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SYSTEMS WITH PARAMETERS, OR EFFICIENTLY
SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS:
33 YEARS LATER. I

A. L. Chistov∗ UDC 513.6, 518.5

Consider a system of polynomial equations with parametric coefficients over an arbitrary ground
field. We show that the variety of parameters can be represented as a union of strata. For values
of parameters from each stratum, the solutions of the system are given by algebraic formulas
depending only on this stratum. Each stratum is a quasiprojective algebraic variety with degree
bounded from above by a subexponential function in the size of the input data. Also, the number
of strata is subexponential in the size of the input data. Thus, here we avoid double exponential
upper bounds on the degrees and solve a long-standing problem. Bibliography: 11 titles.

Introduction

Let k be an arbitrary field of characteristic exponent p containing sufficiently many elements.
Denote by k an algebraic closure of k. Let ν be a nonnegative integer. Let a1, . . . , aν be a
family of independent variables (or parameters) over k. Denote by A

ν(k) the affine space
of parameters with the coordinate functions a1, . . . , aν (in a more general situation, one can
consider an algebraic variety of parameters V ⊂ A

ν(k), but this case can easily be reduced to
the special case of V = A

ν(k)).
In this paper, we consider the problem of solving systems of polynomial equations with

parametric coefficients from k[a1, . . . , aν ]. At the output, we obtain solutions depending on
these parameters; precise statements are given below, see Theorems 1 and 2. To obtain the
required results, we rely on our algorithms from [2, 3, 7] for solving usual systems of polynomial
equations. They have the best known complexity bounds in the general case. But it turns
out that they are not sufficiently explicit for the aims of the present paper. So, in this paper
we significantly revise the algorithms from [2, 3, 7] and give a new, probably more clear and
succinct, background for them (although the main ideas remain the same). Actually, in this
paper, as the special case ν = 0 of our main result on systems with parameters, we obtain
improved and more explicit versions of the algorithms from [2, 3, 7] for solving systems of
polynomial equations. Also, we give a self-contained background for these new versions. Now,
for the reader’s convenience, we would like to list the improvements in these new versions of
the algorithms for solving polynomial systems as compared with [2, 3, 7].

1) We consider separable bases of transcendence of the fields of rational functions of
irreducible components of the variety of solutions, see Lemma 7 in Sec. 41.

2) A more explicit reduction to the zero-dimensional case is described. Everything is
reduced to the computation of some determinants and resultants (which, of course, are
also determinants).
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3) We suggest a new explicit construction of generic points of irreducible components of
the variety of solutions. The coordinates of these generic points are represented as
quotients of some partial derivatives, see Secs. 3 and 6.

4) We suggest a new explicit and clear construction of systems of polynomial equations
giving irreducible components of the variety of solutions, see (xii) below. This con-
struction is valid even for arbitrary equidimensional algebraic varieties, see (xi) below
and Lemma 8 in Sec. 4.

5) We obtain a decomposition of the variety of solutions into a union of equidimensional
algebraic varieties. In nonzero characteristic, we obtain an explicit decomposition of
the variety of solutions into a union of equidimensional algebraic varieties defined over
the fields k1/pr

where r is a nonnegative integer, see (v) below.
6) We obtain an explicit criterion to decide whether linear forms Y0, . . . , Ys give a sepa-

rable basis of transcendence Y1/Y0, . . . , Ys/Y0 of the field of rational functions of every
irreducible component of dimension s of the variety of solutions of the original system,
see Lemma 15 in Sec. 6.

7) More presice estimates for the degrees, lengths of coefficients, and running time of the
algorithm are given. For example, we use D′

n−s, Dn−s (see below) in place of dn−s, cf.
[2, 3, 7].

8) Only polynomials in one variable are to be factored into irreducibles, i.e., it suffices to
have factorization algorithms only for one-variable polynomials.

9) We have fixed an inaccuracy in Lemma 2.11 of [2] (one should delete this lemma from
that paper), see Remark 8 in Sec. 4. Actually, this correction is simple, and it is made
in [7, p. 221], but one cannot find it in English. Still, it is strange that nobody (to the
author’s knowledge) has noticed this inaccuracy.

Now we return to systems with parameters. Let m,n ≥ 1 be integers. Let f0, . . . , fm−1 ∈
k[a1, . . . , aν ,X0, . . . ,Xn] be polynomials homogeneous with respect to X0, . . . ,Xn. Assume
that

degX0,...,Xn
fi = di ≤ d, dega1,...,aν

f ≤ d′ (1)

for some integers d0 ≥ d1 ≥ . . . ≥ dm−1 ≥ 0 and d, d′ ≥ 2.
Hence each polynomial fi can be represented in the form

fi =
∑

i1,...,iν≥0, i1+...+iν≤d′,
j0,...,jn≥0, j0+...+jn=di

fi,i1,...,iν , j0,...,jnai1
1 · . . . · aiν

ν Xj0
0 · . . . · Xjn

n , (2)

where 0 ≤ i ≤m − 1, all i1, . . . , iν , j0, . . . , jn are integers, and fi,i1,...,iν ,j0,...,jn ∈k.
Let a∗ = (a∗1, . . . , a∗ν) ∈ A

ν(k). Denote by Va∗ ⊂ P
n(k) the variety of all solutions of the

system of polynomial equations

f0(a∗1, . . . , a
∗
ν ,X0, . . . ,Xn) = . . . = fm−1(a∗1, . . . , a

∗
ν ,X0, . . . ,Xn) = 0 (3)

(if ν = 0, then A
ν(k) = {()} is a one-element set; if a(0) = () ∈ A

ν(k), then the sequence
a

(0)
1 , . . . , a

(0)
ν is empty and we assume that fi(a

(0)
1 , . . . , a

(0)
ν ,X0, . . . ,Xn) = fi for all i; we adopt

a similar convention also for other polynomials with parametric coefficients in the case where
ν = 0).

For every point a∗ ∈ A
ν(k), for every integer s, where 0 ≤ s ≤ n, denote by Va∗,s the

union of all irreducible components W of the variety Va∗ such that dim W = s. For example,
Va∗,s = ∅ if n > m and s < n − m.
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Let c and c′ be integers such that −1 ≤ c ≤ n and 0 ≤ c′ ≤ max{0, c}. Put V
(c′,c)
a∗ =

⋃
c′≤s≤c

Va∗,s. Thus V
(c′,c)
a∗ is the union of all irreducible components W of the variety Va∗ such

that c′ ≤ dimW ≤ c. In particular, V
(0,n)
a∗ = Va∗ , V

(0,0)
a∗ = Va∗,0, and V

(0,−1)
a∗ = ∅.

Denote by Uc the subset of all a∗ ∈ A
ν(k) such that dimVa∗ ≤ c. One can prove that it is a

subset of A
ν(k) open in the Zariski topology. Hence if a∗ ∈ Uc, then Va∗ = V

(0,c)
a∗ . If a∗ ∈ U−1,

then Va∗ = ∅.
Consider the problem of representing the set of parameters

Uc =
⋃

α∈A

Wα (4)

as a union of finitely many (i.e., #A < +∞) quasiprojective algebraic varieties Wα satisfying
the following properties. For every α ∈ A, for all a∗ = (a∗1, . . . , a

∗
ν) ∈ Wα, the subvariety of

solutions V
(c′,c)
a∗ is given uniformly, i.e., by some algebraic formulas (similarly to [2], see below

for details) everywhere defined on Wα and depending on a∗1, . . . , a∗ν as on parameters.
For an arbitrary polynomial f ∈ k[a1, . . . , aν ,X0, . . . ,Xn] and a point a∗ = (a∗1, . . . , a∗ν) ∈

A
ν(k), we write f(a∗,X0, . . . ,Xn) = f(a∗1, . . . , a∗ν ,X0, . . . ,Xn) and use other similar notation.
Denote by ka∗ the field generated over k by the coordinates of the point a∗, i.e., ka∗ =

k(a∗1, . . . , a∗ν) (if ν = 0, we assume that ka∗ = k for a∗ ∈ A
ν(k); recall that #A

ν(k) = 1 for
ν = 0). Thus all the polynomials fi(a∗,X0, . . . ,Xn) lie in ka∗ [X0, . . . ,Xn].

Let Z(fi(a∗,X0, . . . ,Xn), 0 ≤ i ≤ m − 1) denote the set of all common zeros of the
polynomials under consideration in P

n(k). Then Va∗ = Z(fi(a∗,X0, . . . ,Xn), 0 ≤ i ≤ m − 1).
We will also use other similar notation.

Remark 1. In what follows, we assume that dm−1 ≥ 1. Let us show that this involves no
loss of generality. Indeed, assume that there are q ≥ 1 polynomials fi with di = 0. Then
for each i with degX0,...,Xn

fi = di = 0, it suffices to replace the polynomial fi by the family
of polynomials {Xjfi}0≤j≤n and m by m + qn. After that, for every a∗ ∈ A

ν(k) the newly
obtained system (3) is equivalent to the original system (3).

Now we are going to give a precise meaning to the uniformity of algebraic formulas related
to (4). Namely, the following properties hold.

(i) For every α ∈ A, the variety Wα is nonempty. For all α1, α2 ∈ A, if α1 �= α2 then
Wα1 ∩Wα2 = ∅, i.e., these varieties Wα are pairwise disjoint; thus we will call them
strata, and the union (4) will be called a stratification.

(ii) One can represent Wα in the form

Wα = W(1)
α \

⋃

2≤β≤μα

W(β)
α

where W(β)
α = Z(ψ(β)

α,1, . . . , ψ
(β)
α,mα,β ), 1 ≤ β ≤ μα, is the set of all common zeros of the

polynomials ψ
(β)
α,1, . . . , ψ

(β)
α,mα,β ∈ k[a1, . . . , aν ] in the affine space A

ν(k) and mα,β ≥ 1 is
an integer.

Let α ∈ A be arbitrary. Let s be an arbitrary integer such that c′ ≤ s ≤ c (if c = −1, then
there are no such integers s).

(iii) If Va∗,s = ∅ for some a∗ ∈ Wα, then Va∗,s = ∅ for all a∗ ∈ Wα (if s �= n, then the last
implication follows also from (iv)).
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If m − 1 < n, then we put di = 1 for m − 1 ≤ i ≤ n (but in this case, the polynomials fi

are not defined for these i). Set

D′
n−s = d0d1 · . . . · dn−s−1, 0 ≤ s ≤ n − 1,

and D′
n−s = 1 if s = n.

Put ρs = 0 if p = 1, and ρs = logp D′
n−s otherwise.

In what follows, all the constants in O(. . .) are absolute.
Let Iκ be a finite subset of k \ {0} with the number of elements #Iκ = κ + 1. Let s be an

integer, 0 ≤ s ≤ n − 1. Put

Mκ =
{ ∑

0≤i≤n

γiXi : γ ∈ Iκ

}
, M′

s,κ =
{ ∑

s+1≤i≤n

γi−s−1Xi : γ ∈ Iκ

}
. (5)

These are finite sets of linear forms with coefficients from k.
Put κ1,s = 2(n − s)D′

n−s + s and κ2,s = (n − s)D′
n−s(D′

n−s − 1)/2. For every s, where
0 ≤ s ≤ n − 1, set

Ls = Mκ1,s , L′
s = M′

s,κ2,s
.

In (iv)–(xii) below, we assume additionally that s is arbitrary such that c′≤s≤min{c, n − 1}.
For every such s there are linear forms Y0, . . . , Ys ∈ Ls and Ys+1 ∈ L′

s (depending on α and s;
we will also write Yi = Ys,i if the dependence on s is important, so (Ys,0, . . . , Ys,s+1) ∈ Ls+1

s ×L′
s)

satisfying the following properties.
(iv) For every a∗ ∈ Wα, the intersection Va∗,s ∩ Z(Y0, . . . , Ys) is empty in P

n(k).
(v) The linear forms Y0, . . . , Ys+1 are linearly independent. For every integer r, 0 ≤ r ≤ ρs,

there is a nonzero polynomial Φα,s,r ∈ k[a1, . . . , aν , Y0, . . . , Ys+1] homogeneous with
respect to Y0, . . . , Ys+1 such that for every a∗ ∈ Wα

0 ≤ degY0,...,Ys+1
Φα,s,r = degYs+1

Φα,s,r(a∗, Y0, . . . , Ys+1) ≤ D′
n−s/p

r,

the leading coefficient lcYs+1Φα,s,r lies in k[a1, . . . , aν ], and
∏

0≤r≤ρs

Φ1/pr

α,s,r(a
∗, Y pr

0 , . . . , Y pr

s+1)

is a nonzero polynomial from k[Y0, . . . , Ys+1] of minimum degree vanishing on the
projective algebraic variety Va∗,s. Furthermore,

deg Va∗,s =
∑

0≤r≤ρs

degYs+1
Φα,s,r.

Finally, denote by Δα,s,r the discriminant of the polynomial Φα,s,r with respect to
Ys+1 (by definition, Δα,s,r = 1 if degYs+1

Φα,s,r = 0). Then for every a∗ ∈ Wα, the
polynomial Δα,s,r(a∗, Y0, . . . , Ys) is nonzero.

