A+ = 0, then the pair of linear forms does not satisfy the assertion of Lemma 5, and we
proceed to the next pair (Yp,Y7) € Lo x Lf.

If Ay« # 0 and U; divides Ay+, then Yp(n) = 0 for some 1 € V. In this case, we proceed
to the next pair (Yp,Y7) € Lo x Lj.

Finally, by Lemmas 5 and 4, we will find (Yp,Y7) such that A, # 0 and U; does not
divide Ay«. In this case, we apply the result of [6, Sec. 2] and construct separable polynomials

Aa*,j = SQF]"Z(A[I* (Z, _1)) € ka* [Z], 1 S ] S degUO Aa*,

giving the square-free decomposition of the polynomial A,«(Z, —1) in the sense of (21), see
below. For every j, we have 0 < degy Ay« ; < (degy, Agx)/j-

Recall that the integer pg is defined in the introduction, see (iv) with s = 0. If the charac-
teristic exponent p is equal to 1, then, by definition, By = {1,...,deg, A« (Z,—1)}, B; = .
If p> 1, then B, = {jp" : 1 < j < (degy Ay+(Z,—1))/p"} for every integer r > 0, see [6,
Sec. 2]|. By definition, put r(j) = r if and only if j € B, \ By41.
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In this notation, the polynomial

[1 II 2% =X.0e(2-1), (21)

OSTSPO j€B7'\Br+l

where 0 # N,. € kg, and the polynomials Aa*,j(Zme), 1 < j < degy, Ay, are pairwise
relatively prime, see [6, Sec. 2|. Put

Ya*,r = H Aa*vj € ko~ [Z]7 0<r < po.
jEBr\B7'+1

Therefore, every polynomial g,« , € kq+[Z] is separable. Note that

Y degzgarr = #{(Y1/Yo)(n) : n € Vo) (22)
0<r<po

(we leave the details to the reader).

Let ¢t be a transcendental element over k. Let us extend the ground field k to k(t). For
every i, 0 < i < n, we apply the described construction to k(t), Yp, Y1 + tX; in place of k,
Yy, Y7 with the same jy fixed earlier (i.e., we do not enumerate the matrices C; again; also,
the system (3) remains the same). Put 7, = t*". We obtain polynomials Ay ; € kg« [t, Uy, U]
and gg* r,i € ko+[7r, Z] in place of Ay« and gg- ., respectively, 0 < r < py. We have

> degy gar i = #{(V1 +X3)/Yo)(n) : n € Var }. (23)
0<r<po
Lemma 6. In the notation of Lemma 4 (b), let e, = p’””e;7 where 1y, e% are integers,

0<r,<po, e, =1, GCD(ey,p) = 1 for every n € Vo=. Assume that Uy does not divide
Ag+. Then the pair of linear forms (Yp, Y1) € Lo x L{ satisfies the assertion of Lemma 5 if
and only if one of the following equivalent conditions holds:
(&) > degzgarri= 2. degzgar, for alli,
0<r<po 0<r<po
(b) degz gax,ri = degz ga=r for all i,r,
(c) for everyr, 0 <r < pg, the polynomial go+ »(ZP") coincides with

II @-m/ymr

NEVx, rn=r

up to a nonzero factor from k, and for all i, 0 < i < n, and r, 0 < r < po, the
polynomial go ,i(ZP") coincides with

[T Z-m/Y)m) — X/ Yo) )

nEVyx, ro=r
up to a nonzero factor from k(t.).

Proof. Obviously, (c¢) implies (b) and (b) implies (a). Let us prove that (a) implies (c). For
every 1 € Vg+, denote by e (respectively, ey ;) the multiplicity of the root Z = (Y1/Yp)(n) (re-
spectively, Z = ((Y1/Yp) +t(X;/Y0))(n)) of the polynomial Ay« (Z, —1) € ko« [Z] (respectively,
Ag+i(t, Z, 1) € kqx(t)[Z]). Then e; > ey ; > e, for any 7 and i. Therefore, by (22) and (23),

Z degy gox r = Z 1/e;;§ Z 1/6;;71-: Z degy ga= r,i- (24)

0<r<po neEVyx neEVyx 0<r<po
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If e > e, for some 7, then there is an element n) € V,« such that (Y1/Yy)(n™M) = (Y1/Yy)(n)
but (X;/Y)(n™M) # (Xi/Y0)(n) for some 4, 0 < i < n. Hence, in this case there is i, 0 < i < n,
such that e; > e} ;.

