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NONUNITARY REPRESENTATIONS OF THE GROUPS
OF U(p, q)-CURRENTS FOR q ≥ p > 1

A. M. Vershik∗ and M. I. Graev† UDC 517.986

The purpose of this paper is to give a construction of representations of the group of currents
for semisimple groups of rank greater than one. Such groups have no unitary representations
in the Fock space, since the semisimple groups of this form have no nontrivial cohomology in
faithful irreducible representations. Thus we first construct cohomology of the semisimple groups
in nonunitary representations. The principal method is to reduce all constructions to Iwasawa
subgroups (solvable subgroups of the semisimple groups), with subsequent extension to the orig-
inal group. The resulting representation is realized in the so-called quasi-Poisson Hilbert space
associated with natural measures on infinite-dimensional spaces. Bibliography: 25 titles.

Short obituary

Mark Iosifovich Graev died in Moscow on April 22, 2017 (born on November 22, 1922). He
belonged to a rather narrow circle of the best mathematicians of Russia whose creative activity
fell on the second half of the 20th century. The beginning of his mathematical biography from
the mid 1940s is entwined with the Moscow school of algebra headed by A. G. Kurosh, who
requested M. I. to continue the research on the theory of free continuous groups initiated by
A. A. Markov in the 1930s. This theory was the subject of M. I.’s PhD thesis and his first
papers, which became widely known in the algebraic literature and won the first prize of the
Moscow Mathematical Society (1948). From the late 1940s, M. I. participates in I. M. Gelfand’s
seminar and gradually becomes a regular collaborator and the principal coauthor of I. M. in
classical representation theory. Their work (along with the previous work by I. M. Gelfand
and M. A. Naimark) contains a huge body of various results in one of the main mathematical
theories of the 20th century. I. M. and M. I. wrote together nearly a hundred papers and
three monographs, including two volumes of the series Generalized Functions. Besides, M. I.
also wrote two monographs on integral geometry and hypergeometric functions. In the last
10 years, M. I. and I have worked to continue the series of papers initiated together with
I. M. Gelfand as early as in the 1970s. This article is our last joint work. Speaking about
the characteristic features of M. I. as a mathematician, I would mention his unparalleled thor-
oughness in daily work and his rare devotion to science, to which he gave his life unreservedly.
Great achievements of M. I. in mathematics are in no small part due to remarkable features of
his character: kindness, tranquility, modesty, unselfishness. I hope that his name will always
serve as a remarkable example of scientist for future generations of mathematicians.

See also an essay about M. I. in Russian Mathematical Surveys, 63, No. 1(379), 169–182
(2008), and the list of publications of M. I. therein.

1. Introduction

This paper, which we conceived several years ago, but discussed in detail with M. I. only in
the most recent time, contains a project of constructing nonunitary representations of groups of
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currents with coefficients in semisimple groups of the type U(p, q). It is worth explaining what
is the essence and necessity of such a project. Groups of currents, or functional Lie groups, are
groups of functions on manifolds (or groups of sections of fiber bundles over manifolds with
groups as fibers) with values in a finite-dimensional Lie group (or even an arbitrary locally
compact group), called the group of coefficients. Since the 1970s, many papers have been
written on representations of such groups, among which we mention only the most important
ones: [1–10].

It was understood that in order to construct unitary representations of a group of currents,
one needs to use nontrivial cohomology of the group of coefficients with values in irreducible
unitary representations of this group. Representations in which the 1-cohomology is nontrivial
are called special, and a necessary condition for a representation to be special is that it is
“glued” to (inseparable from) the identity representation. Of course, the main interest was in
semisimple groups; their study from this viewpoint was initiated in [2].

By no means all Lie groups have special irreducible representations. For example, in the
class of real forms of semisimple Lie groups, this is the case only for the groups of real rank 1
except the symplectic groups, that is, only for those groups that do not have Kazhdan’s
property (= for which the identity representation is isolated in the Fell topology in the space
of irreducible unitary representations). In other words, these are the groups U(p, 1), O(p, 1),
p = 1, 2, . . . . For such groups, the corresponding theory was constructed in [2, 3] and other
papers in the 1970s–1980s. After some break, this research was continued in our subsequent
papers; here is the complete list of them: [13–25]. In particular, a new method, outlined in [4],
was developed to realize these representations, which instead of the Fock space uses more
natural probabilistic constructions: the integral, Poisson, and quasi-Poisson models. The
main idea, common for all papers of this series, is that we first develop a representation theory
for a solvable subgroup of the semisimple group, namely, for the Iwasawa group, and then
extend it to the whole semisimple group. The naturalness of this idea, in any case for real
forms of the type U(p, q), O(p, q), Sp(p, q), follows from the structure of the group itself and
its Iwasawa subgroup. However, passing to solvable subgroups allows one to use other models
of factorizations different from the Fock factorization and more convenient. We mean that
the class of Lévy processes and, in particular, the gamma process provides alternative models
of Hilbert spaces and factorizations convenient for representation theory and quantization.
One of the important consequences of this approach is the idea of an analog of the Lebesgue
measure in an infinite-dimensional space, which is a renormalization of the distribution of
the gamma process, has a large group of symmetries, and is related to the Poisson–Dirichlet
measures [11,12].

The study of these groups is not yet complete, however, one should turn to cases that
do not fall into the framework of the existing schemes. Namely, what should one do with
representations of groups of currents with values in O(p, q), U(p, q) for q > 1 and Sp(p, q), as
well as in other real forms of semisimple groups?