Denote by Va∗,s,r, 0 ≤ r ≤ ρs, the union of all components E irreducible over k of
the algebraic variety Va∗,s such that Φα,s,r(a∗, Y

pr

0 , . . . , Y pr

s+1) vanishes on E. Thus we
have Va∗,s =

⋃
0≤r≤ρs

Va∗,s,r, and if r1 �= r2 then the varieties Va∗,s,r1 and Va∗,s,r2 do not

have common irreducible components.
The algebraic variety Va∗,s,r is defined over the field k

1/pr

a∗ .
(vi) Let Z be a new variable. There is a finite (or empty) family of polynomials Hj ∈

k[a1, . . . , aν , Z], j ∈ Jα,s,r, satisfying the following properties. The inequalities

1 ≤ degZ Hj ≤ D′
n−s/p

r

hold. Denote by Δj the discriminant of the polynomial Hj with respect to Z. Then
Δj(a∗) �= 0 for every a∗ ∈ Wα. Denote by Ξj,a∗ the family of roots from k of the
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separable polynomial Hj(a∗, Z). We assume that the sets of indices Jα,s,r are pairwise
disjoint.

(vii) There is a family of polynomials Φj ∈ k[a1, . . . , aν , Z, Y0, . . . , Ys+1], j ∈ Jα,s,r, and
polynomials λα,s,r,0, λα,s,r,1 ∈ k[a1, . . . , aν ] satisfying the following properties. For ev-
ery a∗ ∈ Wα, the polynomials Φj are homogeneous with respect to Y0, . . . , Ys+1, the
degrees satisfy the inequalities degZ Φj < degZ Hj, the leading coefficient lcYs+1Φj

lies in k[a1, . . . , aν ], all the polynomials Φj(a∗, ξ, Y0, . . . , Ys+1), ξ ∈ Ξj,a∗ , j ∈ Jα,s,r,
are irreducible over k in the ring k[X0, . . . ,Xn] (in particular, they have degree ≥ 1),
λα,s,r,0(a∗) �= 0, λα,s,r,1(a∗) �= 0, and

Φα,s,r(a∗, Y0, . . . , Ys+1) =
λα,s,r,0(a∗)
λα,s,r,1(a∗)

∏

j∈Jα,s,r,
ξ∈Ξj,a∗

Φj(a∗, ξ, Y0, . . . , Ys+1).

Hence 1 ≤ degY0,...,Ys+1
Φj ≤ degY0,...,Ys+1

Φα,s,r ≤ D′
n−s/p

r.
(viii) For every a∗ ∈ Wα, for every r, where 0 ≤ r ≤ ρs, the irreducible components over k of

the projective algebraic variety Va∗,s,r are in a natural one-to-one correspondence with
the pairs (ξ, j) where ξ ∈ Ξj,a∗, j ∈ Jα,s,r. Denote by Wj,a∗,ξ the irreducible (over k)
component of the algebraic variety Va∗,s,r corresponding to the pair (ξ, j). We have
deg Wj,a∗,ξ = degYs+1

Φj .
(ix) Let Y and Z be variables, t1, . . . , ts be a family of algebraically independent elements

over k, j be a index from Jα,s,r, and θ be an algebraic element over k(t1, . . . , ts) such
that Φj(a∗, ξ, 1, t

pr

1 , . . . , tp
r

s , θpr
)=0. Then there are polynomials

Gj ∈k[a1, . . . , aν , t1, . . . , ts], Gj,i ∈ k[a1, . . . , aν , Z, t1, . . . , ts, Y ], 0 ≤ i ≤ n,

satisfying the following properties. The polynomial Gj(a∗, t1, . . . , ts) is nonzero for
every a∗ ∈ Wα, the inequalities degZ Gj,i < degZ Hj, degY Gj,i < degYs+1

Φj hold,
and all degrees degt1,...,ts Gj , degt1,...,ts Gj,i are bounded from above by (D′

n−s/p
r)O(1).

Furthermore, there is a k-isomorphism of fields

k(Wj,a∗,ξ) → k(t1, . . . , ts)[θ]

such that Yi/Y0 
→ ti, 1 ≤ i ≤ s, Ys+1/Y0 
→ θ,

(Xi/Y0)p
r 
→ Gj,i(a∗, ξ, t

pr

1 , . . . , tp
r

s , θpr
)/Gj(a∗, t

pr

1 , . . . , tp
r

s ), 0 ≤ i ≤ n.

Hence this isomorphism gives a generic point of the algebraic variety Wj,a∗,ξ. The
projective algebraic variety Wj,a∗,ξ is defined over the field k

1/pr

a∗ [ξ] (it is well known
that in this case ξ1/pr ∈ k

1/pr

a∗ [ξ]).
(x) Moreover, there are polynomials

Gα,s,r ∈ k[a1, . . . , aν , t1, . . . , ts], Gα,s,r,i ∈ k[a1, . . . , aν , t1, . . . , ts, Y ], 0 ≤ i ≤ n,

satisfying the following properties. Put

dj = degZ Hj, d′j = degY0,...,Ys+1
Φj , dα,s,r,i = degY Gα,s,r,i.

For every i, 0 ≤ i ≤ n, we have degY Gα,s,r,i < degY0,...,Ys+1
Φα,s,r,

degt1,...,ts Gα,s,r,i < 2(D′
n−s)

2, degt1,...,ts Gα,s,r < 2(D′
n−s)

2.

Put Φ′
j = Φj(a1, . . . , aν , Z, 1, t1, . . . , ts, Y ). For every j ∈ Js,r, we have

(lcY s+1Φj)max{dα,s,r,i−d′j+1,0}Gα,s,r,i = A′
jΦ

′
j + G′

j,i,
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where A′
j, G

′
j,i ∈ k[a1, . . . , aν , Z, t1, . . . , ts, Y ] and degY G′

j,i = d′j,i < d′j . Furthermore,

(lcZHj)max{d′j,i−dj+1,0}G′
j,i = AjHj + Gj,i where Aj ∈ k[a1, . . . , aν , Z, t1, . . . , ts, Y ].

Finally,

Gj = (lcY s+1Φj)max{dα,s,r,i−d′j+1,0} · (lcZHj)max{d′j,i−dj+1,0} · Gα,s,r.

Therefore, if s = 0, then by (ix) for every a∗ ∈ Wα, for all j ∈ Jα,0,r0 , ξ ∈ Ξa∗,j, 0 ≤ r ≤ ρ0,

Wj,a∗,ξ = Z(Gj,i(a∗, ξ)Y
pr

0 − Gj(a∗)X
pr

i , 0 ≤ i ≤ n).

If s = n − 1, then for every a∗ ∈ Wα, for all j ∈ Jα,n−1,r, ξ ∈ Ξa∗,j , 0 ≤ r ≤ ρn−1, obviously,
Wj,a∗,ξ = Z(Φj(a∗, ξ, Y

pr

0 , . . . , Y pr

s+1)) and Va∗,s,r = Z(Φα,s,r(a∗, Y
pr

0 , . . . , Y pr

s+1)).
Let Y (i), 0 ≤ i ≤ κ2,s, be all pairwise distinct linear forms from L′

s. Note that for every
Y (i) ∈ L′

s, the linear forms Y0, . . . , Ys, Y
(i) are linearly independent over k. Let t be an element

algebraically independent over k. One can extend the ground field k to k(t). In (xi) and (xii)
below, we assume that 0 ≤ s ≤ n − 2.

(xi) There are polynomials Ψα,s,r,i1,i2 ∈ k[a1, . . . , aν , t, Y0, . . . , Ys, Z], 0 ≤ i1 ≤ κ2,s,
s + 2 ≤ i2 ≤ n, homogeneous with respect to Y0, . . . , Ys, Z and satisfying the following
properties. For every a∗ ∈ Wα, for 0 ≤ i1 ≤ κ2,s, s + 2 ≤ i2 ≤ n, the polynomial
Ψα,s,r,i1,i2(a

∗, t, Y0, . . . , Ys, Z) is nonzero and such that

Ψα,s,r,i1,i2(a
∗, tp

r
, Y pr

0 , . . . , Y pr

s , (Y (i1) + tXi2)
pr

)

vanishes on the algebraic variety Va∗,s,r( k(t) ). Furthermore, for all s, r, the variety
Va∗,s,r coincides with the set

Z
(
Ψα,s,r,i1,i2

(
a∗, tp

r
, Y pr

0 , . . . , Y pr

s , (Y (i1) + tXi2)
pr

)
,∀ i1, i2

)
∩ P

n(k). (6)

The leading coefficient lcZΨα,s,r,i1,i2 lies in k[a1, . . . , aν ], and for every a∗ ∈ Wα we
have (lcZΨα,s,r,i1,i2)(a

∗) �= 0. The degrees satisfy the inequalities

degt Ψα,s,r,i1,i2 ≤ degZ Ψα,s,r,i1,i2 ≤ degYs+1
Φα,s,r ≤ D′

n−s/p
r.

Let us write
Ψα,s,r,i1,i2 =

∑

0≤i3≤degt Ψα,s,r,i1,i2

Ψα,s,r,i1,i2,i3t
i3

where Ψα,s,r,i1,i2,i3 ∈ k[a1, . . . , aν , Y0, . . . , Ys, Y
(i1),Xi2 ] (note that now the linear forms

Y0, . . . , Ys, Y
(i1),Xi2 are linearly independent over k). Then (since the set (6) coincides

with Va∗,s,r) we have

Z
(
Ψα,s,r,i1,i2,i3

(
a∗, Y pr

0 , . . . , Y pr

s , (Y (i1))p
r
,Xpr

i2

)
,∀ i1, i2, i3

)
= Va∗,s,r.

Thus we obtain a system of polynomial equations with the set of zeros Va∗,s,r. This
system consists of at most (n−s−1)n(D′

n−s)3/(2pr) homogeneous equations of degree
at most D′

n−s.
(xii) For every j ∈ Jα,s,r, 0 ≤ r ≤ ρs, there are polynomials

Ψj,i1,i2 ∈ k[a1, . . . , aν , Z, t, Y0, . . . , Ys, Z1],

0 ≤ i1 ≤ κ2,s, s + 2 ≤ i2 ≤ n, homogeneous with respect to Y0, . . . , Ys, Z1 and
satisfying the following properties. The inequalities degZ Ψj,i1,i2 < degZ Hj hold. For
every a∗ ∈ Wα, for every ξ ∈ Ξa∗,j, for 0 ≤ i1 ≤ κ2,s, s + 2 ≤ i2 ≤ n, the polynomial
Ψj,i1,i2(a

∗, ξ, t, Y0, . . . , Ys, Z) is nonzero and such that

Ψj,i1,i2(a
∗, ξ, tp

r
, Y pr

0 , . . . , Y pr

s , (Y (i1) + tXi2)
pr

)
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vanishes on the algebraic variety Wj,a∗,ξ( k(t) ). Furthermore, the variety Wj,a∗,ξ coin-
cides with the set

Z
(
Ψj,i1,i2

(
a∗, ξ, tp

r
, Y pr

0 , . . . , Y pr

s , (Y (i1) + tXi2)
pr

)
,∀ i1, i2

)
∩ P

n(k). (7)

The leading coefficient lcZΨj,i1,i2 lies in k[a1, . . . , aν ], and for every a∗ ∈ Wα we have
(lcZΨj,i1,i2)(a

∗) �= 0. The inequalities

degt Ψj,i1,i2 ≤ degZ Ψj,i1,i2 ≤ degYs+1
Φj ≤ D′

n−s/p
r

hold.
Let us write Ψj,i1,i2 =

∑
0≤i3≤degt Ψj,i1,i2

Ψj,i1,i2,i3t
i3 where

Ψj,i1,i2,i3 ∈ k[a1, . . . , aν , Z, Y0, . . . , Ys, Y
(i1),Xi2 ].

Then (since the set (7) coincides with Wj,a∗,ξ) we have

Z
(
Ψj,i1,i2,i3

(
a∗, ξ, Y pr

0 , . . . , Y pr

s , (Y (i1))p
r
,Xpr

i2

)
,∀ i1, i2, i3

)
= Wj,a∗,ξ.

Thus we obtain a system of polynomial equations with the set of zeroes Wj,a∗,ξ. This
system consists of at most (n−s−1)n(D′

n−s)
3/(2pr) homogeneous equations of degree

at most D′
n−s.

Let a∗ ∈ Wα. By definition, put cα = max{dim V
(c′,c)
a∗ , c′ − 1}. Hence cα depends only on α

and does not depend on the choice of the point a∗.
(xiii) There are an integer c′α and homogeneous polynomials qα,i,i1 ∈ k[X0, . . . ,Xn], for

1 ≤ i ≤ n − c′α, 0 ≤ i1 ≤ m − 1, satisfying the following properties. The inequalities
c′ − 1 ≤ c′α ≤ cα hold. Put

hα,i =
∑

0≤i1≤m−1

qα,i,i1fi1 , 1 ≤ i ≤ n − c′α.

Set d(i) = degX0,...,Xn
hα,i for all i. Then d(i) ≤ di−1, and for all i1 we have

degX0,...,Xn
qα,i,i1 = d(i) − di1

provided that qα,i,i1 �= 0.
For every a∗ ∈ Wα, put ha∗,i =

∑
0≤i1≤m−1

qα,i,i1fi1(a
∗,X0, . . . ,Xn). Then

Z(ha∗ ,1, . . . , ha∗ ,n−c′α) = V
(c′,c)
a∗ ∪ Ea∗,c′

where Ea∗,c′ is a projective algebraic variety with dimEa∗,c′ ≤ c′− 1. Furthermore, for
every integer c′′ such that c′α < c′′ ≤ c,

Z(ha∗ ,1, . . . , ha∗,n−c′′) = V
(c′′,c)
a∗ ∪ Ea∗,c′′ ,

where Ea∗,c′′ is a projective algebraic variety such that dimEa∗,c′′ = c′′ and each
irreducible (over k) component of Ea∗,c′′ is not an irreducible component of Va∗ .