Therefore, in (24) the equality takes place for every i, 0 < i < n, if and only if e, = e%’ for
every 1 € Vy«. This immediately implies (c¢). The lemma is proved. O

Assume that a pair (Yp, Y1) satisfies the assertion of Lemma 5. Let lcz(gq+ i) be the leading
coefficient of the polynomial g,« ,; with respect to Z. Then go= ri/lcz(ga* ri) € ka*[Tr, Z], since
the roots of this polynomial are integral over kq«[7,.]. Thus, applying Lemma 2 of [6], we can
replace gq+ ; by a polynomial coinciding with g« r;/1cz(ga* r,i) up to a nonzero factor from kex.
Hence in what follows we may assume without loss of generality that lcz(ga* ri) € ko=

Now, for every r and for every i, the polynomial gq« ,;(0,Z) coincides with g4+, up to a
nonzero factor from kq«. Let g, = lczge» (respectively, pg«ri = lczges ri, 0 < @ < n).

Replacing gq+ - by ( IT ta*rj | 9arr and each polynomial gq= r; by
0<j<n

Ha* r H Ha*rj | Ga*,ris
0<j#i<n

we will assume without loss of generality that gg« (0, Z) = gq+ , for every i.

If degy gax » = 0, put Jo« , = @ and Vg« o, = . Let degy go*» > 0. Then let J,« , be a one-
element set. Put Hy« j = go=, for j € Ju» .. We assume that the sets J,« , are pairwise disjoint.
Now we are going to define and compute the variety Vi« o, in the case under consideration.
Thus in what follows, unless otherwise stated, we assume in the proof that deg; gq« , > 0.

For every r, 0 < r < pg, we construct a polynomial Q € kq[Y,Z] such that gg-, =
(Z =Y)Q + ga+(Y). For every root £ of the polynomial g,+ ,, we have (Z — &£)Q(¢,Z) = 0.
Put gg*,r = %(ga*,'r) = Q(Za Z)'

For every i, we have gg« i = o r + goga*N-J# € ko ((1))[Z] where go= rij € kqx[Z].

J>
Now we apply the Hensel lifting to the polynomial g4+ ,; and the decomposition g4+ (0, Z) =
(Z —€)Q(&, Z) and obtain a root Z = &; € kg=[[]] of this polynomial g4+ ,; such that &(0) =
&ilr.—0 = &. Furthermore,

— _ 690,*,7",1' / aga*,r,i
=0 87} 07

By Lemma 4, the root &; is actually a linear polynomial in 7. and

d

dr,

(&)

= —Ya*r,,1 (5)/921* T (5)

7=0,7—=¢

Ga*,ri,1 (g)
Tr = 7o
ga,* T (é)

Recall that now pg+, = lczger = lczgax i for all 4. Let 4+, be the discriminant of
the polynomial gg«,. There are polynomials A, B € kq+[Z] such that deg; A < degy go=r,
degy B < degy gpr s and —gas i 100+ » = Ay . + Bgax » (actually, the coefficients of A and
B are polynomials in the coefficients of gq= .1, g;*m, ga*r). Put A = 04+ ;. Then one can

write —gas,1,4,1(€)/9ax (§) = dax 1,i(§)/Gar -
If Jo« » = @, then put 64+, =1 and 4 ,; = 0 for 0 < i < n.

0<1<n.

§i=§&—
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Denote by Zg4+ . the set of roots of gg«,. Let £ € Egs . Put Wee e = {(n0 : ... : 7)} where
7]57 = 0g* r.i(§)/0a* » for 0 < i < mn. Set

Va*,O,T = U Wa*,r,é

EEE T

for every r, 0 < r < pg, such that degy gq+ » > 0, and V= o, = @ for every r, 0 < r < pg, such
that degy ga+r = 0.