Since these groups have no special irreducible unitary representations, one should turn to
special irreducible nonunitary representations, and this is what we do in our last papers. In
this paper, we complete such a construction for the groups U(p, q). The plan is as follows:
first, we construct a cocycle in a nonunitary representation of the Iwasawa subgroup of U(p, q).
Accordingly, we describe in detail the structure theory of Iwasawa groups, which is not very
popular. The Iwasawa subgroup of U(p, q) is a solvable group which is the semidirect product of
the nilpotent subgroup S of lower triangular matrices and the so-called Heisenberg group Np,q.
While nilpotent groups have no nonidentity special unitary representations, the situation with
solvable groups is quite unclear. We do not know whether Iwasawa groups of rank greater
than one have special unitary representations. But, anyway, these special representations
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cannot be extended to special unitary representations of the whole semisimple group. Hence
we define natural nonunitary special representations of the Iwasawa group, i.e., construct
nontrivial 1-cohomology in a nonunitary representation of this group, and then extend the
representation and the cocycle to the whole group U(p, q). This can be done only if we give up
unitarity, but preserve the boundedness of the representation operators for most elements of
the group, except for the main involution, which can be unbounded. After having extended the
representation and the cocycle, we proceed to reproduce the construction of the quasi-Poisson
model of a representation of the group of its currents. This presents no great difficulties. The
construction is sketched in broad strokes and will be considered in detail later. It is important
that the constructed representation acts in a Hilbert space (the L2 space with respect to a
quasi-Poisson measure) by operators that are either bounded (for most elements of the group)
or densely defined (for the involution and some elements of a compact subgroup), and all
essential properties of representations of groups of currents that hold for groups of rank 1 are
preserved.

It is yet to be explored what vertex-like operators can be defined in the spaces of these
representations and what relation can these models have to the corresponding Fock space
theory etc. But I believe that this paper lays the groundwork for subsequent considerations.

2. The group U(p, q) and its solvable subgroup (Iwasawa group)

2.1. The group U(p, q). By definition, U(p, q) is the group of linear transformations of the
space C

p+q preserving a Hermitian form of signature (p, q). Here we choose this form so that
the maximal solvable subgroup of U(p, q) takes the simplest form:

p∑

i=1

(xix̄q−p+i + x̄ixq−p+i) +
q∑

i=1

|xp+i|2, q ≥ p.

All complex matrices of order p + q will be written in block form:

g =

⎛

⎝
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞

⎠ ,

where the diagonal blocks are matrices of orders p, q− p, and p, respectively. We assume that
q ≥ p. In particular, if q = p, then these matrices degenerate into 2 × 2 block matrices.

In this notation, U(p, q) is defined as the group of block matrices satisfying the condition

gσg∗ = σ, where σ =

⎛

⎝
0 0 ep

0 eq−p 0
ep 0 0

⎞

⎠ (1)

is the involution and the symbol ∗ stands for the composition of complex conjugation and
matrix transpose.

This condition is equivalent to the following relations between the blocks of g:
g13g

∗
31 + g12g

∗
32 + g11g

∗
33 = ep,

g23g
∗
21 + g22g

∗
22 + g21g

∗
23 = eq,

g13g
∗
21 + g12g

∗
22 + g11g

∗
23 = 0,

g13g
∗
11 + g12g

∗
12 + g11g

∗
13 = 0,

g23g
∗
31 + g22g

∗
32 + g21g

∗
33 = 0,

g33g
∗
31 + g32g

∗
32 + g31g

∗
33 = 0.

(2)

The real dimension of the group U(p, q) is (p + q)2.
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2.2. The subgroups S and N . Denote by S the subgroup of block diagonal matrices from
U(p, q) of the form ⎛

⎝
s−∗ 0 0
0 eq−p 0
0 0 s

⎞

⎠ ,

where s ranges over the subgroup of complex lower triangular matrices ‖rij‖ of order p such
that rij = 0 for i < j and the diagonal entries rii are real and positive.

Obviously, S is a solvable group of rank p; its real dimension is equal to p2.
Denote by N the (Heisenberg) subgroup of block matrices of the form

⎛

⎝
ep 0 0
−z∗ eq−p 0
ζ z ep

⎞

⎠ ,

where ζ is a complex p × p matrix, z is a complex p × (q − p) matrix, and the condition for
these matrices to belong to the group U(p, q) has the following form:

ζ + ζ∗ − zz∗ = 0, i.e., ζ = n − 1
2
zz∗,

where n is a skew-Hermitian matrix. In other words, ζ has a given real part determined by
the matrix z.

Elements of N will be written as pairs (ζ, z) with the multiplication law

(ζ1, z1)(ζ2, z2) = (ζ1 + ζ2 − zz∗, z1 + z2).

Obviously, N is a nilpotent subgroup of U(p, q) of real dimension p(2q − p).
Denote by Q the subgroup in U(p, q) generated by S and N . It is the semidirect product

of these groups:
Q = S � N.

Elements of S act on N as group automorphisms:

s : (ζ, z) → (ζ, z)s = (s∗, sz).

2.3. The Iwasawa subgroup P . For every semisimple Lie group G, the following analytic
Iwasawa decomposition holds:

G = NTK,

where N is a maximal nilpotent subgroup, T is (R∗
+)p with p the rank of G, and K is a maximal

compact subgroup in G. Of course, this is a direct product of spaces, but not a direct product
of groups; however, the first two components form a subgroup in G, namely, the semidirect
product of T and N .

Definition 1. The semidirect product P = T �N of the groups N and T is called the Iwasawa
subgroup of the semisimple group U(p, q). The subgroup N is called the Heisenberg group (see
below). In the case p = q, the group N is the additive (commutative) group of complex matrices
of order p, i.e., the “degenerate” Heisenberg group.

In the matrix realization of the group U(p, q) adopted here, we may assume that N is
the subgroup of all block matrices in which the entry g33 ranges over the subgroup of lower
triangular nilpotent matrices of order p and T is the intersection of the subgroup S with the
group of block diagonal matrices.

Thus we have the analytic decomposition U(p, q) = PK (of spaces, but not of groups),
which plays an important role in our constructions.
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It follows from the definition that the group P in our case is isomorphic to the semidirect
product Q = S � N introduced above, i.e., to the subgroup of all block triangular matrices of
the form ⎛

⎝
(s∗)−1 0 0
−(sz)∗ eq−p 0

sζ sz s

⎞

⎠ .

Let us give a direct description of the Heisenberg group N = Np,q. Denote by A ∼ R
p2

the additive group of skew-Hermitian matrices n of order p; by A, the dual group of unitary
characters χ(n); and by Z ∼ C

p(q−p), the additive group of complex p × (q − p) matrices.
In this notation, the Heisenberg group N can be presented as the group of pairs (n, z),

n ∈ A, z ∈ Z, with the multiplication law

(n1, z1)(n2, z2) =
(
n1 + n2 − 1

2
(z1z

∗
2 − z2z

∗
1), z1 + z2

)
.