Note that if Ea∗,c′ = ∅, then V
(c′,c)
a∗ = Va∗ . Furthermore, one can easily deduce from (xiii)

that ha∗,i �= 0 for every i, 1 ≤ i ≤ c′α, and every a∗ ∈ Wα.
For every integer s such that 0 ≤ s ≤ n − 1, put

Dn−s =
(

d0 + . . . + dn−s−1 + 1
n − s

)

(this is a binomial coefficient). If s = n, put Dn−s = 1. Also set Dn+1 = Dn.
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The (bitwise) length of an integer z ∈ Z is defined by the formula l(z) = 1 + [log2(|z| + 1)]
(here [. . .] stands for the integral part of a real number). If fi ∈ Z[a1, . . . , aν ,X0, . . . ,Xn],
then, by definition, the length of integer coefficients of the polynomial fi is equal to

l(fi) = max
i1,...,iν ,
j0,...,jn

l(fi,i1,...,iν , j0,...,jn),

see (2). The lengths of integer coefficients of other polynomials with integer coefficients are
defined in a similar way.

In the statements of Theorems 1 and 2 below, we assume that the field k has sufficiently
many elements. More precisely, it suffices that #k ≥ DC

n−c′ for some absolute constant C > 0
(it can be easily computed if necessary).

Now we are able to state our main result.

Theorem 1. Let polynomials f0, . . . , fm−1 ∈ k[a1, . . . , aν ,X1, . . . ,Xn], integers c, c′, and a
Zariski-open set Uc be as above. Then there is a stratification (4) satisfying properties (i)–(xiii)
and such that

(a) the number of elements #A and all the integers μα, mα,β are bounded from above by
(d′)νDO(ν)

n−c′ with an absolute constant in O(ν);

(b) the degrees in a1, . . . , aν of all polynomials ψ
(β)
α,1, . . . , ψ

(β)
α,mα,β are bounded from above by

d′DO(1)
n−c′ with an absolute constant in O(1);

(c) for every s such that c′ ≤ s ≤ min{c, n−1}, the degrees in a1, . . . , aν of all polynomials
Φα,s,r, Hj , Φj, λα,s,r,0, λα,s,r,1, Gj , Gj,i, Gα,s,r, Gα,s,r,i, Ψα,s,r,i1,i2 , Ψj,i1,i2 , j ∈ Jα,s,r,
0 ≤ r ≤ ρs, are bounded from above by d′DO(1)

n−s with an absolute constant in O(1).
Consider also the following property.

(l) The field k is Q, and in (2), for 0 ≤ i ≤ m − 1, we have

fi ∈ Z[a1, . . . , aν ,X0, . . . ,Xn]

and l(fi) ≤ M for some real number M ≥ 1.
Further, for every κ ≥ 0 we take Iκ = {1, 2, . . . , κ + 1}.

Then, additionally,
(d) under condition (l), the coefficients from k of all polynomials from (b) and (c) actually

belong to Z. The lengths of integer coefficients of all polynomials from (b) are bounded
from above by

(M + c2 + ν log2 d′)DO(1)
n−c′ (8)

with an absolute constant in O(1). The lengths of integer coefficients of all polynomials
from (c) are bounded from above by

(M + c2 + ν log2 d′)DO(1)
n−s (9)

with an absolute constant in O(1).

Under condition (l), we will also give good estimates for all lengths l(hα,i).
Note that if c = −1, only the stratification (4) itself and the polynomials hα,1, . . . , hα,n+1

(from (xiii)) appear in the statement of Theorem 1, there are no other objects in this case.
Let c = n. Then Va∗,n = P

n(k) for some a∗ ∈ Wα if and only if cα = c′α = n (since ha∗,i �= 0
for 1 ≤ i ≤ n − c′α, see (xiii)), i.e., if and only if no polynomials hα,i correspond to α.

Let c′ ≤ s ≤ min{c, n−1}. Then Va∗,s = ∅ if and only if Φα,s,r ∈ k[a1, . . . , aν ] for 0 ≤ r ≤ ρs,
i.e., if and only if Js,r = ∅ for 0 ≤ r ≤ ρs.

184



Note also that one can write A as a disjoint union A =
⋃

c′−1≤i≤c Ai such that for every
α ∈ Ai, for every a∗ ∈ Wα, we have dim Va∗ = i if c′ ≤ i ≤ c, and dim Va∗ ≤ i if i = c′ − 1.

For the problem under consideration, all previously known bounds on the degrees were
double exponential, cf. [1, 9].

We mention again that the algorithm from [2, Chap. 2] can be viewed as an analog of the
construction of the present paper for ν = 0 (in this case, one can omit a∗ in the notation).

Remark 2. We need to state also a modified version of Theorem 1 for the case of a covering
instead of a stratification, i.e., when condition (i) does not necessarily hold.

Namely, if in the statement of Theorem 1 one replaces “(i)–(xiii)” by “(ii)–(xiii)”, then one
can claim additionally in (a) that μα = 2 for every α ∈ A.

A similar remark is true for Theorem 1 of [6], see the introduction of [6]. It is important in
the present paper.

In the next Theorem 2, we make Theorem 1 effective, in the sense that we suggest an algo-
rithm for constructing a stratification (4) (and also a corresponding covering, see Remark 2)
and all related objects in time subexponential in the size of the input data. But first we need
to give explicitly the field k.

We assume that the field k is finitely generated over the subfield k0 where k0 = Q if p = 1
and k0 = Fpε is a finite field of order pε if p > 1. In the latter case, ε is a positive integer
and the field Fpε is given by a basis with a multiplication table over the field Fp = Z/pZ. Set
k1 = Z if p = 1 and k1 = k0 if p > 1. If char(k0) = p > 1 and z ∈ k0, then, by definition, the
length of z is l(z) = ε(1 + [log2(p − 1)]).

We assume that k = k0(τ1, . . . , τl)[τl+1] where l is a nonnegative integer and τ1, . . . , τl

are algebraically independent elements over the field k0. Furthermore, there is a nonzero
polynomial ϕ ∈ k1[τ1, . . . , τl, Z] such that degZ ϕ ≥ 1, lcZϕ = 1, the polynomial ϕ is irreducible
in the ring k0(τ1, . . . , τl)[Z], and ϕ(τ1, . . . , τl+1) = 0. We assume that degτ1,...,τl,Z

ϕ < d′′ for
some integer d′′ ≥ 2. If char(k) = 0, then, additionally, l(ϕ) ≤ M1 where M1 ≥ 1. If
char(k) > 0, put M1 = ε(1 + [log2(p − 1)]).

If char(k) = 0, then for any polynomial g with integer coefficients, the length of integer
coefficients (or of coefficients from k1, or just the length of coefficients if this will not lead to
an ambiguity) of g is defined to be the maximum of the lengths of integer coefficients of g.

If char(k) > 0, then for any polynomial g with coefficients in k0, the length of coefficients
from k1 (or just the length of coefficients if this will not lead to an ambiguity) of g is defined
by the formula l(g) = ε(1 + [log2(p − 1)]).

Let z ∈ k0(τ1, . . . , τl)[τl+1] be an arbitrary element. Then we represent it as

z = (1/z(0))
∑

0≤i<degZ ϕ

ziτ
i
l+1

where z(0), zi ∈ k1[τ1, . . . , τl], z(0) �= 0, and the greatest common divisor of all elements
z(0), z0, . . . , zdegZ ϕ−1 is 1 in the ring k1[τ1, . . . , τl]. In the case where char(k) = p > 0, the
element z(0) is uniquely defined up to a nonzero factor from k0. If char(k) = 0, then z(0) is
uniquely defined up to a factor ±1. In any case, if we fix z(0) then all zi are uniquely defined.
To fix z(0), we will assume that the iterated leading coefficient satisfies the condition

lcτ1 lcτ2 . . . lcτl
(z(0)) =

{
1 if char(k) = p > 0,
> 0 if char(k) = 0.

We define the degree degτ1,...,τl
z = max

0≤i<degZ ϕ
{degτ1,...,τl

z(0),degτ1,...,τl
zi} and the length of

coefficients l(z) = max
0≤i<degZ ϕ

{l(z(0)), l(zi)}.
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By definition, the degree degτ1,...,τl
(fi) of the polynomial fi is the maximum of

degτ1,...,τl
(fi,i1...,iν , j0,...,jn)

over all indices i1 . . . , iν , j0, . . . , jn. The degrees in τ1, . . . , τl of other polynomials with coeffi-
cients in k are defined in a similar way.

Let us return to the case of arbitrary characteristic. In this paper, we will assume that
fi,i1...,iν , j0,...,jn ∈ k1[τ1, . . . , τl+1] for all i, i1, . . . , iν , j0, . . . , jn.

We assume that for 0 ≤ i ≤ m − 1, we have degτ1,...,τl
fi < d′′′ for some integer d′′′ ≥ 2 and

l(fi) ≤ M2 where M2 ≥ 1. Thus we can take M2 = ε(1 + [log2(p − 1)]) if char(k) > 0.
In [2, 3], in the case of nonzero characteristic, the role of the field k0 is played by a finite

field H. Then, in order to apply the algorithms from [2, 3] for solving systems of polynomial
equations, the field H must have sufficiently many elements (for example, we assume that
Z1, . . . , Zn−m+2 ∈ H[X0, . . . ,Xn], see the statement of the main theorem of Chap. II in [2]
and Theorem 1 in [3]). Thus we extend the finite field H if necessary, see Remark 1 in [3].
Actually, the estimates on the lengths of coefficients from H (or H̃ in the notation of [3]) give
bounds on the number of elements of the extended field H, although we do not emphasize
this in [2, 3] (since for the number of elements of H, even better bounds can be obtained in
nonzero characteristic).

In the last two papers, we obtain systems of polynomial equations giving the irreducible
components of the variety of solutions and generic points of these irreducible components. In
[2], we also discuss how to return from these systems and generic points involving the extended
field H to those with the original field H if l > 0. Note that in the case l = 0, there is no such
reduction for systems of polynomial equations giving the irreducible components: we need to
extend H (if the number of elements of H is small) to obtain such systems of equations with
the required bound on their size, see the remark at the end of [2].

By Remark 1 of [3], if l > 0, then, alternatively, one can choose linear forms Z1, . . . , Zn−m+2

with coefficients in H[T1, . . . , Tl] (in [3], the elements T1, . . . , Tl play the role of τ1, . . . , τl) and
do not extend the field H. But in [2, 3] we do not give explicit estimates on the degrees in
T1, . . . , Tl of all objects (it is especially interesting for systems of polynomial equations giving
the irreducible components) in this case. Of course, the running time of the algorithms from
[2, 3] remains the same for this alternative choice of linear forms.

In this paper, to take into account all cases, we use a slightly more general approach to
representing elements from the ground field k.

Assume that char(k) > 0. Then if l > 0, put

ε(κ) = min
{

b ∈ Z :
(

b + l

b

)
ε log2 p ≥ log2(κ + 1) & b ≥ 0

}
, 0 ≤ κ ∈ Z. (10)

In this case, according to (10), we choose and fix Iκ to be a subset of the set of polynomials
from k0[τ1, . . . , τl] of degree at most ε(κ).

For every s, 0 ≤ s ≤ n − 1, set εs = 0 if ε(κ1,s) = 0, and εs = 1 if ε(κ1,s) ≥ 1.
If l = 0 or char(k) = 0, then set εs = 0 for all s.
Recall that we assume that the field k has sufficiently many elements, see above. Hence if

l = 0, then the field k0[τ1] has sufficiently many elements.
Put

D = max
c′−1≤s≤c

{Ds+ν+l+2
n−s }.

Thus D depends on c, c′. Obviously, D ≤ d(n+1)(c+ν+l+2) (this estimate does not depend on c′).

Theorem 2. Under the conditions described above, one can construct a stratification (4)
satisfying properties (i)–(xiii) (respectively, a covering (4) satisfying properties (ii)–(xiii)) and
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all the related objects from (iv)–(xiii), see assertions (a)–(c) of Theorem 1 (respectively, of the
modified version of Theorem 1, see Remark 2). Furthermore, the following assertions hold.

(a) All polynomials ψ
(β)
α,1, . . . , ψ

(β)
α,mα,β from assertion (b) of Theorem 1 (respectively, of the

modified version of Theorem 1) belong to k1[τ1, . . . , τl+1, a1, . . . , aν ]. The degrees in
τ1, . . . , τl of all these polynomials are bounded from above by

(d′′′ + c2εc′ + (d′′)2)DO(1)
n−c′ . (11)

If char(k) = 0, then the lengths of integer coefficients of all these polynomials are
bounded from above by

(M1 + M2d
′′ + c2 + ν log2 d′ + (l + 1) log2(d

′′d′′′))DO(1)
n−c′ . (12)

(b) For every s, c′ ≤ s ≤ min{c, n − 1}, the coefficients from k of all polynomials from
assertion (c) of Theorem 1 (respectively, of the modified version of Theorem 1) actually
belong to k[τ1, . . . , τl+1]. The degrees in τ1, . . . , τl of all these polynomials are bounded
from above by

(d′′′ + c2εs + (d′′)2)DO(1)
n−s . (13)

If char(k) = 0, then the lengths of integer coefficients of all these polynomials are
bounded from above by

(M1 + M2d
′′ + c2 + ν log2 d′ + (l + 1) log2(d

′′d′′′))DO(1)
n−s . (14)

(c) The running time of this algorithm for constructing a stratification (4) (respectively, a
covering (4)) is polynomial in D, (d′)ν , (d′′)l+1, (d′′′)l+1, M1, M2, and m.