Now we are going to prove a modified version of the weakened Theorem 1 (see Remark 2 in
the introduction) for the case ¢ = 0.

Let 1 =0+ ...+ Ym—1 and b = {b; }1<i<, be a family of algebraically independent elements
over k. First we assume that

(g) p = v, the elements a; and b; coincide for 0 < i < pu, and by,...,b, is the family of
all coefficients of the polynomials fo, ..., fr,—1, i.e., the family of coefficients of these
polynomials has the maximum possible transcendence degree over k.

So, now d' = 1.
Under condition (g), the described construction defines a multivalued function (or a binary
relation)

-S . U E’YOJF---JF’Ym—l N IC7

n,do,...;dm—1

a <{ga*7T}0STSP0> {5a*,z'}0<r<po,>»
0<i<n

which is an algorithm corresponding to a multivalued computation forest Ty = {70 n.do,...dp_1
in the sense of Sec. 2 (recall that I is a universal range of values of algorithms corresponding
to multivalued computation forests, see [5] and Sec. 2). Recall that all polynomials gg= ., dg* r.i

depend on the pair of linear forms (Yp, Y1) and the matrix C},, see above.

Thus § = §(Tp). The level (T d,....d,,_,) Of each multivalued computation tree is Dg(l).

For every vertex v of the tree Tt dy,....d,,_,, We have
Wy = Z(@Z’v,lv s >¢v7#v,1) \ Z(¢Uyﬂv,l+1? ce a@Z’v,um)a
where all polynomials 1, ; lie in k[ai,...,a,] and have degrees bounded from above by
7\ O(1

("tLD) ( ). Let A = L(Ton.dy,....d,_,) be the set of leaves of the tree Tt dy.....dp_1-

Now, for every a € A, 0 < r < pg, 0 < i < n, polynomials g,,r € kla1,...,a,,Z],
dari € kla1,...,a,,Z] are computed at the vertex a. They satisfy the following properties:
degy gar < Dy /p", degy 0ari < degy gar; the degrees in ay, ..., a, of gor, 6a,r,i are bounded

n+D’)O(1)

from above by ( ; and for every a* € Wy, we have degy 9o, = degy g r(a*, Z),

Ja,r (a*7 Z) = Ga*r, 504,1",7; (a*a Z) = 5a*,r,i

for all 7,7. Denote by d,, the discriminant of the polynomial g, , with respect to Z. Then
da,r(@*) = 0g+ » # 0 for all a* € W, and 0 <7 < py.

Let d. = degy ga,r. Put @40, = Yodi'gaw(al, ., 0., Y1/Y)). Let Ju 0, be a one-element set
if degy gar > 0, and Jy 0, = @ if degy gor = 0. We will assume without loss of generality
that for every « the sets Jo 0, 0 < 7 < pg, are pairwise disjoint. Furthermore, we will assume
without loss of generality that J, o, = Ju= , for every a* € W,.

Put H; = gar, Aaor1 = 290, Aaoro = 1, and @ = Y1 — ZY) for every j € Jo,,
0 <r < po, see (v) and (vi) in the introduction.

Now we have Zj o« = Zgx, and Wj g« ¢ = W, ¢ for every j € Jo o, a* € W, see (vii) in
the introduction.
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Set Gj = 0o, and Gj; = bars for j € Jaor, 0 < r < po, 0 < i@ < n, see (ix) in the
introduction.

The above definitions and the described construction imply the weakened modified version
of Theorem 1 for ¢ = 0 if condition (g) is fulfilled.

Therefore, by Theorem 3, the weakened modified version of Theorem 1 holds for ¢ = 0 and
for arbitrary as,...,a, and d’ (when condition (g) is not necessarily fulfilled).