In other words, N is the central extension of the commutative group Z by the commutative
group A and the symplectic 2-form ω : Z × Z → A, where ω(z1, z2) = z1z

∗
2 − z2z

∗
1 . The

center of N is the subgroup A, and the quotient by the center is the group Z. Recall that the
standard realization of the classical three-dimensional Heisenberg group as the sum C+R with
the symplectic form ω(u1, u2) = i[u1 ·u2

∗−u2 ·u1
∗] ∈ R, u1, u2 ∈ C, in our notation corresponds

to n ∈ iR, z = u ∈ C, i.e., the classical real three-dimensional Heisenberg group corresponds to
the case p = 1, q = 2. For p = 1 and arbitrary q, we obtain the ordinary (2q + 1)-dimensional
Heisenberg group; such groups will be called the one-row Heisenberg groups.

The real dimension of the group Np,q (for p �= q) is 2p(q − p) + p2 = p(2q − p), and the
dimension of the Iwasawa group (subgroup in U(p, q)) is 2pq. The dimension of the maximal
compact subgroup U(p) × U(q) is p2 + q2.

We emphasize that the study of the Iwasawa group as a solvable group, its representations
and cohomology deserves attention in its own right, regardless of applications to representa-
tions of groups of currents considered below and to other problems.

3. Nondegenerate irreducible unitary representations of the Heisenberg

group N and Iwasawa group P

In what follows, we will speak of the Iwasawa group rather than the Iwasawa subgroup,
since it is of interest for us in itself. To begin with, the groups N and Z described above are
acted on by the group S of automorphisms:

n → sns∗, χ(n) → χ(sns∗), z → sz.

Thus, the set of elements of the group A and the set of elements of the group A of its unitary
characters split into orbits of the action of S.

Definition 2. Let us say that an element of either of these groups, as well as its S-orbit, is
nondegenerate if the maps n → sns∗ and χ(n) → χ(sns∗) are faithful.

Elements of the same nondegenerate S-orbit will be called conjugate.

In particular, characters of the from

χε(n) = exp(tr(εn)), where ε = diag(ε1, . . . , εp), εi = ±1,

are nondegenerate. The orbit of every character χε consists of the characters of the form

χε
s(n) = χε(sns∗).

Theorem 1. The set of all nondegenerate characters is exhausted by the characters of the
form χε

s. Thus there are exactly 2p nondegenerate S-orbits of characters.

103



In this section, with each nondegenerate character we will associate an irreducible unitary
representation of the Heisenberg group.

Every character χ gives rise to a unitary representation of the group N in the Hilbert space
Hχ = L2(Z, dz), where dz is the Lebesgue measure on Z.

The operators T of this representation are given by the following formula:

T (n0, z0)f(z) = χε
(
n − 1

2
(zz0∗ − z0z∗)

)
f(z + z0).

Note that the space H of the regular representation of the group N is the direct integral

H =
⊗∫

Hχdχ, where dχ is the invariant measure on the group of characters χ.
Let us study the structure of the spaces Hχ associated with nondegenerate characters χ and

their decomposition into irreducible subspaces.

3.1. The representation T of the group N induced by a nondegenerate character.
Usually, one realizes the representation of the Heisenberg group in the Hilbert space Hχ as a
representation induced by the characters χε. According to the general definition of the induced
representation Hχ = L2(Z, dz), the representation operators corresponding to elements of the
group N in the space Hχ are given by the formula

T ε(n0, z0)f(z) = χε
(
n − 1

2
(zz0∗ − z0z∗)

)
f(z + z0), (3)

or, in more detail,

T ε(n0, z0)f(z) = exp
( p∑

i=1

(
εinii − 1

2
(ziz

0∗
i − z0

i z∗i )
))

f(zz0), (4)

where zi is the ith row of the matrix z.
First, consider the case of a nondenenerate character on N of the form χε(n) = exp(tr εn),

where ε=diag(ε1, . . . , εp), εi =±1.
Note that each of the nondegenerate S-orbits in the space of characters has a character χε

as a representative.
However, we will need another realization of the representation T , which is obtained by

replacing functions f(z) with f(z)e−
1
2

tr zz∗.

Theorem 2. In the new realization, the representation T of the group N acts in the Hilbert
space L2(Z, dμ(z)), where dμ(z) = e− tr zz∗dz is the Gaussian measure on Z, as follows:

T ε(n0, z0)f(z)=exp
( p∑

i=1

(
εinii − 1

2
z0z0∗−

∑

i;εi=1

ziz
0∗
i −

∑

i;εi=1

z0i z∗i
))

f(z + z0), (5)

where zi is the ith row of the matrix z.

Indeed, in the new realization, the formula for the action of T is obtained from the formula
in the old realization by adding the following factor:

e− tr[(z+z0)]z∗z0∗+tr zz0∗ = χ

(
1
2

p∑

i=1

(z0
i z0∗

i + ziz
0∗
i + z0

i z∗i )
)

. (6)

Corollary 1. The Hilbert space L2(Z,μ) can be written as the tensor product

L2(Z,μ) =
p⊗

i=1

L2(Zi, μi) (7)
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of the Hilbert spaces L2(Zi, μi), where Zi is the ith row of the matrix Z and μi is the Gaussian
measure on Zi, acted on by the representations Ti of the one-row Heisenberg groups with
elements (ni, zi):

T ε
i (n0

i , z
0
i )f(zi) = exp

(
nii − 1

2
z0
i z0∗

i − ziz
0∗
i

)
f(zi + z0

i ) for εi = 1, (8)

T ε
i (n0

i , z
0
i )f(zi) = exp

(
− nii − 1

2
z0
i z0∗

i − z0
i z∗i

)
f(zi + z0

i ) for εi = −1. (9)

3.2. The irreducible decomposition of the representation of the group N in the
space Hε

χ

Definition 3. The subspace of functions f(z) from L2(Z,μ) that are holomorphic with respect
to the rows zi where εi = 1, and anti-holomorphic with respect to the rows zi where εi = −1
will be called the Bargmann space of type ε and denoted by Kε.