Remark 3. In the case of zero characteristic, one can modify the construction of a stratifica-
tion (4) (respectively, a covering (4)) as follows. The linear forms Ys,i, 0 ≤ i ≤ s+1, can be re-
placed by some linear forms Yα,s,i ∈ Z[X0, . . . ,Xn], with lengths of integer coefficients bounded
from above by O(log2 Dn−s) for 0 ≤ i ≤ s + 1 (now, the condition (Yα,s,0, . . . , Yα,s,s+1) ∈
Ls+1

s × L′
s does not necessarily hold).

In the case of nonzero characteristic and l > 0, the linear forms Ys,i, 0 ≤ i ≤ s + 1,
can be replaced by some linear forms Yα,s,i ∈ k0[τ1, . . . , τl][X0, . . . ,Xn] (they are linear forms
in X0, . . . ,Xn) with degrees in τ1, . . . , τl at most ε(κ) where κ is bounded from above by
O(log2 Dn−s) for 0 ≤ i ≤ s + 1.

Then for the ground field of arbitrary characteristic, one can also replace c2 by c in (8), (9),
(11)–(14), and all the assertions of Theorems 1 and 2 remain true. But we will not prove these
new versions of Theorems 1 and 2 in the present paper (we leave this to an interested reader;
this is not very difficult).

Note also that if n− c > C1 log2 n for an absolute constant C1 > 0, then, obviously, one can
omit c2, c2εc′ , c

2εs in (8), (9), (11)–(14).

Remark 4. A small correction to [6]. In this paper, we consider a ground field k with at least
2d2 + 1 elements. But, in fact, for the construction described in [6], the field k must contain
at least dC2 elements for an absolute constant C2 > 0. On the other hand, one can remove all
restrictions on the number of elements #k in [6], replacing there the field k by k(t) where t
is a transcendental element over k (this requires only minor modifications of the construction
described in [6]).
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1. Solving linear systems with parametric coefficients

It is known that one can apply the Gaussian elimination algorithm for solving linear systems
in such a way that at each step, all the entries of the matrix being transformed are quotients
of some minors of the original extended matrix of the linear system under consideration. This
gives an algorithm corresponding to a computation forest for solving linear systems with good
estimates on the degrees in the parameters.

Still, here we describe a modification of this algorithm in a form convenient for our purposes.
Consider a linear system

∑

1≤j≤m

ai,jXj = ai,m+1, 1 ≤ i ≤ n, (15)

where ai,j ∈ k. Denote by A the extended matrix (ai,j)1≤i≤n, 1≤j≤m+1 of this linear system.
We will use recursion on r, where 0 ≤ r ≤ min{n,m} − 1.
(**) Assume that indices 1 ≤ i1 < . . . < ir ≤ n, 1 ≤ j1 < . . . < jr ≤ m + 1 are constructed

and det((aiα,jβ
)1≤α,β≤r) �= 0.

Our aim is to construct ir+1, jr+1 such that property (**) is fulfilled for r+1 in place of r or to
establish that there is no such pair ir+1, jr+1. For convenience, we may assume without loss of
generality (only in the description of the recursion step) that iα = α, jβ = β for 1 ≤ α, β ≤ r.

Denote by Ãr the adjoint matrix to Ar = (aα,β)1≤α,β≤r. Put δr = det(Ar) �= 0. Let Ew be
the identity matrix of order w where w ≥ 1. Put

G′
r =

(
Ãr, 0
0, δrEn−r

)
, A′

r = G′
rA =

(
δrEr, Br

δrCr, δrDr

)
,

Gr =
(

Ãr, 0
−CrÃr, δrEn−r

)
, A′′

r = GrA =
(

δrEr, Br

0, Fr

)
.

Here Br, Cr,Dr, Fr are uniquely defined matrices with entries in k. Note that all entries of
the matrix Fr are (up to a sign) some minors of order r + 1 of the matrix A.

Now, if Fr = 0, then there does not exist a required pair ir+1, jr+1. In this case, put ρ = r,
G = Gρ, A′′ = A′′

ρ. We have ρ = rank(A).
If

Fr = (fr,i,j)r+1≤i≤n, r+1≤j≤m+1 �= 0,
then put jr+1 = min{j : ∃i (fr,i,j �= 0)}, ir+1 = min{i : fr,i,jr+1 �= 0}, and Jr = {(i, j) :
((r + 1 ≤ j < jr+1)&(r + 1 ≤ i ≤ n)) ∨ ((j = jr+1)&(r + 1 ≤ i < ir+1))}. Then fr,i,j = 0 for
all (i, j) ∈ Jr.

Thus, one can eventually transform the matrix A to the canonical trapezoidal form A′′ (up to
a permutation of rows and columns of the matrix A′′) with Fρ = 0, applying a nondegenerate
transformation of rows of A. This transformation is the multiplication of A by the matrix
G = (gi,j)1≤i,j≤n from the left. Therefore, one can construct a fundamental family of solutions
of the linear system (15) (or to establish that this system have no solutions). Note also that
the indices j1, . . . , jρ are the smallest possible such that property (**) holds. This follows
immediately from the described recursive construction.

Now we change the notation. In what follows, we will assume that

a = {ai,j}1≤i≤n, 1≤j≤m+1

is a family of algebraically independent parameters over the field k. Let the affine space k
(m+1)n

have the coordinate functions from the family a. We will denote by a∗ = {a∗i,j}1≤i≤n, 1≤j≤m+1

an element of k
(m+1)n. Denote by A the ring of polynomials over k with respect to all variables
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from the family a. For every ψ ∈ A, we will denote by dega ψ the degree of ψ with respect
to all variables from the family a. Now, all the matrices A,Ar, G

′
r, A

′
r, Gr, A

′′
r , Br, Cr,Dr, G

introduced above have entries in A, all the elements δr, gi,j are polynomials from A. Denote by
δ′1, . . . , δ′μ all pairwise distinct elements of the family {fr,i,j}, (i, j) ∈ Jr, 1 ≤ r ≤ ρ. Then each
δ′i is a minor of the matrix A (up to a sign). We will write G(a∗) = G|a=a∗ = (gi,j(a∗))1≤i,j≤n

and use other similar notation.
We have proved the following lemma.

Lemma 1. If k = k, then the described construction defines a function
⋃

n,m≥1

k
(m+1)n →

⋃

n≥1

k
n2

,

a∗ 
→ G(a∗) if and only if a∗ ∈ Z(δ′1, . . . , δ
′
μ) \ Z(δ1 · . . . · δρ).

This function is an algorithm corresponding to a computation forest {Tm,n}m,n≥1. Each tree
Tm,n is a computation tree over k of level at most min{m + 1, n} with the input parameters
from the family a. For every leaf v ∈ L(Tm,n), the output corresponding to v is a matrix G with
entries in A such that dega gi,j ≤ min{m + 1, n} − 1 for all i, j. The quasiprojective algebraic

variety Wv ⊂ k
(m+1)n corresponding to the leaf v has the form

Wv = Z(δ′1, . . . , δ
′
μ) \ Z(δ1 · . . . · δρ),

where ρ = rankA(a∗). Besides, the indices 1 ≤ i1 < . . . < iρ ≤ n, 1 ≤ j1 < . . . < jρ ≤ m + 1
correspond to the leaf v, and rank(Ar(a∗)) = ρ. For every a∗ ∈ Wv, the matrix G(a∗)A(a∗)
has the canonical trapezoidal form (see above) up to a permutation of rows and columns.

Now, we would like to deduce some consequences from [8]. They are closely related to
solving linear systems. But first we introduce some notation. Let K be an arbitrary field. We
will denote by Mn,m(K) the set of all matrices with entries in K with n rows and m columns.

Lemma 2. Let k, K be fields and K ⊃ k. Let m,n, r ≥ 1 be integers such that r ≤ min{m,n}.
Assume that the field k contains at least min{(m− r)r, (n− r)r}+ 1 elements. Then there are
matrices Bi = (bi,α,β)1≤α≤r, 1≤β≤n ∈ Mr,n(k), 0 ≤ i ≤ (n−r)r, and Cj = (cj,α,β)1≤α≤m, 1≤β≤r ∈
Mm,r(k), 0 ≤ j ≤ (m − r)r, satisfying the following property.

Let A = (ai,j)1≤i≤n,1≤j≤m ∈ Mn,m(K) be an arbitrary matrix. Then rank(A) ≥ r if and
only if there are indices i and j, where 0 ≤ i ≤ (n − r)r and 0 ≤ j ≤ (m − r)r, such that
det(BiACj) �= 0.

Or, equivalently, all minors of order r of the matrix A are zeros if and only if

det(BiACj) = 0

for all i, j.

Proof. In [8], a family of matrices Dj ∈ Mm−r,m(k), 0 ≤ j ≤ (m−r)r, is constructed satisfying
the following property.

• For every matrix Q ∈ Mr,m(K) with rank(Q) = r there is j, 0 ≤ j ≤ (m − r)r, such

that det
(

Q
Dj

)
�= 0.

Let us construct a matrix D′
j ∈ Mr,m(k) such that δj = det

(
D′

j

Dj

)
�= 0. Denote by D̃j the

adjoint matrix to the square matrix
(

D′
j

Dj

)
. Let us represent it in the form D̃j = (Cj , C

′
j)

where Cj ∈ Mm,r(k), C ′
j ∈ Mm,m−r(k). Then

(
Q
Dj

)
D̃j =

(
Q1, Q2

0, δjEm−r

)
for some
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matrices Q1, Q2. Hence Q1 = QCj and det(QCj) �= 0. We will also write Cj = C
(r,m)
j ,

0 ≤ j ≤ (m − r)r.
Hence rank(A) ≥ r if and only if there is j, 0 ≤ j ≤ r(m − r), such that rank(ACj) = r.

Denote by (ACj)t the transpose of the matrix ACj . Then, by what is proved above (with n

in place of m), there is i, 0 ≤ i ≤ r(n − r), such that det((ACj)tC
(r,n)
i ) �= 0. Hence one can

take Bi = (C(r,n)
i )t for 0 ≤ i ≤ r(n − r). The lemma is proved. �

Remark 5. One can use Lemma 2 in Sec. 3 of [6]. Namely, there we mentioned the following:
“Applying a result of [8], one can replace the minors Δi by their linear combinations and in
what follows assume without loss of generality that m3 = dO(1).”

These minors Δi are from formula (20) of [6]. Actually, to get m3 = dO(1), one should
apply Lemma 2 three times: first to Δ1, . . . ,Δm1 , then to Δm1+1, . . . ,Δm2 , and, finally, to
Δm2+1, . . . ,Δm3 .

After that, one can simplify the construction of ψ(1) and ψ(2). Namely, one can put

ψ(1) = GC D Y1,X,v3,...,vn

( ∑

1≤i≤m1

Y i
1 Δ̃i, f(X, 0)

)
∈ k[v][X], (16)

ψ(2) = G C D Y2,Y3,X,v3,...,vn

(
ψ(1),

∑

m1<i2≤m2,
m2<i3≤m3

Y i2
2 Y i3

3 Δ̃i2Δ̃i3

)
∈ k[v][X]. (17)

One should not introduce the function κ in Sec. 3 of [6]. Of course, the number of minors
Δi linearly independent over k is bounded from above by D

O(1)
n . We tried to use this fact

and defined the function κ. But this may seem slightly obscure (when one constructs the
corresponding computation forest) and requires additional explanations. For instance, one
can apply Lemma 1 to justify the construction involving the function κ. Still, it is better to
apply Lemma 2 in [6].

Of course, to obtain the main result of [6], one can proceed in a simpler way. Namely, let
Z1, . . . , Zm3 be new variables. Then in formula (16) for ψ(1) (with arbitrary m1, we do not
use Lemma 2), it suffices to replace Y1,X, v3, . . . , vn by Z1, . . . , Zm1 ,X, v3, . . . , vn and Y i

1 by
Zi. In formula (17) for ψ(2) (with arbitrary m2, m3), it suffices to replace Y2, Y3,X, v3, . . . , vn

by Zm1+1, . . . , Zm3 ,X, v3, . . . , vn and Y i2
2 Y i2

3 by Zi2Zi3 . But here there are too many variables
Zi if we wish to construct a stratification from Theorem 1 of [6] in subexponential time.

2. Multivalued computation trees and forests

In [5], computation trees and forests are introduced. According to Sec. 1 of [5] (we use the
notation from there),

(∗) for every vertex v of a computation tree T , for every point a∗ = (a∗1, . . . , a
∗
ν) ∈ Wv

there is at most one son w of v such that Aw(a∗1, . . . , a∗ν) = true.
In [5], property (∗) is stated in an equivalent form, see formula (3) in Sec. 1 of that paper.