Assume that condition (g) does not necessarily hold. Denote by f the family of coefficients
from k[aq,...,a,] of all the polynomials fy,..., fin—1. Then, by Theorem 3 applied to the tree
To.do,....fm_1 (f) (see the definition of this tree in Sec. 2), we obtain the weakened Theorem 1
for ¢ = 0.

4. THE GENERAL CASE. PRELIMINARIES

Let s be an integer, 0 < s < n — 1. Recall that the finite sets of linear forms M,,, M
are defined in the introduction, see (5). Let D be an integer, D > 2, and »3 = 2(n — s)D + s,
sy = (n —s)D(D —1)/2. Assume that the sets M,,, M, exist (i.e., the field k contains
sufficiently many elements). First of all, we need the following general result.

Lemma 7. Let V. C P*(k) be a nonempty projective algebraic variety such that the dimen-
sion of each irreducible component of V is s and degV < D. Then there is an element
(Yo,...,Ys41) € Mf:gl x M ,,, satisfying the following properties.
(a) VNZ(Yy,...,Ys) =@ inP*(k), and there are \1, ..., \s € k such that the intersection
VNZYr — MYo,...,Ys — A\Yp) is transversal at each point. This implies that the

morphism

et V—P(k), (Xo:...:Xn)r— Yo:...:Y),
is finite dominant separable (or, which is the same by definition, the restriction of ws to
each irreducible component of V' is a finite dominant separable morphism). Moreover,
degms =degV =#(VNZ(Y1,...,Ys)) = #77((1: A1 1 ... 0 Ay)).

(b) Let ®5 € k[Yy,...,Ys,Z] be a nonzero polynomial of the smallest degree such that
the polynomial ®4(Yy,...,Yss1) vanishes on V. Denote by Ay € k[Yo,...,Ys] the
discriminant of ®s with respect to Z. Then degy, y, z®s = deg; ®s = degV and
Ag #0.

Proof. (a) We will use induction on s. The base s = 0 is trivial. Let s > 1. There is a linear
form Yy € M,,, such that dim VN Z(Yy) = s—1. Note that for arbitrary 1, ..., u, € k, for any
pairwise distinct linear forms L1, . .., L, € M, \{Yo}, the linear forms L1 —u1 Yy, ..., Ln—un Yo
are linearly independent over k. For every irreducible (over k) component E of V, choose a
smooth point £ of the algebraic variety V such that £ € E'\ Z(Y)). Thus the number of all
chosen points ¢ is at most D by the Bézout theorem. For every L € M,,,, for every point {g
there is an element A\r g € k such that (L — Ar,eY0)(&E) = 0.

For every point {g there are at most n — s pairwise distinct linear forms L € M, \ {Yo}
such that L — A, gY( vanishes on the tangent space of the algebraic variety V' at the point {g.
Furthermore, for every irreducible (over k) component E’ of the algebraic variety V N Z(Yp)
there are at most (n — 1) — (s — 1) linear forms L € M,,, such that L vanishes on E’.

Therefore, there is a linear form Y, € M., \ {Yp} such that Y — Ay, gYy does not vanish on
the tangent space of any chosen point £g and Y; does not vanish on any irreducible component
E’ of the algebraic variety V N Z(Yp). Thus dimV N Z(Yp, Ys) = s — 2.

Furthermore, the intersection £ N Z(Ys — Ay, gYp) is transversal at each point {g. Consider
the morphism 7/ : V — PY(k), (Xo:...: X,) — (Yp : Y;). Denote by V' the set of points
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¢ € V such that den’ = 0 or € is not a smooth point of V. The differential d¢, 7’ is not zero
for every point {g. Therefore, dim V' < s — 1.

Let E” be an arbitrary irreducible (over k) component of V'’ such that dim E” = s — 1. We
claim that there is at most one element ;i € k such that E” is an irreducible component of
VN Z(Ys — uYy). Indeed, otherwise E” C V N Z(Yp,Ys). Since dimV N Z(Yp, Ys) < s — 2, we
obtain a contradiction.