It follows from Theorem 2 and its corollary that this subspace is closed and invariant. The
representation operators corresponding to elements of the group N are defined on this space
by the formulas given above.

It is also obvious that the Bargmann space Kε is the tensor product

Kε =
p⊗

i=1

Ki,

where Ki is the space of holomorphic functions of zi for εi = 1, and the space of anti-
holomorphic functions of zi for εi = −1, with representations of the one-row Heisenberg group
defined on them.

Observe two properties of the Bargmann space Kε.
(i) The following finite monomials form an orthonormal basis in the Bargmann space:

f(z) =
∏

ij

xk
ij√
kij !

,

where xij = zij for εi = 1 and xij = z̄ij for εi = −1.
(ii)

∫
z

f(z) dμ(z) = f(0) for every function f ∈ Kε.

Theorem 3. The representation T ε of the group N in the Bargmann space Kε is irreducible.

Proof. It suffices to consider only the case ε=(1, . . ., 1). We introduce the infinitesimal creation
and annihilation operators associated with the representation T , i.e., the operators of the form

A+
ijf =

∂(Tf)
∂z0

ij

∣∣∣∣
z0=0

, A−
ijf =

∂(Tf)
∂z̄ij

∣∣∣∣
z0=0

.

It follows from the definition that the operators A+ increase the degree of every monomial by
one, while the operators A− decrease this degree by one and, therefore, annihilate the vacuum
vector. These properties imply that the representation is irreducible. �
Theorem 4. The representation T ε of the group N in the Hilbert space L2(Z,μ) is a count-
able multiple of its restriction to the Bargmann subspace Kε, i.e., can be decomposed into a
countable direct sum of irreducible representations equivalent to the representation of N in Kε.

Proof. It suffices to prove the desired assertion for the case of the representation in the space
L2(Z,μ), where Z is the group of one-row matrices z = (z1, . . . , zm).

With every multiplicator k = (k1, . . . , km), k ≥ 0, we associate the Hilbert space Lk obtained
as the norm completion of the set of all linear combinations of monomials of the form zk′

z′k′′

where k′ is arbitrary and k′′ ≤ k. In particular, L0 = K. It follows from the definition that
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(a) the subspaces Lk are invariant;
(b) Lk ⊂ Lk′ for k < k′; in particular, Lk ⊂ Lk+ei

, i = 1, . . . , n − 1, where {ei} is the
standard basis in Z

n−1;
(c) the completion of the inductive limit of the spaces Lk with respect to the embeddings

Lk ⊂ Lk′ coincides with the space H+
1 .

For every multi-index k and index i = 1, . . . , n−1, denote by Lk,i the direct complement to Lk

in the space Lk+ei
; that is,

Lk+ei
= Lk,i ⊗ Lk.

Obviously, the spaces Lk,i are invariant, and the whole space H+
1 can be written (not uniquely)

as a countable direct sum of such spaces.
Let us check that the representation T of the group N in each space Lk,i is equivalent to

its representation T+
1,0 in the space K.

Denote f = z̄k+ei . This vector lies in Lk+ei
and is orthogonal to the space Lk. Thus f ∈ Lk,i.

One can also easily see that f is a cyclic vector in Lk,i. Analogously, the vector f0 ≡ 1 lies in
the space K and is cyclic in this space. Hence it suffices to check that for every element g ∈ N ,
the scalar products 〈T (g)f, f〉 and 〈T (g)f0, f0〉 differ by a factor depending only on k. This
follows immediately from the description of the representation operators; namely, according
to this description,

〈T (g)f0, f0〉 = eζ0 , 〈T (g)f, f〉 = eζ0〈f, f〉. �
3.3. Description of all nondegenerate irreducible unitary representations of the
group N . Now we will describe the unitary representation T ε

s associated with an arbitrary
nondegenerate character χε

S(n) exp(tr(εsns∗)).
Denote by πs the isomorphism of the space H given by the formula

(πsf)(z) = f(sz).

We define the operators T ε
s (y) in the space H for elements of the group N by the following

equation:
T ε

s (g)f(z) = πs(T ε(gs)f(z)).
The explicit formulas for the operators T ε imply the following.

Proposition 1. The unitary representation of the group N in the space H associated with a
nondegenerate character χε

s is given by the following formula:

T ε
s (n0, z0)f(z) = exp

( p∑

i=1

(
(εsn0s∗)ii−1

2
w0

i w
0∗
i

)
−

∑

i,εi=1

wiw
0∗
i −

∑

i,εi=−1

w0
i w

∗
i

)
f(w+w0), (10)

where we have used the notation w = sz, w0 = sz0.

Denote by Kε
s the subspace of all functions f(w) = f(sz) that are holomorphic with respect

to the ith row of the matrix w for εi = 1 and anti-holomorphic with respect to this row for
εi = −1.

The formulas for the operators of the representation T ε
s imply the following theorem.

Theorem 5. The spaces Kε
s are closed invariant subspaces of the Hilbert space Hε.

These subspaces will be called the Bargmann subspaces associated with the characters χε
s.

Thus, with each nondegenerate character χε
s we have associated a unitary representation T ε

s

of the group N in the Hilbert space Kε
s conjugate to the representation T ε in the space Kε.

By analogy with the representations T ε of the group N considered above, one can establish
that

(a) the representations T ε
s are irreducible;
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(b) the space Kε
s can be written as the tensor product of the Hilbert spaces of functions

on Wi, where Wi is the ith row of the matrix W , that are holomorphic for εi = 1 and
anti-holomoprhic for εi = −1;

(c) the representation of the group N in the Hilbert space Hε
s is a countable multiple of

its irreducible representation in the space Kε
s.

Theorem 6. The representations T ε
s of the group N are pairwise nonequivalent.

Proof. Let us compute the spherical functions φε
s(n, z) of these representations, i.e., the func-

tions φε
s(g) = 〈T ε

s (g)1,1〉, where 1 is the vacuum vector in the space of T ε
s . The explicit

formula for the operators of this representation implies that φε
s(n, z) = χε

s(n − 1
2zz∗). Since

these functions are pairwise distinct, the corresponding representations are pairwise nonequiv-
alent. �

Corollary 2. The representations T ε
s of the group N form a complete system of nondegenerate

irreducible unitary representations.