The definition of a multivalued computation tree is the same as in [5] with only one differ-
ence: property (∗) does not necessarily hold. Thus, for a multivalued computation tree, all
the objects introduced in [5] are defined. In [5] (see formula (5) at the end of Sec. 1 there),

S(T ) =
⋃

v∈L(T )

Wv (18)

is a stratification of a constructive set S(T ), i.e., Wv1 ∩ Wv2 = ∅ for all pairwise distinct
v1, v2 ∈ L(T ). Now, for a multivalued computation tree, (18) is a covering of the set S(T ).
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Similarly to [5] (we leave the details to the reader), a subtree of a multivalued computation
tree is defined. Any such subtree is a multivalued computation tree. A multivalued compu-
tation tree T is irredundant if and only if for any subtree T ′ of T such that T ′ �= T , we have
S(T ′) �= S(T ). If T is a computation tree in the sense of [5], then T is irredundant if and only
if T = IRD(T ), see Sec. 2 of [5].

For any multivalued computation tree T there is an irredundant subtree T ′ of T with
S(T ′) = S(T ), but this subtree is generally not unique.

Similarly to [5], one can define full signatures, signatures, and labels corresponding to mul-
tivalued computation trees and their vertices (we leave the details to the reader).

Let a′1, . . . , a
′
κ

be parameters algebraically independent over k and c1, . . . , cν ∈ k[a′1, . . . , a
′
κ
].

In [5], at the end of Sec. 2, the computation tree T (c) and the incomplete tree T ′(c) corre-
sponding to a computation tree T and a family of elements c = {ci}1≤i≤ν are defined (actually,
T (b) and T ′(b) are defined there, but for convenience here we replace the notation b by c and
μ by κ). The tree T (c) has the family of input parameters a′1, . . . , a′κ. Now assume that T is a
multivalued computation tree. Then, replacing everywhere in the definitions of T (c) and T ′(c)
in [5] a computation tree T by a multivalued computation tree T , we obtain (by definition) the
multivalued computation tree T (c) and the incomplete multivalued tree T ′(c) corresponding
to a multivalued computation tree T and a family of elements c. Roughly speaking, to obtain
T ′(c), one should substitute c1, . . . , cν for a1, . . . , aν everywhere in the objects related to T .
After that, in order to define T (c), one glues a new root to T ′(c).

Let us replace computation trees by multivalued computation trees everywhere in the def-
inition of a computation forest. Then we obtain the definition of a multivalued computation
forest. Thus, a multivalued computation forest is a family {Tσ}σ∈Σ of multivalued computation
trees.

In [5, Sec. 3], a function F : S(T ) → K corresponding to a computation forest T is defined.
Now let T be a multivalued computation forest. Let us replace a computation forest by a

multivalued computation forest (for which we use here the same notation T ) in the definition
of this function F from [5, Sec. 3]. Then we obtain (in place of a function F) a binary relation
F ⊂ S(T )×K corresponding to the multivalued computation forest T . Here F can be regarded
as a multivalued function. We will write F = F(T ).

By definition, the binary relation F(T ) is an algorithm corresponding to the multivalued
computation forest T . An arbitrary binary relation Q is an algorithm corresponding to a
multivalued computation forest if and only if there is a multivalued computation forest T such
that Q = F(T ).

As we have noted in [5], in practice, an algorithm corresponding to a computation forest
T arises from some algorithm in the usual sense. The latter has the set of inputs S(T ), its
outputs belong to K, and it computes the function F(T ).

In a similar way, in practice, an algorithm corresponding to a multivalued computation
forest, say T = {Tσ}σ∈Σ, arises from a multi-output algorithm. In the latter, at some steps
some objects are chosen (for example, linear forms or some matrices from given finite sets, see
the next sections). One considers all possible choices. But some of them give outputs (with a
prescribed signature, see [5] for details), and others not. Thus the outputs of this algorithm
depend on the choice of these objects. One obtains a multivalued function from the domain
of inputs of this algorithm to the range of outputs, or, which is the same, a binary relation Q
(such that Q = F(T )).

Let us fix σ ∈ Σ. Assume that a step of the multi-output algorithm under consideration
containing a choice of objects corresponds to a vertex v′ of the tree Tσ. Then all sons v
of v′ are in a one-to-one correspondence with all possible choices of these objects. Denote
by L(v, Tσ) the set of leaves w of the computation tree Tσ such that w is a descendant of v.
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Then the choice of objects corresponding to v does not give any required output if and only
if Ww = ∅ for every w ∈ L(v, Tσ). Here is a somewhat informal explanation of this fact:
this multi-output algorithm solves some problem (e.g., determines all solutions of a system of
polynomial equations), and each its output from K gives a solution of this problem. There are
no other outputs.

Often, an algorithm Q corresponding to a multivalued computation forest determines an
algorithm in the usual (or classical) sense. Namely, assume that Q arises from a multi-output
algorithm. In this multi-output algorithm, some objects are chosen. In the corresponding
classical algorithm, these objects are enumerated until the first object that gives an output
appears (of course, one should specify the method of enumerating; note also that there can be
many steps with enumeration). The latter algorithm computes a function (in the usual sense)
Q′ : S(T ) → K, which is a restriction of the binary relation Q.

Conversely, let us be given an algorithm with enumerations in the usual sense computing a
function Q′ : S → K. Then it determines a multi-output algorithm Q : S → K. To define Q,
one should use all possible choices of the objects under consideration instead of enumerating
them. Thus, here again Q′ is a restriction of the binary relation Q.

We will say that an algorithm with enumerations (in the usual sence) computing a function
Q′ corresponds to a multivalued computation forest T if and only if the related multi-valued
function Q is an algorithm corresponding to a computation forest T . We will say that an
algorithm with enumerations (in the usual sence) corresponds to a multivalued computation
forest if there is a multivalued computation forest T such that this algorithm corresponds to T .

Similarly to [5, Sec. 3], one can define the composition T2 ◦ T1 of multivalued computation
forests T1 and T2. It is defined if and only if the composition of binary relations F(T2) ◦ F(T1)
is defined. Moreover, in this case we have F(T2 ◦ T1) = F(T2) ◦ F(T1).

Similarly to [5, Sec. 3], one can define the N -tuple 〈T1, . . . , TN 〉 of multivalued computation
forests T1, . . . , TN . Thus 〈T1, . . . , TN 〉 is a multivalued computation forest.

Now we are going to state an analog of Theorem 1 of [5] for multivalued computation trees.
This analog is Theorem 3, see below. It can be regarded as a fundamental result in the theory
of multivalued computation trees and forests.

But first we need to strengthen Lemma 5 from Sec. 6 of [6]. In that paper, for a quasipro-
jective algebraic variety V ⊂ A

μ(k), we use the following notation: Da(V ) is the degree
(see Sec. 6 of [6] for details) of the union of all irreducible components of V of dimen-
sion a where 0 ≤ a ≤ μ; for an integer D ≥ 2, put δ1(V,D) =

∑
0≤a≤μ

Da(V )Da and

δ(V,D) =
∑

0≤a≤μ
Da(V )(Da+1 − 1)/(D − 1).

In the statement of the following lemma there are two bounds on degrees, D1 and D, in
place of only one bound D in Lemma 5 of [6]. Nevertheless, assertions (b)–(d) of this lemma
coincide with the corresponding assertions (b)–(d) of Lemma 5 of [6].

Lemma 3. Let V be a quasiprojective algebraic variety in A
μ(k). Let {Wγ}γ∈Γ be a family of

quasiprojective algebraic varieties in A
μ(k). Assume that for every γ ∈ Γ,

Wγ = Z(ψγ,1, . . . , ψγ,μγ,1) \ Z(ψγ,μγ,1+1, . . . , ψγ,μγ,2) ⊂ A
μ(k)

for some polynomials ψγ,i ∈ k[b1, . . . , bμ] such that degb1,...,bμ
ψγ,i ≤ D1 for 1 ≤ i ≤ μγ,1 and

degb1,...,bμ
ψγ,i ≤ D for μγ,1 + 1 ≤ i ≤ μγ,2, for some integers D1 ≥ D ≥ 2. Assume that⋃

γ∈Γ
Wγ ⊃ V . Then there is a family of quasiprojective algebraic varieties {Wβ}β∈B satisfying

the following properties.
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(a) For every β ∈ B,

Wβ = Z(ψ(1)
β,1, . . . , ψ

(1)
β,μβ,1

) \
⋃

2≤j≤mβ

Z(ψ(j)
β,1, . . . , ψ

(j)
β,μβ,j

) ⊂ A
μ(k)

for an integer mβ ≥ 2 and some polynomials ψ
(j)
β,i ∈ k[b1, . . . , bμ] such that

degb1,...,bμ
ψ

(1)
β,i ≤ D1

for 1 ≤ i ≤ μβ,1 and degb1,...,bμ
ψ

(j)
β,i ≤ D for 1 ≤ i ≤ μβ,j, 2 ≤ j ≤ mβ.

(b) For every β ∈ B, the integer mβ is bounded from above by δ1(V,D).
(c) {V ∩Wβ}β∈B is a stratification of the algebraic variety V , i.e.,

⋃
β∈B

(V ∩Wβ) = V , and

(V ∩Wβ1) ∩ (V ∩Wβ2) = ∅ for all pairwise distinct β1, β2.
(d) For every β ∈ B there is γ ∈ Γ such that Wβ ⊂ Wγ.
(e) The number of elements #B does not exceed δ(V,D).

Proof. The proof coincides with the proof of Lemma 5 in Sec. 6 of [6]. �
Theorem 3. Let T be a multivalued computation tree with input parameters a1, . . . , aν over
the ground field k and l(T ) = w. Assume that for every vertex v of T , the condition Av has
the form

(ϕv,1 = 0) ∧ . . . ∧ (ϕv,μv,1 = 0) ∧ ((ϕv,μv,1+1 �= 0) ∨ . . . ∨ (ϕv,μv,2 �= 0)), (19)

where ∧, ∨ denote the logical conjunction and disjunction, ϕv,β ∈ k[a1, . . . , aν ], 1 ≤ β ≤ μv,2,
are polynomials for some integers μv,2 ≥ μv,1 ≥ 0, and dega1,...,aν

ϕv,β ≤ d for μ1,v < β ≤ μ2,v

(see (19)) for an integer d ≥ 2. Let S(T ) =
⋃

1≤j≤N

Sj where Sj are quasiprojective algebraic

varieties in A
ν(k). Then there is an irredundant multivalued subtree T ′ of the tree T such that

S(T ′) = S(T ) and
#L(T ′) ≤

∑

1≤j≤N

δ(Sj , wd).

In particular, if S(T ) = A
ν(k), then

#L(T ′) ≤ (wd)ν+1 − 1
wd − 1

.

Proof. Let us apply Lemma 3 with μ = ν, V = Sj for every j, D = wd, Γ = L(T ). Then
first we obtain a stratification of each variety Sj, and then, by assertion (d) of the lemma, a
covering of each variety Sj . This gives a covering {Wv}v∈Γ′ of S(T ) =

⋃
1≤j≤N

Sj with Γ′ ⊂ Γ

and #Γ′ ≤ ∑
1≤j≤N

δ(Sj , wd). Now let T ′ be the minimal multivalued subtree of T such that

L(T ′) = Γ′. For this subtree T ′, the assertion of the theorem holds. The theorem is proved. �
As an example, observe that the covering from the modified version of Theorem 1 of [6] (see

Remark 2 in the introduction) can be obtained using a multivalued computation forest. We
leave the details to the reader.

3. The case of a finite number of solutions in the projective space

First, we consider the case c = 0. Now, for every a∗ ∈ Uc the system (3) has a finite (or
empty) set of solutions in P

n(k). Put B = k[a1, . . . , aν ]. Let Y0, Y1, . . . , Yn ∈ B[X0, . . . ,Xn]
be arbitrary linear forms in X0, . . . ,Xn with coefficients in B. Let U0, U1, . . . , Un be new
variables. Put fm = U0Y0 + U1Y1 + . . . + UnYn.
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Let degX0,...,Xn
fi = di for 0 ≤ i ≤ m−1. Put dm = 1. Recall that d0 ≥ d1 ≥ . . . ≥ dm−1 ≥ 1,

see Remark 1 in the introduction. Let D′ = d0+
∑

1≤i≤min{m−1,n}
(di−1). Let Hi, 1 ≤ i ≤ m, (re-

spectively, H) be the B[U0, . . . , Un]-module of all polynomials g ∈ B[U0, . . . , Un][X0, . . . ,Xn]
homogeneous with respect to X0, . . . ,Xn of degree degX0,...,Xn

g = D′ − di (respectively,
degX0,...,Xn

g = D′). Then Hi (respectively, H) is a free B[U0, . . . , Un]-module of rank γi =(
D′−di+n

n

)
(respectively, γ =

(
D′+n

n

)
). Consider the homomorphism of free B[U0, . . . , Un]-mo-

dules
H0 ⊕H1 ⊕ . . . ⊕Hm → H, (g0, . . . , gm) 
→ g0f0 + . . . + gmfm. (20)

Let us choose a basis of each module Hi (respectively, H) consisting of monomials in X0, . . . ,Xn

with coefficients 1 of degree D′ − di (respectively, D′). Then the homomorphism (20) is given
in these bases by a matrix A with γ rows and

∑
0≤i≤m

γi columns. One can represent A in the

form A = (A′,A′′) where A′ is a submatrix of A consisting of the first
∑

0≤i≤m−1
γi columns.