Thus, there is Ay € k such that each irreducible component of V N Z(Y; — A\,Yp) is not an
irredumble component of V’. This implies that the intersection VN Z(Y; —\;Y)) is transversal,
i.e., for every irreducible (over k) component E™ of this intersection there is a smooth point
£ € E" such that £ is a smooth point of V' and the intersection of the tangent spaces of V' and

Z(Ys — A\sYp) at & is transversal. Also, this implies that degV = deg V N Z(Y; — A\;Yp). Let us
identify Z(Yy — \;Yp) with P*"~!(k). Now, replacing (P"(k),V, Yy, M, ) by

(P 1 (k), V N Z(Ys — AsYp), Yo, M, \ {Y5)),

we prove (a) applying the inductive assumption.
(b) There is a linear form Ys,1 € M’ _ such that

8,224

By the Bézout theorem, for this linear form Yy, assertion (b) holds (we leave the details to
the reader). The lemma is proved. O

Remark 7. Let V be a projective algebraic variety from the statement of Lemma 7 and
Yy,...,Ys € k[Xo, ..., X,] be arbitrary linear forms. Now, V N Z(Yp,...,Y,) = @ in P*(k) if
and only if the morphism 7 is finite dominant (this is well known). We would like to emphasize
again that if the morphism 7y is finite dominant separable, then assertion (a) of Lemma 7 is
fulfilled automatically. The proof of the last fact is straightforward using the Bézout theorem.

Let V be a projective algebraic variety from the statement of Lemma 7. Assume that
Yy,...,Ys € k[Xo,...,X,] are linear forms such that V N Z(Yp,...,Y,) = @ in P*(k) and
Yo,..., Y, Xg11,..., X, are linearly independent over k. Let ¢ be a transcendental element
over k.

Assume that s <n —1. Let Y € k[Xj, ..., X,,] be a linear form such that Yp,...,Y,, Y are
linearly independent over k. Denote by ®y € k[Yy,...,Y;, Z] the nonzero polynomial of the
smallest degree (in Yp,...,Ys, Z) such that lc;®y = 1 and the polynomial @y (Yp,...,Ys,Y)
vanishes on the algebraic variety V. If s = n — 1, then, obviously, V = Z(®y (Yp,...,Ys, Y))
in P*(k).

Let s <n—2. Let Y € M{ ,, and i be an integer such that s +2 < i < n. Denote by

Py, € k[t, Yo, ..., Ys, Z] the nonzero polynomial of the smallest degree (in ¢, Yp, ..., Ys, Z) such
that lcz®y; =1 (see Remark 7) and the polynomial

Oy i(t, Yo,...,Ys, Y +1X5)

vanishes on the algebraic variety V. Let P € k[t Yo,.... Y5, Z] be a polynomial such that
chCD € k and the square-free parts of the polynomials d and Py; coincide (i.e., they have the
same sets of factors irreducible over k). Then, for brevity, we will say that the polynomial d
satisfies the property of the square-free part minimality for the ground field k, the algebraic
variety V, and the linear forms Yy,...,Ys, Y, X;.

Let <T>y,i € k[t, Yo, ...,Ys, Z] be a polynomial satisfying the property of the square-free part
minimality for the ground field &, the algebraic variety V', and the linear forms Yy, ..., Ys, Y, X;.
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Assume additionally that lc Z:I;y,i = 1. Let us represent this polynomial in the form

&)Y,i(tvybv"' a}/;vy—l_tXZ) = Z &)ijtj
0<j<deg, Py,

where (AIsy,i,j € k[Yy,...,Ys, Y, X;] (note that now the linear forms Yy, ..., Ys,Y, X; are linearly
independent over k).

Lemma 8. Let V be a nonempty projective algebraic variety from the statement of Lemma 7.
Assume that Yy, ...,Ys € k[Xo,...,X,]| are linear forms such that VN Z(Yy,... ,Ys)~: @ in
]P’”(E) and Yy, ..., Y, Xot1, ..., Xy are linearly independent over k. Assume that deg, ®y; < D.
Let 0 < s <n—2. Then, in the above notation,

V = Z((T)Y,z’,ja YeM

24

s+2<i<n,0<j<degy dy,), (25)

i.e., the variety V is the set of all common zeros in P™(k) of the system of homogeneous
polynomial equations ®y,;; = 0 for all Y, i, j. The number of equations in this system is

bounded from above by (n —s —1)D(1 + (n — s)D(D — 1)/2). The degrees of these equations
are bounded from above by D.