To conclude this section, we emphasize that the outlined scheme of considering representa-
tions of a general Heisenberg group, i.e., the central extension of a commutative group by a
commutative group and a symplectic 2-form, is quite general and does not differ essentially
from the representation theory of the classical three-dimensional Heisenberg group. Being
nilpotent, such groups have no faithful special irreducible representations: all nontrivial cocy-
cles with values in irreducible representations are just additive characters with values in the
one-dimensional identity representation. This result was apparently proved by several authors
(see, e.g., [8]). At the same time, if we give up irreducibility, then nontrivial cohomology
appears, for instance, in the regular representation or in any unitary representation weakly
containing the identity representation. We will use this fact when studying representations of
the Iwasawa group, i.e., the semidirect product of a nilpotent group and the Heisenberg group.

4. Nonunitary representations of the Iwasawa group P

4.1. Almost invariant measures on the group S and nonunitary representations

Definition 4. We say that a measure dν(s) on S is almost invariant if it is quasi-invariant
with respect to the transformations s → s0 of the group S and its derivatives dν(ss0)

dν(s) are bounded
for every s0 ∈ S.

In particular, the Haar measure on S, invariant under the right translations s → ss0, is an
almost invariant measure on S.

With each S-orbit in the space of nondegenerate unitary representations T ε
s and each almost

invariant measure dν(s) on S we associate a nonunitary representation of the group N .
By definition, this representation is realized in the direct integral

Kε
s =

⊕
∫

S

Kε
s dν(s) (11)

over S of the Hilbert spaces Kε
s acted on by the representations T ε

s of N .
The actions on Kε

s of the unitary representations T ε
s induce a unitary representation of the

group N on the whole space Kε.
Further, we define the operators T ε

s corresponding to elements of the group S in the space Kε

as right translation operators:

T ε(s0)f(s) = f(ss0) for every s0 ∈ S.

107



Since the measure dν(s) is almost invariant, it follows that these operators are defined and
bounded on the whole Hilbert space Kε.

One can easily check that the operators thus defined for the subgroups N and S together
generate a (nonunitary in general) representation T = Tε of the whole Iwasawa group P =
S � N . Clearly, this representation is unitary in the case where dν(s) is the Haar measure.

Theorem 7. The representations Tε of the Iwasawa group P are operator-irreducible and
pairwise nonequivalent.

Proof. Since the representations T ε
s of the group N are pairwise nonequivalent for different ε

and s, it follows that the representations Tε are pairwise nonequivalent.
Let us prove that they are irreducible. Let A be an arbitrary bounded operator in the

space Hε that commutes with the operators of Tε. Since the representations T ε
s of the sub-

group N are pairwise nonequivalent, it follows that this operator is a multiple of the identity
operator on each subspace Kε

s.
Since the measure ν(s) on S is ergodic, this operator is constant. �

Theorem 8. The representation T of the group P associated with an almost invariant mea-
sure ν is equivalent to the representation of this group in the Hilbert space L2(S, μ,K) asso-
ciated with the Haar measure, where the representation operators corresponding to elements
of the subgroup N are unitary and have the same form, and the operators corresponding to
elements of the subgroup S are given by the formula

(T (s0)F )(s) = F (ss0)
a(s)

a(ss0)
, where |a(s)|2 =

dμ(s)
dν(s)

.

Proof. We use the following equation:
∫

S

|f(ss0)|2 dν(s) =
∫

S

|f(ss0)a(s)|2 dμ(s).

Putting F (s) = f(s)a(s), we can write the right-hand side in the form
∫

S

|F (ss0)
a(s)

a(ss0)
|2 dμ(s).

The theorem follows immediately. �

5. Special nonunitary representations of the Iwasawa group

5.1. Definition of a special representation

Definition 5. A (not necessarily unitary) representation T of a locally compact group G in a
Hilbert space H is called special if its 1-cohomology group is nontrivial; this means that there
exists a nontrivial continuous map β : G → H satisfying the relation

β(g1g2) = T (g1)β(g2) + β(g1)

(a 1-cocycle). The nontriviality means that it cannot be written in the form β(g) = T (g)ξ − ξ
with ξ ∈ H.

The property of being special for a representation T of a group G is crucial for constructing
a representation of the group GX of G-currents, i.e., the group of maps G → X, where X
is a space with a probability measure, with the pointwise multiplication. Namely, if T is an
irreducible unitary special representation of G, then the Fock construction associates with T
an irreducible representation of GX .
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The purpose of this paper is to select, in the class of almost invariant measures ν(s) on the
group S, those measures for which the representation of the group P in the space Hε described
above is special, and then extend it to a representation of the corresponding group U(p, q).

5.2. Sufficient conditions for a representation of the Iwasawa group P associated
with an almost invariant measure to be special. For simplicity, we restrict ourselves to
representations in the spaces Kε with ε = (1, 1, . . . , 1). In this case,

K =

⊗∫

S

Ks dν(s),

where Ks = K are the spaces of holomorphic functions of Z.
The irreducibility criterion for the case of an arbitrary ε is analogous.

Theorem 9. Let ν be an almost invariant measure on S for which there exists a scalar positive
function f(s) satisfying the following conditions:

(i)
∫

S

f(s)2 dν(s) = ∞;

(ii)
∫

S

|f(ss0) − f(s)|2 dν(s) < ∞ for every s0 ∈ S;

(iii)
∫

S

(1−Re etr(s(n− 1
2
zz∗)s∗))f2(s)dν(s)<∞ for every (n0, z0)∈N .

Then the representation T of the Iwasawa group associated with the measure dν(s) has a
nontrivial 1-cocycle of the form

β(g) = T (g)f(s)1 − f(s)1

and thus is a special representation.