Then the entries of A′ are elements of B, and the entries of A′′ are linear forms in U0, . . . , Un

with coefficients in B.
For every a∗ ∈ A

ν(k), let A(a∗) = A|a1=a∗
1 ,...,aν=a∗

ν
be the result of substituting a∗i for ai,

1 ≤ i ≤ ν, in A. The matrices A′(a∗), A′′(a∗) are defined in a similar way. Thus A′(a∗) is
a matrix with entries in ka∗ , all entries of the matrix A′′(a∗) are linear forms in U0, . . . , Un

with coefficients from ka∗ , and A(a∗) = (A′(a∗),A′′(a∗)). Denote by Δa∗ the greatest common
divisor in the ring ka∗ [U0, . . . , Un] of all minors of order γ of the matrix A(a∗) (it is uniquely
defined up to a nonzero factor from ka∗).

Let us state a result from [10, 11].

Lemma 4. Let a∗ ∈ A
ν(k). Let Va∗ be the set of all solutions (or roots) of the system (3) in

P
n(k). Then the following assertions hold.

(a) If #Va∗ = +∞ (or, which is the same, dimVa∗ > 0), then Δa∗ = 0.
(b) If #Va∗ < +∞, then

Δa∗ = λ
∏

η=(η0 :...:ηn)∈Va∗

( ∑

0≤i≤n

UiYi(η0, . . . , ηn)
)eη

,

where eη ≥ 1 is the multiplicity of a root η of the system (3), 0 �= λ ∈ k, and all ηi lie
in k, 0 ≤ i ≤ n (note that here the linear forms

∑
0≤i≤n

UiYi(η0, . . . , ηn) ∈ k[U0, . . . , Un],

η ∈ Va∗ , are not necessarily pairwise distinct, since Yi are arbitrary).
(c) Assume that #Va∗ < +∞ and for every solution η = (η0 : . . . : ηn) ∈ Va∗ we have∑

0≤i≤n
UiYi(η0, . . . , ηn) �= 0. Then degU0,...,Un

Δa∗ = γ − rankA′(a∗).

Proof. If Yi = Xi for all i, this is proved in [10, 11]. The case of arbitrary Yi can be easily
reduced to the special case of Yi = Xi, 0 ≤ i ≤ n, using a nondegenerate linear transformation
of linear forms and a substitution (we leave the details to the reader). �

Recall that the finite sets of linear forms L0 = Mκ1,0 , L′
0 = M′

0,κ2,0
are defined in the

introduction. Also, recall that κ1,0 = 2nD′
n and κ2,0 = nD′

n(D′
n − 1)/2.

Lemma 5. Let a∗ ∈ U0. Then there is a pair of linear forms (Y0, Y1) ∈ L0 × L′
0 such

that for every η ∈ Va∗ we have Y0(η) �= 0 and for any two distinct η1, η2 ∈ Va∗ we have
(Y1/Y0)(η1) �= (Y1/Y0)(η2).

Proof. This is straightforward, cf. [2]. �
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Let us weaken Theorem 1 (respectively, the modified version of Theorem 1) for c = 0
as follows. In its statement replace “(i)–(xiii)” by “(i)–(ix)” (respectively, “(ii)–(xiii)” by
“(ii)–(ix)”), and in assertion (c) omit “Ψα,s,r,i1,i2, Ψj,i1,i2”. Now we are going to construct
a multivalued computation forest T0, to prove the weakened Theorem 1 (respectively, the
weakened modified version of Theorem 1) for c = 0. Consider the system (3) with a∗ ∈ U0.
First, we will describe an algorithm (with enumerations, see Sec. 2) for solving this system. It
follows the method from [10, 11] with some modifications. After that, we will see that it is an
algorithm corresponding to a multivalued computation forest in the sense of Sec. 2.

Let Y0, Y1 ∈ k[X0, . . . ,Xn] be arbitrary linear forms. Put Yi = 0 for 2 ≤ i ≤ n. Our aim is to
find the polynomial Δa∗ , see Lemma 4. Let us construct the matrix A = (A′,A′′), see above.
Then, using Lemma 1, we construct a matrix G such that GA′(a∗) has the canonical trapezoidal

form up to a permutation of rows and columns. Let GA′(a∗) =
( A1

0

)
where rank(A1) =

rank(A′(a∗)) is equal to the number of rows of A1. Hence, after a permutation of rows and

columns of the matrix GA(a∗), this matrix has the form
( A1, A2

0, A3

)
where all entries of the

matrices A2, A3 are linear forms from ka∗ [U0, U1] and rank(A3) = γ − rank(A′(a∗)).
Now we apply Lemma 2 to the matrix A3 (in place of A). By this lemma, we obtain a

family of matrices Cj, 0 ≤ j ≤ N , with entries in k such that A3Cj is a square matrix for
every j. We enumerate the matrices Cj for j = 1, 2, . . . , N . If det(A3Cj) = 0 for every j, then
rank(A) < γ and Δa∗ = 0.

Let det(A3Cj0) �= 0 for some j0 and det(A3Cj) = 0 for 1 ≤ j < j0. Then, by Lemma 4(c),
we have Δa∗ = det(A3Cj0) (up to a nonzero factor from ka∗ ; we will assume without loss of
generality that this factor is equal to 1). Thus we have computed the nonzero polynomial
Δa∗ ∈ ka∗ [U0, U1].

Remark 6. Assume that ν = 0, a(0) ∈ A
ν(k), Y0 �= 0. By definition, put

Δ̃k;X0,...,Xn;f0,...,fm−1;Y0,Y1 = Δa(0) where Δa(0) is uniquely defined by the described construc-
tion.

Under these conditions, we also introduce the notation

Δk;X0,...,Xn;f0,...,fm−1;Y0,Y1 =
{

Δa(0)/lcU0(Δa(0)) if Δa(0) �= 0,
0 if Δa(0) = 0.

It will be used in the next sections.

Let a∗ ∈ U0. Now we enumerate the pairs of linear forms (Y0, Y1) ∈ L0 ×L′
0. Put Yi = 0 for

2 ≤ i ≤ n and compute the corresponding polynomial Δa∗ as described.
If Δa∗ = 0, then the pair of linear forms does not satisfy the assertion of Lemma 5, and we

proceed to the next pair (Y0, Y1) ∈ L0 × L′
0.

If Δa∗ �= 0 and U1 divides Δa∗ , then Y0(η) = 0 for some η ∈ Va∗ . In this case, we proceed
to the next pair (Y0, Y1) ∈ L0 × L′

0.
Finally, by Lemmas 5 and 4, we will find (Y0, Y1) such that Δa∗ �= 0 and U1 does not

divide Δa∗ . In this case, we apply the result of [6, Sec. 2] and construct separable polynomials

Δa∗,j = SQFj,Z(Δa∗(Z,−1)) ∈ ka∗ [Z], 1 ≤ j ≤ degU0
Δa∗ ,

giving the square-free decomposition of the polynomial Δa∗(Z,−1) in the sense of (21), see
below. For every j, we have 0 ≤ degZ Δa∗,j ≤ (degU0

Δa∗)/j.
Recall that the integer ρ0 is defined in the introduction, see (iv) with s = 0. If the charac-

teristic exponent p is equal to 1, then, by definition, B0 = {1, . . . ,degZ Δa∗(Z,−1)}, B1 = ∅.
If p > 1, then Br = {jpr : 1 ≤ j ≤ (degZ Δa∗(Z,−1))/pr} for every integer r ≥ 0, see [6,
Sec. 2]. By definition, put r(j) = r if and only if j ∈ Br \ Br+1.
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In this notation, the polynomial
∏

0≤r≤ρ0

∏

j∈Br\Br+1

Δj/pr

a∗,j (Zpr
) = λ′

a∗Δa∗(Z,−1), (21)

where 0 �= λ′
a∗ ∈ ka∗ , and the polynomials Δa∗,j(Zpr(j)

), 1 ≤ j ≤ degU0
Δa∗ , are pairwise

relatively prime, see [6, Sec. 2]. Put

ga∗,r =
∏

j∈Br\Br+1

Δa∗,j ∈ ka∗ [Z], 0 ≤ r ≤ ρ0.

Therefore, every polynomial ga∗,r ∈ ka∗ [Z] is separable. Note that
∑

0≤r≤ρ0

degZ ga∗,r = #{(Y1/Y0)(η) : η ∈ Va∗} (22)

(we leave the details to the reader).
Let t be a transcendental element over k. Let us extend the ground field k to k(t). For

every i, 0 ≤ i ≤ n, we apply the described construction to k(t), Y0, Y1 + tXi in place of k,
Y0, Y1 with the same j0 fixed earlier (i.e., we do not enumerate the matrices Cj again; also,
the system (3) remains the same). Put τr = tp

r
. We obtain polynomials Δa∗,i ∈ ka∗ [t, U0, U1]

and ga∗,r,i ∈ ka∗ [τr, Z] in place of Δa∗ and ga∗,r, respectively, 0 ≤ r ≤ ρ0. We have
∑

0≤r≤ρ0

degZ ga∗,r,i = #{((Y1 + tXi)/Y0)(η) : η ∈ Va∗}. (23)

Lemma 6. In the notation of Lemma 4 (b), let eη = prηe′η where rη, e′η are integers,
0 ≤ rη ≤ ρ0, e′η ≥ 1, GC D (e′η, p) = 1 for every η ∈ Va∗ . Assume that U1 does not divide
Δa∗. Then the pair of linear forms (Y0, Y1) ∈ L0 × L′

0 satisfies the assertion of Lemma 5 if
and only if one of the following equivalent conditions holds:

(a)
∑

0≤r≤ρ0

degZ ga∗,r,i =
∑

0≤r≤ρ0

degZ ga∗,r for all i,

(b) degZ ga∗,r,i = degZ ga∗,r for all i, r,
(c) for every r, 0 ≤ r ≤ ρ0, the polynomial ga∗,r(Zpr

) coincides with
∏

η∈Va∗ , rη=r

(Z − (Y1/Y0)(η))p
r

up to a nonzero factor from k, and for all i, 0 ≤ i ≤ n, and r, 0 ≤ r ≤ ρ0, the
polynomial ga∗,r,i(Zpr

) coincides with
∏

η∈Va∗ , rη=r

(Z − (Y1/Y0)(η) − t(Xi/Y0)(η))p
r

up to a nonzero factor from k(τr).

Proof. Obviously, (c) implies (b) and (b) implies (a). Let us prove that (a) implies (c). For
every η ∈ Va∗ , denote by e′′η (respectively, e′′η,i) the multiplicity of the root Z = (Y1/Y0)(η) (re-
spectively, Z = ((Y1/Y0) + t(Xi/Y0))(η)) of the polynomial Δa∗(Z,−1) ∈ ka∗ [Z] (respectively,
Δa∗,i(t, Z,−1) ∈ ka∗(t)[Z]). Then e′′η ≥ e′′η,i ≥ eη for any η and i. Therefore, by (22) and (23),

∑

0≤r≤ρ0

degZ ga∗,r =
∑

η∈Va∗

1/e′′η ≤
∑

η∈Va∗

1/e′′η,i =
∑

0≤r≤ρ0

degZ ga∗,r,i. (24)
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If e′′η > eη for some η, then there is an element η(1) ∈ Va∗ such that (Y1/Y0)(η(1)) = (Y1/Y0)(η)
but (Xi/Y0)(η(1)) �= (Xi/Y0)(η) for some i, 0 ≤ i ≤ n. Hence, in this case there is i, 0 ≤ i ≤ n,
such that e′′η > e′′η,i.

Therefore, in (24) the equality takes place for every i, 0 ≤ i ≤ n, if and only if eη = e′′η for
every η ∈ Va∗ . This immediately implies (c). The lemma is proved. �

Assume that a pair (Y0, Y1) satisfies the assertion of Lemma 5. Let lcZ(ga∗,r,i) be the leading
coefficient of the polynomial ga∗,r,i with respect to Z. Then ga∗,r,i/lcZ(ga∗,r,i) ∈ ka∗ [τr, Z], since
the roots of this polynomial are integral over ka∗ [τr]. Thus, applying Lemma 2 of [6], we can
replace ga∗,r,i by a polynomial coinciding with ga∗,r,i/lcZ(ga∗,r,i) up to a nonzero factor from ka∗ .
Hence in what follows we may assume without loss of generality that lcZ(ga∗,r,i) ∈ ka∗ .

Now, for every r and for every i, the polynomial ga∗,r,i(0, Z) coincides with ga∗,r up to a
nonzero factor from ka∗ . Let μa∗,r = lcZga∗,r (respectively, μa∗,r,i = lcZga∗,r,i, 0 ≤ i ≤ n).

Replacing ga∗,r by

(
∏

0≤j≤n
μa∗,r,j

)
ga∗,r and each polynomial ga∗,r,i by

μa∗,r

⎛

⎝
∏

0≤j �=i≤n

μa∗,r,j

⎞

⎠ ga∗,r,i,

we will assume without loss of generality that ga∗,r,i(0, Z) = ga∗,r for every i.
If degZ ga∗,r = 0, put Ja∗,r = ∅ and Va∗,0,r = ∅. Let degZ ga∗,r > 0. Then let Ja∗,r be a one-

element set. Put Ha∗,j = ga∗,r for j ∈ Ja∗,r. We assume that the sets Ja∗,r are pairwise disjoint.
Now we are going to define and compute the variety Va∗,0,r in the case under consideration.
Thus in what follows, unless otherwise stated, we assume in the proof that degZ ga∗,r > 0.