Proof. Let Vi be the projective algebraic variety from the right-hand side of (25). Obviously,

V C V1. We need to prove that V O Vi. Let £ = (& : ... : &,) € Vi and & € k for all i.
Performing if necessary a permutation of the linear forms Yy, ..., Ys, we will assume without
loss of generality that Yp(€) # 0. Put & = (1 : (Y1/Y0)(€) : ... : (Ys/Y0)(€)) € P3(k) and
E =m; (). Thus #Z < D. There is a linear form Y € M/, such that #(Ye/Yp)(E) = #E.

By Remark 7 and the properties of ®y; and %yﬂ‘, there is a point f(i) € Z such that
(Ye/Yo) (D) + t(Xi/Yo)(€W)) = (Ye/Y0)(€) + t(Xi/Y0)(€) for s +2 < i < n. This implics
that (Ye/Yp)(€W) = (Y¢/Y0)(€) and (X;/Yp)(W) = (Xi/Yp)(€) for s +2 < i < n. By the
choice of Y¢, we have (1) = £02) for s + 2 < iy ip < n. Put & = £6+2) € V. Then we
have (Y;/Y0)(§) = (Yi/Y0)(£") for 1 < i < s, (Ye/Y0)(§) = (Ye/Y0)(€") and (X;/Y0)(§) =
(Xi/Yp)(£") for s +2 < i < n. But the linear forms Yp,...,Ys, Yz, Xg4o,..., X, are linearly
independent over k. This implies that £ = ¢” € V. The last two assertions of the lemma about
estimates on the number of equations and the degrees are obvious. The lemma is proved. [

Let ¢ be an enteger, —1 < ¢ < n. Now we are going to describe some preliminary algorithm
(with enumerations, see Sec. 2). For brevity, write fo-; = fi(a*, Xo,...,X), 0<i<m — 1.
Applying Lemma 3 from Sec. 1 to the family of polynomials X;»lo_difa*,z" 0 <35 <,

0 <i<m-—1, we find a maximal subfamily {X;.io_diV Jari}, 1 < v < N, of this family

linearly independent over k. Then N < (”:d). Put I« = {i, : 1 <~ < N}. Then, obviously,
Z(fax 0y s farm—1) = Z(faxi, 1 € Io+). Thus, replacing if necessary the family of polynomi-
als fax0,--., far,m—1 by {fa*i}icr,., in what follows we will assume without loss of generality
that m < (”:d). If a* € U,.., then, obviously, m > n — c.

If ¢ = n, then properties («,,—.) and (5,—.) are trivially fulfilled, see below. Further in this
section, we assume that ¢ < n.

Assume that ¢ = —1. Then put Y; = X for 0 <i < n.

Assume that 0 < ¢ < n—1. We assume that the field k£ contains sufficiently many elements,
and hence the set of linear forms £, (defined in the introduction) exist.

Let a* € U.. Using an enumeration and the construction of Sec. 3, we find an element
(Yo,...,Ye) € LS (it depends on a*) such that Vo« N Z(Yp,...,Y.) = &, see Lemma 7(a).
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Put Y; = X; for c+ 1 < i < n. Then the linear forms Yp,...,Y, are linearly independent
over k.

Now let us return to the case —1 < ¢ < n — 1. Our aim is to construct polynomials
ha* 1, .., hg* n—c satisfying the following properties.
(an—c) Forevery i, 1 <i<n—c,

ha*,i = fa*,i—l + Z Qa* i,w fa*,wa
i<w<m—1
where ¢g+iw € k[Xo,...,X,] are homogeneous polynomials of degrees
deng,,_,,Xn a*iw = dw - di—l-
(Bn—c) dim Z(hgx 1,. .., he* n—c) = C.
Hence V,+ . is a union of some irreducible components of the algebraic variety

Z(hg 1, s ha* n—c).