Proof. Condition (ii) is obviously equivalent to the requirement that the value β(s0) belongs
to the space of T for every s0 ∈ S. Let us check that condition (iii) is equivalent to the
requirement that the value β(g) belongs to the space of T for g ∈ N . Indeed, the latter
condition has the form∫

S

‖Ts(g)1 − 1‖2
K |f(s)|2 dν(s) < ∞ for g ∈ N. (12)

Since
∫

S

‖T (n0, z0)1−1‖2
Ks

= 2(1−Re etr(sns∗− 1
2
zz∗)), this condition is equivalent to (iii). Thus

we have proved that β is a 1-cocycle. From (i) it follows that it is nontrivial.
As a byproduct, we have obtained an explicit formula for the norm of this nontrivial cocycle:

‖β(s0)‖2 =
∫

S

|f(ss0) − f(s)|2 dν(s) for s0 ∈ N, (13)

‖β(n0, z0)‖2 =
∫ (

1 − Re tr
(
s
(
n − 1

2
zz∗

)
s∗

)
f2(s)

)
dν(s) for (n0, z0) ∈ N. (14)

�

5.3. An example of a special representation. Let us give an example of a special repre-
sentation. Consider the almost invariant measure on S given by the formula

dν(s) = |s|−p2ds, where |s|2 = tr(ss∗) =
∑

i≥j

|sij |2

and ds is the Lebesgue measure on S.
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Let us prove that the nonunitary representation of the subgroup P associated with this
measure has the nontrivial 1-cocycle

β(p) = T (p)f − f, where f = e−
1
2
|s|21.

For this, it suffices to check that the function f(s) satisfies conditions (i)–(iii).
Converting from rectangular coordinates on S to polar coordinates in the formula for the

measure dμ(s) yields s = rω, where r = |s| and |ω| = 1. In these coordinates, conditions (i)–(iii)
on f take the following form:

(i)
∞∫
0

e−r2r−1 dr = ∞;

(ii)
∫

S

|e− 1
2
r2|ωs0|2 − e−

1
2
r2|2 r−1 drdω < ∞;

(iii)
∫

S

(1 − e−
r2

2
tr(sz0z0∗s∗))r−1 dr < ∞.

These three conditions are obviously satisfied.
Integrating (ii) and (iii) with respect to r, we obtain the following expressions for the norm

of the nontrivial 1-cocycle:

(1) ‖β(s0)‖2 =
∫

Ω

log |ωs0|4
|ωs0|2+1

dω;

(2) ‖β(n0, z0)‖2
∫

Ω

log |n0− 1
2
z0z0∗|4

|z0z0∗|2 dω.

6. Extension of a special representation of the Iwasawa subgroup to the

whole group U(p, q)

6.1. Setting of the problem. We consider a special nonunitary representation T , intro-
duced in the previous section, of the Iwasawa group P in a Hilbert space K with a nontrivial
1-cocycle and the subspace L generated by the values of this cocycle. The problem we solve
is to extend the representation T of the group P in the space L to the whole group U(p, q).

The construction is based on the following property of the Iwasawa group. As we have
already observed, every element g ∈ U(p, q) can be uniquely written as the product g = kp of
elements k and p, where p ∈ P and k belongs to the maximal compact subgroup K in U(p, q),
determined by the additional relation kk∗ = ep.

The operators of this extension are defined not on the whole Hilbert space L2(S, μ,K),
but only on a pre-Hilbert space L linearly spanned by the vectors b(p, r) determined by the
nontrivial 1-cocycle. Recall that, by Lemma 1, these vectors are pairwise distinct and linearly
independent, i.e., form a (nonorthogonal in general) basis in the linear space L.

The operators T (k), k ∈ K, will be defined on the set of vectors b(p) as permutations.
We consider the special nonunitary representation T of the group P in the space L2(S, μ,K)

described above with the nontrivial 1-cocycle

b : p → L2(S, μ,K),

b(p) = T (g)f − f, where f = e− tr(ss∗).

Since T is irreducible, the vectors b(p) form a total subset in L2(S, μ,K). The desired
extension to the group U(p, q) will be defined only on the subspace L linearly spanned by
these vectors.
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Theorem 10. The map p → b(p) is injective. The image of every element p = (s, n, z) of the
group P under this map has the following form:

b(s, n, z) = exp
( − tr(sas∗ + h)

)
, where a = s

(
n − 1

2
zz∗ + 1

)
s∗, h = z∗s∗.

Proof. By the definition of T , we have

b(s, n, z) = exp
(
− tr

(
ss0(n0 − 1

2
z0z

∗
0)s

∗
0 − zz∗0s∗0 − ss0s

∗
0s

∗
))

− exp(− tr(ss∗)).

The obtained formula is equivalent to that from the statement of the theorem. Let us check
that the equality b(p′) = b(p) is possible only if p′ = p. Indeed, if p′ = s′0n

′
0z

′
0, then, by the

formula for the 1-cocycle, we have

s′0
(
n′

0 −
1
2
z′0z

′∗
0 − 1

)
z′∗0 = s0

(
n0 − 1

2
z0z

∗
0 − 1

)
z∗0 , s′0z

′
0 = s0z0.

Recall that n0 and n′
0 are skew-Hermitian matrices; hence the first equality implies that

n′
0s

′∗
0 = s0n0s

∗
0 and (z′0s′0)(s′0z′0)∗ = (z0s0)(s0z0)∗. It follows immediately that s′0 = s0, and

hence z′0 = z0 and n′
0 = n0, i.e., p′ = p. �

Theorem 11. Let T be a nonunitary representation of the group P in the Hilbert space
L2(S, μ,K), and let b(p) be a 1-cocycle. Then this representation of P and the 1-cocycle b(p)
can be extended to the whole group U(p, q).

To describe this extension, we use the following lemma.

Lemma 1. The vectors b(p) are pairwise distinct and linearly independent for p �= 0.

Proof. The explicit expression for the representation operators implies that these vectors can
be written in the canonical form of the cocycle b(p) for p = (s0, n0, z0). One can easily see
that b(p) �= b(p′) for p �= p′. �

6.2. Description of the representation. We will describe the extension of the special
representation of the Iwasawa group P in the space L2(S, ν,K) and its nontrivial 1-cocycle
π(p) = T (p)f − f , where f = e−

1
2
|s|2, to the whole group U(p, q).