For every r, 0 ≤ r ≤ ρ0, we construct a polynomial Q ∈ ka∗ [Y,Z] such that ga∗,r =
(Z − Y )Q + ga∗,r(Y ). For every root ξ of the polynomial ga∗,r, we have (Z − ξ)Q(ξ, Z) = 0.
Put g′a∗,r = d

dZ (ga∗,r) = Q(Z,Z).
For every i, we have ga∗,r,i = ga∗,r +

∑
j≥0

ga∗,r,i,jτ
j
r ∈ ka∗((τr))[Z] where ga∗,r,i,j ∈ ka∗ [Z].

Now we apply the Hensel lifting to the polynomial ga∗,r,i and the decomposition ga∗,r,i(0, Z) =
(Z − ξ)Q(ξ, Z) and obtain a root Z = ξi ∈ ka∗ [[τr]] of this polynomial ga∗,r,i such that ξi(0) =
ξi|τr=0 = ξ. Furthermore,

d

dτr
(ξi)

∣∣∣
τr=0

= −
(

∂ga∗,r,i

∂τr

)/(
∂ga∗,r,i

∂Z

) ∣∣∣
τr=0,Z=ξ

= −ga∗,r,i,1(ξ)/g′a∗ ,r(ξ).

By Lemma 4, the root ξi is actually a linear polynomial in τr and

ξi = ξ − τr
ga∗,r,i,1(ξ)
g′a∗,r(ξ)

, 0 ≤ i ≤ n.

Recall that now μa∗,r = lcZga∗,r = lcZga∗,r,i for all i. Let δa∗,r be the discriminant of
the polynomial ga∗,r. There are polynomials A,B ∈ ka∗ [Z] such that degZ A < degZ ga∗,r,
degZ B < degZ g′a∗,r, and −ga∗,r,i,1δa∗,r = Ag′a∗,r + Bga∗,r (actually, the coefficients of A and
B are polynomials in the coefficients of ga∗,r,i,1, g′a∗,r, ga∗,r). Put A = δa∗,r,i. Then one can
write −ga∗,r,i,1(ξ)/g′a∗,r(ξ) = δa∗,r,i(ξ)/δa∗ ,r.

If Ja∗,r = ∅, then put δa∗,r = 1 and δa∗,r,i = 0 for 0 ≤ i ≤ n.
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Denote by Ξa∗,r the set of roots of ga∗,r. Let ξ ∈ Ξa∗,r. Put Wa∗,r,ξ = {(η0 : . . . : ηn)} where
ηpr

i = δa∗,r,i(ξ)/δa∗ ,r for 0 ≤ i ≤ n. Set

Va∗,0,r =
⋃

ξ∈Ξa∗,r

Wa∗,r,ξ

for every r, 0 ≤ r ≤ ρ0, such that degZ ga∗,r > 0, and Va∗,0,r = ∅ for every r, 0 ≤ r ≤ ρ0, such
that degZ ga∗,r = 0.

Now we are going to prove a modified version of the weakened Theorem 1 (see Remark 2 in
the introduction) for the case c = 0.

Let μ = γ0 + . . .+γm−1 and b = {bi}1≤i≤μ be a family of algebraically independent elements
over k. First we assume that

(g) μ = ν, the elements ai and bi coincide for 0 ≤ i ≤ μ, and b1, . . . , bμ is the family of
all coefficients of the polynomials f0, . . . , fm−1, i.e., the family of coefficients of these
polynomials has the maximum possible transcendence degree over k.

So, now d′ = 1.
Under condition (g), the described construction defines a multivalued function (or a binary

relation)

F :
⋃

n,d0,...,dm−1

k
γ0+...+γm−1 → K,

a∗ 
→
(
{ga∗,r}0≤r≤ρ0 , {δa∗,i}0≤r≤ρ0,

0≤i≤n

)
,

which is an algorithm corresponding to a multivalued computation forest T0 = {T0,n,d0,...,dm−1}
in the sense of Sec. 2 (recall that K is a universal range of values of algorithms corresponding
to multivalued computation forests, see [5] and Sec. 2). Recall that all polynomials ga∗,r, δa∗,r,i

depend on the pair of linear forms (Y0, Y1) and the matrix Cj0 , see above.
Thus F = F(T0). The level l(T0,n,d0,...,dm−1) of each multivalued computation tree is D

O(1)
n .

For every vertex v of the tree T0,n,d0,...,dm−1 , we have

Wv = Z(ψv,1, . . . , ψv,μv,1) \ Z(ψv,μv,1+1, . . . , ψv,μv,2),

where all polynomials ψv,j lie in k[a1, . . . , aν ] and have degrees bounded from above by
(n+D′

n

)O(1)
. Let A = L(T0,n,d0,...,dm−1) be the set of leaves of the tree T0,n,d0,...,dm−1 .

Now, for every α ∈ A, 0 ≤ r ≤ ρ0, 0 ≤ i ≤ n, polynomials gα, r ∈ k[a1, . . . , aν , Z],
δα,r,i ∈ k[a1, . . . , aν , Z] are computed at the vertex α. They satisfy the following properties:
degZ gα,r ≤ Dn/pr, degZ δα,r,i < degZ gα,r; the degrees in a1, . . . , aν of gα,r, δα,r,i are bounded

from above by
(n+D′

n

)O(1)
; and for every a∗ ∈ Wα, we have degZ gα,r = degZ gα,r(a∗, Z),

gα,r(a∗, Z) = ga∗,r, δα,r,i(a∗, Z) = δa∗,r,i

for all i, r. Denote by δα,r the discriminant of the polynomial gα,r with respect to Z. Then
δα,r(a∗) = δa∗,r �= 0 for all a∗ ∈ Wα and 0 ≤ r ≤ ρ0.

Let d′r = degZ gα,r. Put Φα,0,r = Y
d′r
0 gα,r(a1, . . . , aν , Y1/Y0). Let Jα,0,r be a one-element set

if degZ gα,r > 0, and Jα,0,r = ∅ if degZ gα,r = 0. We will assume without loss of generality
that for every α the sets Jα,0,r, 0 ≤ r ≤ ρ0, are pairwise disjoint. Furthermore, we will assume
without loss of generality that Jα,0,r = Ja∗,r for every a∗ ∈ Wα.

Put Hj = gα,r, λα,0,r,1 = lcZgα,r, λα,0,r,0 = 1, and Φα,0,j = Y1 − ZY0 for every j ∈ Jα,r,
0 ≤ r ≤ ρ0, see (v) and (vi) in the introduction.

Now we have Ξj,a∗ = Ξa∗,r and Wj,a∗,ξ = Wa∗,r,ξ for every j ∈ Jα,0,r, a∗ ∈ Wα, see (vii) in
the introduction.
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Set Gj = δα,r and Gj,i = δα,r,i for j ∈ Jα,0,r, 0 ≤ r ≤ ρ0, 0 ≤ i ≤ n, see (ix) in the
introduction.

The above definitions and the described construction imply the weakened modified version
of Theorem 1 for c = 0 if condition (g) is fulfilled.

Therefore, by Theorem 3, the weakened modified version of Theorem 1 holds for c = 0 and
for arbitrary a1, . . . , aν and d′ (when condition (g) is not necessarily fulfilled).

Assume that condition (g) does not necessarily hold. Denote by f the family of coefficients
from k[a1, . . . , aν ] of all the polynomials f0, . . . , fm−1. Then, by Theorem 3 applied to the tree
T0,d0,...,fm−1(f) (see the definition of this tree in Sec. 2), we obtain the weakened Theorem 1
for c = 0.

4. The general case. Preliminaries

Let s be an integer, 0 ≤ s ≤ n − 1. Recall that the finite sets of linear forms Mκ, M′
s,κ

are defined in the introduction, see (5). Let D be an integer, D ≥ 2, and κ3 = 2(n − s)D + s,
κ4 = (n − s)D(D − 1)/2. Assume that the sets Mκ3 , M′

s,κ4
exist (i.e., the field k contains

sufficiently many elements). First of all, we need the following general result.

Lemma 7. Let V ⊂ P
n(k) be a nonempty projective algebraic variety such that the dimen-

sion of each irreducible component of V is s and deg V ≤ D. Then there is an element
(Y0, . . . , Ys+1) ∈ Ms+1

κ3
×M′

s,κ4
satisfying the following properties.

(a) V ∩Z(Y0, . . . , Ys) = ∅ in P
n(k), and there are λ1, . . . , λs ∈ k such that the intersection

V ∩ Z(Y1 − λ1Y0, . . . , Ys − λsY0) is transversal at each point. This implies that the
morphism

πs : V → P
s(k), (X0 : . . . : Xn) 
→ (Y0 : . . . : Ys),

is finite dominant separable (or, which is the same by definition, the restriction of πs to
each irreducible component of V is a finite dominant separable morphism). Moreover,
deg πs = deg V = #(V ∩ Z(Y1, . . . , Ys)) = #π−1

s ((1 : λ1 : . . . : λs)).
(b) Let Φs ∈ k[Y0, . . . , Ys, Z] be a nonzero polynomial of the smallest degree such that

the polynomial Φs(Y0, . . . , Ys+1) vanishes on V . Denote by Δs ∈ k[Y0, . . . , Ys] the
discriminant of Φs with respect to Z. Then degY0,...,Ys,Z Φs = degZ Φs = deg V and
Δs �= 0.

Proof. (a) We will use induction on s. The base s = 0 is trivial. Let s ≥ 1. There is a linear
form Y0 ∈ Mκ3 such that dim V ∩Z(Y0) = s−1. Note that for arbitrary μ1, . . . , μn ∈ k, for any
pairwise distinct linear forms L1, . . . , Ln ∈ Mκ3\{Y0}, the linear forms L1−μ1Y0, . . . , Ln−μnY0

are linearly independent over k. For every irreducible (over k) component E of V , choose a
smooth point ξE of the algebraic variety V such that ξE ∈ E \ Z(Y0). Thus the number of all
chosen points ξE is at most D by the Bézout theorem. For every L ∈ Mκ3 , for every point ξE

there is an element λL,E ∈ k such that (L − λL,EY0)(ξE) = 0.
For every point ξE there are at most n − s pairwise distinct linear forms L ∈ Mκ3 \ {Y0}

such that L−λL,EY0 vanishes on the tangent space of the algebraic variety V at the point ξE.
Furthermore, for every irreducible (over k) component E′ of the algebraic variety V ∩ Z(Y0)
there are at most (n − 1) − (s − 1) linear forms L ∈ Mκ3 such that L vanishes on E′.

Therefore, there is a linear form Ys ∈ Mκ3 \{Y0} such that Ys −λYs,EY0 does not vanish on
the tangent space of any chosen point ξE and Ys does not vanish on any irreducible component
E′ of the algebraic variety V ∩ Z(Y0). Thus dim V ∩ Z(Y0, Ys) = s − 2.

Furthermore, the intersection E ∩Z(Ys −λYs,EY0) is transversal at each point ξE . Consider
the morphism π′ : V → P

1(k), (X0 : . . . : Xn) 
→ (Y0 : Ys). Denote by V ′ the set of points
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ξ ∈ V such that dξπ
′ = 0 or ξ is not a smooth point of V . The differential dξE

π′ is not zero
for every point ξE . Therefore, dim V ′ ≤ s − 1.

Let E′′ be an arbitrary irreducible (over k) component of V ′ such that dim E′′ = s− 1. We
claim that there is at most one element μ ∈ k such that E′′ is an irreducible component of
V ∩ Z(Ys − μY0). Indeed, otherwise E′′ ⊂ V ∩ Z(Y0, Ys). Since dim V ∩ Z(Y0, Ys) ≤ s − 2, we
obtain a contradiction.

Thus, there is λs ∈ k such that each irreducible component of V ∩ Z(Ys − λsY0) is not an
irreducible component of V ′. This implies that the intersection V ∩Z(Ys−λsY0) is transversal,
i.e., for every irreducible (over k) component E′′′ of this intersection there is a smooth point
ξ ∈ E′′′ such that ξ is a smooth point of V and the intersection of the tangent spaces of V and
Z(Ys − λsY0) at ξ is transversal. Also, this implies that deg V = deg V ∩Z(Ys −λsY0). Let us
identify Z(Ys − λsY0) with P

n−1(k). Now, replacing (Pn(k), V, Y0,Mκ3) by

(Pn−1(k), V ∩ Z(Ys − λsY0), Y0,Mκ3 \ {Ys}),
we prove (a) applying the inductive assumption.

(b) There is a linear form Ys+1 ∈ M′
s,κ4

such that

#(Ys+1/Y0)(V ∩ Z(Y1 − λ1Y0, . . . , Ys − λsY0)) = deg V.