Remark 8. Let v = 0 (so a* can be omitted in the notation). In [2, Chap. 2, Sec. 3], the
construction of hy,...,h,_. (in that paper, the notation m in place of n — ¢ is used) with
“Inessential components” (see Lemma 2.11 in [2]) is inaccurate. One should delete this lemma.
But the required correction is short and simple. It is given in the thesis [7, p. 221] (note that
the case where d; = d for all ¢ is considered in [7] and [2], and then there are simplifications).
In this paper, we follow [7] with small modifications in this place.

Assume that 1 < j <n —c+ 1. Consider the following property:

(’Yj—l) Z(ha*J, o 7ha*,j—1) N Z(Yb, Yi,... 7Yn—j+1) = in ]Pm(k)

(Here, if j = 1, then the sequence hgx1,...,he j—1 is empty and Z(hg*1,..., e j—1) =

P"(k).) Note that if properties (c,_.) and (7,,_) hold, then (ay,_.) and (3,_.) are also satisfied.
Let 1 < j < n —c. Assume that polynomials hg= 1, ..., he+ j—1 satisfying properties (o;—1)

and (v;—1) have been constructed recursively (for the recursion base j = 1, nothing has been

constructed). We are going to construct a polynomial hq« ; such that properties (o), (v;)

hold.

By (vj-1), we have dim Z(hq* 1, ..., ha* j—1, Y0, Y1,...,Yn—j) = 0. Hence
Ej—]. = Z(ha*,]J s 7ha*,j—17 Yba Yi? s 7Yn—j)
is a finite set. We have Ej_1NV,= = &, since n—j > cand Vo= NZ(Yp,...,Y,) = &. Therefore,
by property (a;_1), also
Ej—l N Z(fa*,j—la LR fa*,m—l) =d.
Now we will find recursively indices j —1 < j1 < ... < j,v < m such that m’ < #E; 1 < D;-_l
(the integer D’_, is defined in the introduction) and
E; 10 Z(faxjise- s farg,,) = 9.
Namely, let 1 <i<m —2and Ej_1 N Z(fo j1s- - farji_,) # D. Then we set
ji = Sup{w : Ej—l N Z(ftl*,jla cee afa*,ji_p fa*,wa fa*,w—i—la sy fa*,m—l) = @}
We use the construction of Sec. 3 to find the index j;. Obviously,
Ej—l N Z(fa*,jla cee fa*,ji_1) 7£ Ej—l N Z(fa*,jla s fa*,ji)-
IEE; 1NZ(fa*j1s-- - farj;) = D, then put m’ = i, and the required indices are constructed.
Let ¢ be a transcendental element over k. Set gj; =0if j <i<m—1andi & {j1,...,Jm }-
Put ‘ ; ;
Gjo = »_, PV S <w < (26)
1<u<y
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and _ B
harj= Y Guwlarw € K[t X0, ..., Xp]. (27)
Jj<w<m—1
Then 0 # Ea*,j(n) € k[t] for every n € Ej_1. We have deg, ﬁam <gjm' <jiD’ ;.

Set 8; = jm' D’ ;. Recall that Ty, denotes a subset of k\ {0} with #Z5, = ; + 1. It
follows that there is an element {,«; € Zg, such that ﬁa*7j(ta*7j,n0,...,nn) # 0 for every
n = (770 [ Un) € Ej—l- Put ha*J’ = ha*,j(ta*,jaXOa--- ,Xn) and qa*,jow = Qj,w|t:ta*7j for
all w. Then properties (), (7;) hold.

One can find a required element ¢4+ ; enumerating the elements t' € 7, and deciding whether

Z(ha 1y har i1, has j (', X0y, X0), Yo, o, Yo j) = @

using the construction of Sec. 3. The recursion for obtaining hg+ 1,. .., he* n—c is completely
described. Note that simultaneously we obtain all the polynomials g4+ j., and all the elements
[ J €< Iﬁj .

Translated by A. L. Chistov.
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