The desired representation is realized not in the whole Hilbert space L2(S, ν,K), but only
on the invariant subspace L linearly spanned by the vectors β(p).

Definition 6. We define the action of the representation operators for elements of the sub-
group K on the set of vectors b(p) by the formula T (k)b(p) = b(p′), p′ ∈ P , where p′ is defined
by the relation kp = p′k∗, and extend these operators by linearity to the whole space L.

This action is well defined, as follows from the following property of the group P .

Lemma 2. The map p → b(p) is bijective, and the vectors b(p) are linearly independent.

The lemma follows from the following presentation of the vectors b(p) = b(s, n, z):

b(s, n, z) = exp(− tr s∗sa − h), where a = s
(
n − 1

2
z∗ − 1

)
, h = sz.

It is not difficult to check that the constructed operators for the elements of the subgroup K
define, together with the operators for the elements of the subgroup P , a representation of the
whole group U(p, q).

An extension of the 1-cocycle b to the group U(p, q) is given by the formula b(p, k) = b(p)
for any p ∈ P , k ∈ K.
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6.3. The representation operator corresponding to the involution w. It is well known
that the group U(p, q) is algebraically generated by the Iwasawa subgroup P and a single
element of the compact group K, the involution w (cf. (1)); hence, in order to extend the
representation of P in the space L to U(p, q), it suffices to describe only the operator T (w).
Let us describe the action of this operator.

It follows from the definition that the action of T (w) on the vectors b(p) ∈ P is given by
the formula

T (w)b(p) = b(p′),

where p′ ∈ P is determined by the relation kp = p′k∗. In other words, the involution commutes
with the cocycle.

It is more convenient to use another interpretation of the space L and the action of the
operator T (w) on L. Namely, let us introduce the space H of Hermitian matrices of the form
pp∗, p ∈ P . Since the map p → |n| = pp∗ is a bijection, the group structure on P induces a
group structure in the space H:

n1n2 = pn2p
∗,

where p ∈ P is determined by the relation pp∗ = n1.
Note that the map n → b(n) preserves the space H. As a result, the space L can be

interpreted as the space linearly spanned by the independent vectors b(n), n ∈ H. The action
of the operators corresponding to elements of the subgroup P is given by the formula

T (p)b(n) = b(pnp∗),

and the operator corresponding to the involution takes the form

T (w)b(n) = b(p∗np).

6.4. Construction of an extension of a representation of a subgroup in a free C-mo-
dule. Digressing a little from our main course, we will show that the suggested construction
of an extension of a representation of a subgroup to an ambient group is a special case of a
construction applicable to free C-modules. Every group P gives rise in a natural way to the
free C-module C[P ] over the set of elements p ∈ P . Its elements are finite or countable sums
of the form

∑
λipi, where λi ∈ C and pi ∈ P . This module is acted on by the representation T

of the group P by the operators defined on the basis elements by the formula

T (p)p = p0p.

Each element p0 gives rise to the nontrivial cocycle of P of the form

β(p) = T (p)p0 − p0,

and the linear space L of codimension 1 in C[P ] linearly spanned by the vectors β(p).
Now let G be an arbitrary topological group that can be written as the product (in the

topological sense) of subgroups P and K whose intersection contains only the identity element.
Then we can consider the representation of K in C[P ] defined on the basis vectors p by
the following formula: T (k)p = p′, where p′ ∈ P is determined by the relation kp = p′k′,
k′ ∈ K. The operators thus defined can be extended by linearity to the whole module, and
they generate, together with the representation operators corresponding to the elements of the
subgroup P , a representation of the whole group G.

Theorem 12. If the action of the subgroup K on the group P is ergodic, then the constructed
representation of the group G is operator-irreducible.
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Remark. The space L in this definition coincides with the space L from the example consid-
ered above. The subgroup K is the subgroup of elements satisfying the additional condition
kk∗ = 1.

Let T be an arbitrary faithful representation of the subgroup P in a space H and β be an
arbitrary nonzero 1-cocycle of T . Denote by B ⊂ H the set of values of this 1-cocycle, and
by H0, the subspace in H linearly generated by the elements of B.

Theorem 13. The representation T of the subgroup P in the space H0 and the 1-cocycle β
of P in H0 can be extended to the whole group U(p, q).

Let us describe a construction of this extension. Since T is a faithful representation of P ,
it follows that the elements β(p) ∈ B are pairwise distinct. We define the operators T (k),
k ∈ K, on the set B as permutations of this set:

T (k)β(p) = β(p′), p′ ∈ P,

where p′ is determined by the relation kp = p′k′, k ∈ K.
Since the vectors β(p) are pairwise distinct, the operators T (k) are well defined.
It follows from the definition that these operators have the group property on B, and hence

they can be extended to a representation of K on the whole space H0.
Together with the operators corresponding to the elements of the subgroup P , they generate

the desired extension of the representation T of P to the whole group U(p, q).
An extension of the 1-cocycle β to U(p, q) is given by the formula β(pk) = β(p) for any

p ∈ P and k ∈ K. In particular, β(k) = 0 for every k ∈ K.

6.5. Properties of the constructed extensions

(1) The representation operators of the group U(p, q) in the subspace H0 are, in general,
unbounded and cannot be extended to a representation of U(p, q) on the whole space H.
However, if the operators corresponding to the elements of the subgroup K are unitary
on the subset B and the operators of the original representation of the subgroup P are
also unitary, then such an extension exists and determines a unitary representation of
the group U(p, q).
Remark. Since simple Lie groups of rank greater than one have no special unitary
representations, such a case is possible only for the group U(1, q).

(2) It follows from above that it suffices to know only a formula for the operator T (w):

T (w)β(p) = β(p′),

where p′∈P is determined by the equality wp= p′k, k∈K. This equality implies the
relation wpp∗w = (p′)∗p′, which uniquely determines p′ from p.

(3) When describing the extension, we do not impose any conditions on the original 1-co-
cycle β. However, if the original representation is special, then its extension to the
group U(p, q) may lose this property of being special.

It is known that for p > 1, the group U(p, q) has no special unitary representa-
tions. Hence if the original representation of P is unitary and nondegenerate, then the
constructed extension to U(p, q) is not unitary.