By the Bézout theorem, for this linear form Ys+1 assertion (b) holds (we leave the details to
the reader). The lemma is proved. �

Remark 7. Let V be a projective algebraic variety from the statement of Lemma 7 and
Y0, . . . , Ys ∈ k[X0, . . . ,Xn] be arbitrary linear forms. Now, V ∩ Z(Y0, . . . , Ys) = ∅ in P

n(k) if
and only if the morphism πs is finite dominant (this is well known). We would like to emphasize
again that if the morphism πs is finite dominant separable, then assertion (a) of Lemma 7 is
fulfilled automatically. The proof of the last fact is straightforward using the Bézout theorem.

Let V be a projective algebraic variety from the statement of Lemma 7. Assume that
Y0, . . . , Ys ∈ k[X0, . . . ,Xn] are linear forms such that V ∩ Z(Y0, . . . , Ys) = ∅ in P

n(k) and
Y0, . . . , Ys,Xs+1, . . . ,Xn are linearly independent over k. Let t be a transcendental element
over k.

Assume that s ≤ n − 1. Let Y ∈ k[X0, . . . ,Xn] be a linear form such that Y0, . . . , Ys, Y are
linearly independent over k. Denote by ΦY ∈ k[Y0, . . . , Ys, Z] the nonzero polynomial of the
smallest degree (in Y0, . . . , Ys, Z) such that lcZΦY = 1 and the polynomial ΦY (Y0, . . . , Ys, Y )
vanishes on the algebraic variety V . If s = n − 1, then, obviously, V = Z(ΦY (Y0, . . . , Ys, Y ))
in P

n(k).
Let s ≤ n − 2. Let Y ∈ M′

s,κ4
and i be an integer such that s + 2 ≤ i ≤ n. Denote by

ΦY,i ∈ k[t, Y0, . . . , Ys, Z] the nonzero polynomial of the smallest degree (in t, Y0, . . . , Ys, Z) such
that lcZΦY,i = 1 (see Remark 7) and the polynomial

ΦY,i(t, Y0, . . . , Ys, Y + tXi)

vanishes on the algebraic variety V . Let Φ̃ ∈ k[t, Y0, . . . , Ys, Z] be a polynomial such that
lcZΦ̃ ∈ k and the square-free parts of the polynomials Φ̃ and ΦY,i coincide (i.e., they have the
same sets of factors irreducible over k). Then, for brevity, we will say that the polynomial Φ̃
satisfies the property of the square-free part minimality for the ground field k, the algebraic
variety V , and the linear forms Y0, . . . , Ys, Y,Xi.

Let Φ̃Y,i ∈ k[t, Y0, . . . , Ys, Z] be a polynomial satisfying the property of the square-free part
minimality for the ground field k, the algebraic variety V , and the linear forms Y0, . . . , Ys, Y,Xi.
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Assume additionally that lcZΦ̃Y,i = 1. Let us represent this polynomial in the form

Φ̃Y,i(t, Y0, . . . , Ys, Y + tXi) =
∑

0≤j≤degZ Φ̃Y,i

Φ̃Y,i,jt
j

where Φ̃Y,i,j ∈ k[Y0, . . . , Ys, Y,Xi] (note that now the linear forms Y0, . . . , Ys, Y,Xi are linearly
independent over k).

Lemma 8. Let V be a nonempty projective algebraic variety from the statement of Lemma 7.
Assume that Y0, . . . , Ys ∈ k[X0, . . . ,Xn] are linear forms such that V ∩ Z(Y0, . . . , Ys) = ∅ in
P

n(k) and Y0, . . . , Ys,Xs+1, . . . ,Xn are linearly independent over k. Assume that degZ Φ̃Y,i≤D̃.
Let 0 ≤ s ≤ n − 2. Then, in the above notation,

V = Z(Φ̃Y,i,j, Y ∈ M′
κ4

, s + 2 ≤ i ≤ n, 0 ≤ j ≤ degZ Φ̃Y,i), (25)

i.e., the variety V is the set of all common zeros in P
n(k) of the system of homogeneous

polynomial equations Φ̃Y,i,j = 0 for all Y , i, j. The number of equations in this system is
bounded from above by (n − s − 1)D̃(1 + (n − s)D(D − 1)/2). The degrees of these equations
are bounded from above by D̃.

Proof. Let V1 be the projective algebraic variety from the right-hand side of (25). Obviously,
V ⊂ V1. We need to prove that V ⊃ V1. Let ξ = (ξ0 : . . . : ξn) ∈ V1 and ξi ∈ k for all i.
Performing if necessary a permutation of the linear forms Y0, . . . , Ys, we will assume without
loss of generality that Y0(ξ) �= 0. Put ξ′ = (1 : (Y1/Y0)(ξ) : . . . : (Ys/Y0)(ξ)) ∈ P

s(k) and
Ξ = π−1

s (ξ′). Thus #Ξ ≤ D. There is a linear form Yξ ∈ M′
κ4

such that #(Yξ/Y0)(Ξ) = #Ξ.
By Remark 7 and the properties of ΦY,i and Φ̃Y,i, there is a point ξ(i) ∈ Ξ such that

(Yξ/Y0)(ξ(i)) + t(Xi/Y0)(ξ(i)) = (Yξ/Y0)(ξ) + t(Xi/Y0)(ξ) for s + 2 ≤ i ≤ n. This implies
that (Yξ/Y0)(ξ(i)) = (Yξ/Y0)(ξ) and (Xi/Y0)(ξ(i)) = (Xi/Y0)(ξ) for s + 2 ≤ i ≤ n. By the
choice of Yξ, we have ξ(i1) = ξ(i2) for s + 2 ≤ i1, i2 ≤ n. Put ξ′′ = ξ(s+2) ∈ V . Then we
have (Yi/Y0)(ξ) = (Yi/Y0)(ξ′′) for 1 ≤ i ≤ s, (Yξ/Y0)(ξ) = (Yξ/Y0)(ξ′′) and (Xi/Y0)(ξ) =
(Xi/Y0)(ξ′′) for s + 2 ≤ i ≤ n. But the linear forms Y0, . . . , Ys, Yξ,Xs+2, . . . ,Xn are linearly
independent over k. This implies that ξ = ξ′′ ∈ V . The last two assertions of the lemma about
estimates on the number of equations and the degrees are obvious. The lemma is proved. �

Let c be an enteger, −1 ≤ c ≤ n. Now we are going to describe some preliminary algorithm
(with enumerations, see Sec. 2). For brevity, write fa∗,i = fi(a∗,X0, . . . ,Xn), 0 ≤ i ≤ m − 1.
Applying Lemma 3 from Sec. 1 to the family of polynomials Xd0−di

j fa∗,i, 0 ≤ j ≤ n,

0 ≤ i ≤ m − 1, we find a maximal subfamily {Xd0−diγ

jγ
fa∗,iγ}, 1 ≤ γ ≤ N , of this family

linearly independent over k. Then N ≤ (n+d
n

)
. Put Ia∗ = {iγ : 1 ≤ γ ≤ N}. Then, obviously,

Z(fa∗,0, . . . , fa∗,m−1) = Z(fa∗,i, i ∈ Ia∗). Thus, replacing if necessary the family of polynomi-
als fa∗,0, . . . , fa∗,m−1 by {fa∗,i}i∈Ia∗ , in what follows we will assume without loss of generality
that m ≤ (

n+d
n

)
. If a∗ ∈ Uc, then, obviously, m ≥ n − c.

If c = n, then properties (αn−c) and (βn−c) are trivially fulfilled, see below. Further in this
section, we assume that c < n.

Assume that c = −1. Then put Yi = Xi for 0 ≤ i ≤ n.
Assume that 0 ≤ c ≤ n−1. We assume that the field k contains sufficiently many elements,

and hence the set of linear forms Lc (defined in the introduction) exist.
Let a∗ ∈ Uc. Using an enumeration and the construction of Sec. 3, we find an element

(Y0, . . . , Yc) ∈ Lc+1
c (it depends on a∗) such that Va∗ ∩ Z(Y0, . . . , Yc) = ∅, see Lemma 7(a).
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Put Yi = Xi for c + 1 ≤ i ≤ n. Then the linear forms Y0, . . . , Yn are linearly independent
over k.

Now let us return to the case −1 ≤ c ≤ n − 1. Our aim is to construct polynomials
ha∗,1, . . . , ha∗ ,n−c satisfying the following properties.
(αn−c) For every i, 1 ≤ i ≤ n − c,

ha∗,i = fa∗,i−1 +
∑

i≤w≤m−1

qa∗,i,w fa∗,w,

where qa∗,i,w ∈ k[X0, . . . ,Xn] are homogeneous polynomials of degrees
degX0,...,Xn

qa∗,i,w = dw − di−1.
(βn−c) dimZ(ha∗ ,1, . . . , ha∗,n−c) = c.
Hence Va∗,c is a union of some irreducible components of the algebraic variety

Z(ha∗ ,1, . . . , ha∗,n−c).

Remark 8. Let ν = 0 (so a∗ can be omitted in the notation). In [2, Chap. 2, Sec. 3], the
construction of h1, . . . , hn−c (in that paper, the notation m in place of n − c is used) with
“inessential components” (see Lemma 2.11 in [2]) is inaccurate. One should delete this lemma.
But the required correction is short and simple. It is given in the thesis [7, p. 221] (note that
the case where di = d for all i is considered in [7] and [2], and then there are simplifications).
In this paper, we follow [7] with small modifications in this place.

Assume that 1 ≤ j ≤ n − c + 1. Consider the following property:
(γj−1) Z(ha∗,1, . . . , ha∗,j−1) ∩ Z(Y0, Y1, . . . , Yn−j+1) = ∅ in P

n(k).
(Here, if j = 1, then the sequence ha∗,1, . . . , ha∗,j−1 is empty and Z(ha∗,1, . . . , ha∗,j−1) =
P

n(k).) Note that if properties (αn−c) and (γn−c) hold, then (αn−c) and (βn−c) are also satisfied.
Let 1 ≤ j ≤ n − c. Assume that polynomials ha∗,1, . . . , ha∗,j−1 satisfying properties (αj−1)

and (γj−1) have been constructed recursively (for the recursion base j = 1, nothing has been
constructed). We are going to construct a polynomial ha∗,j such that properties (αj), (γj)
hold.

By (γj−1), we have dimZ(ha∗ ,1, . . . , ha∗,j−1, Y0, Y1, . . . , Yn−j) = 0. Hence

Ej−1 = Z(ha∗,1, . . . , ha∗,j−1, Y0, Y1, . . . , Yn−j)

is a finite set. We have Ej−1∩Va∗ = ∅, since n−j ≥ c and Va∗∩Z(Y0, . . . , Yc) = ∅. Therefore,
by property (αj−1), also

Ej−1 ∩ Z(fa∗,j−1, . . . , fa∗,m−1) = ∅.

Now we will find recursively indices j−1 ≤ j1 < . . . < jm′ ≤ m such that m′ ≤ #Ej−1 ≤ D′
j−1

(the integer D′
j−1 is defined in the introduction) and

Ej−1 ∩ Z(fa∗,j1, . . . , fa∗,jm′ ) = ∅.

Namely, let 1 ≤ i ≤ m − 2 and Ej−1 ∩ Z(fa∗,j1, . . . , fa∗,ji−1) �= ∅. Then we set

ji = sup{w : Ej−1 ∩ Z(fa∗,j1, . . . , fa∗,ji−1, fa∗,w, fa∗,w+1, . . . , fa∗,m−1) = ∅}.
We use the construction of Sec. 3 to find the index ji. Obviously,

Ej−1 ∩ Z(fa∗,j1, . . . , fa∗,ji−1) �= Ej−1 ∩ Z(fa∗,j1, . . . , fa∗,ji).

If Ej−1∩Z(fa∗,j1, . . . , fa∗,ji) = ∅, then put m′ = i, and the required indices are constructed.
Let t be a transcendental element over k. Set qj,i = 0 if j ≤ i ≤ m− 1 and i �∈ {j1, . . . , jm′}.

Put
qj,jw =

∑

1≤u≤j

tj(w−1)+uY
dj−1−djw
n−j+u , 1 ≤ w ≤ m′, (26)
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and
h̃a∗,j =

∑

j≤w≤m−1

qj,wfa∗,w ∈ k[t,X0, . . . ,Xn]. (27)

Then 0 �= h̃a∗,j(η) ∈ k[t] for every η ∈ Ej−1. We have degt h̃a∗,j ≤ jm′ ≤ jD′
j−1.

Set βj = jm′ D′
j−1. Recall that Iβj

denotes a subset of k \ {0} with #Iβj
= βj + 1. It

follows that there is an element ta∗,j ∈ Iβj
such that h̃a∗,j(ta∗,j, η0, . . . , ηn) �= 0 for every

η = (η0 : . . . : ηn) ∈ Ej−1. Put ha∗,j = h̃a∗,j(ta∗,j,X0, . . . ,Xn) and qa∗,j,w = qj,w|t=ta∗,j
for

all w. Then properties (αj), (γj) hold.
One can find a required element ta∗,j enumerating the elements t′ ∈ Iβj

and deciding whether

Z(ha∗,1, . . . , ha∗,j−1, h̃a∗,j(t′,X0, . . . ,Xn), Y0, . . . , Yn−j) = ∅

using the construction of Sec. 3. The recursion for obtaining ha∗,1, . . . , ha∗ ,n−c is completely
described. Note that simultaneously we obtain all the polynomials qa∗,j,w and all the elements
ta∗,j ∈ Iβj

.

Translated by A. L. Chistov.
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