(4) A unitary faithful representation of the subgroup P can be nonspecial. However,
this group has degenerate special representations. Indeed, it is known that a unitary
representation of the group P2 of lower triangular unimodular matrices of the second
order is special. Meanwhile, this group is a quotient of the solvable group P , and hence
the special representation of P2 can be extended to a degenerate representation of P .
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We have completed the first part of our construction, by having constructed a nonunitary
special representation of the group U(p, q) in a pre-Hilbert space. Below, we proceed to the
construction of the corresponding representation of the group of currents.

7. Representations of the group of currents PX

7.1. General remarks on representations of groups of currents. The group of cur-
rents GX , where G is an arbitrary locally compact group and X is a standard space with a
probability measure m, is the group of measurable maps X → G endowed with the pointwise
multiplication. There exists a connection, discovered long ago, between nontrivial 1-cohomo-
logy of the group G in irreducible unitary representations and irreducible representations of
the corresponding groups of currents GX (see [1–3, 6] etc.). Namely, every special irreducible
unitary representation of G gives rise to an irreducible unitary representation of GX in the
Fock space.

It is known that the 1-cohomology of any simple Lie group G of rank greater than one in
all irreducible representations is trivial, and hence there are no irreducible unitary representa-
tions of the groups of G-currents in the Fock space. In this section, taking as an example the
group U(p, q), we will construct, at the expense of giving up unitarity, a nonunitary represen-
tation of the group of currents U(p, q)X .

We begin with a construction of a nonunitary representation of the group of currents PX ,
and then extend it to a nonunitary representation of the group U(p, q)X . The construction
starts from an arbitrary nonunitary representation of P . We repeat that the question of
whether there exists a special unitary irreducible representation of this group is still open.

Since P is a semidirect product of the groups S and N , it is most convenient to use the
quasi-Poisson model, which was introduced in [19] and applied there for the case of Lie groups
of rank 1. Then this construction can be easily carried over to the classical Fock model of
representations of groups of currents. We begin with two general definitions.

7.1.1. The quasi-Poisson model of the Fock space and the countable product of punctured Hilbert
spaces. By definition, a quasi-Poisson measure is an infinite σ-finite measure σ defined by a
triple (Y, μ, u), where Y is a standard Borel space, μ is a measure on Y , and u is a positive
function on Y such that ∫

Y

e−u(y) dμ(y) = ∞.

This is the measure on the space E(Y ) of countable or finite sequences in Y (the space of
configurations) given by the following characteristic functional:

∫

E(Y )

exp
(
−

∑

y∈ω

f(y)
)

dσ(ω) = exp
(∫

Y

(e−f(y) − e−u(y))dμ(y)
)

. (15)

Note that for u ≡ 0, this definition coincides with that of the classical Poisson measure
associated with the pair (Y, μ). The quasi-Poisson space associated with this measure is, by
definition, the Hilbert space L2(E(Y ), σ).

The countable tensor product of Hilbert spaces Hi with fixed unit vectors hi ∈ Hi is the
completion of the inductive limit of the finite tensor products ⊗n

i=1Hi with respect to the
embeddings ⊗n

i=1Hi → ⊗n+1
i=1 Hi.

If a sequence of vectors a1 ⊗ . . .⊗ an converges in the space thus defined, then its limit will
be written as the infinite product ⊗∞

i=1ai. The vectors obtained in this way form a total subset
in the infinite tensor product.
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This part of the construction should be regarded as standard in the theory of infinite tensor
products.

7.2. The quasi-Poisson space and nonunitary representations of the group PX .
Let U be the special nonunitary representation of the Iwasawa group P associated with a pair
(T, μ), where T is the Bargmann representation of the group N in the space K and μ is an
almost invariant measure on S. Let b(g) be the nontrivial 1-cocycle of this representation
given, according to Theorem 10, by the formula

b(g) = T (g)f − f, where f(s) = e−(us)1.

Let us describe the quasi-Poisson space in which we will realize the representation of the
group of currents PX associated with this special representation of P . Consider the triple
(Y, μ, u) where Y = S, while μ and u are, respectively, the almost invariant measure on S and
the positive function on S from the definition of the original representation of the Iwasawa
group P .

Denote by σ the quasi-Poisson measure on E(Y ) associated with this triple.
Further, with each configuration ω ∈ E(Y ) we associate the countable tensor product

K⊗
ω =

⊗

s,x∈ω

Ks,

where Ks = K is the Bargmann space.
The quasi-Poisson space associated with the measure σ is defined by the formula

QPS(E(Y ), σ,K⊗) = L2(E(Y ), σ,K⊗),

i.e., as the space of sections of the fiber bundle over E(Y ) with fibers K⊗
ω endowed with the

norm

‖(f)‖2 =
∫

E(Y )

‖f(ω)‖2
K⊗

ω
dσ(ω). (16)

7.3. Formulas for the representation operators of the group PX . We will define a
representation Ũ of the group PX associated with the representation U . Since PX = SX �NX ,
it suffices to describe it for the groups NX and SX separately.

We begin with the case of NX .
The action of the operators T (n) for n ∈ N in the Bargmann space K gives rise in a natural

way to an action of the elements of the group NX on each component K⊗
w , ω ∈ E(Y ); namely,

on the total subset of vectors of the form ⊗(s,x)∈ωfs,x, the corresponding operators act as
multiplicators.

Clearly, these operators are unitary on each tensor product K⊗
ω and generate unitary rep-

resentations of the group NX on the whole Hilbert space QPS(E(Y ), σ,K⊗). Thus the repre-
sentation Ũ is defined.

Let us impose the following additional condition on SX , μ, and u:

exp
( ∫

SX

(e−u(ss0)(x) − e−u(s)) dμ(s)dμ(x)
)

< ∞. (17)

We define the operators in the Hilbert space QPS(S(Y ), σ,K) corresponding to elements of
the subgroup SX as translations:

Ũ(s0( · ))f(ω) = f(ωs0)( · ). (18)

115



Theorem 14. For every element s̃ = s0( · ) ∈ SX , the quasi-Poisson measure σ on E(S × X)
satisfies the bound

dσ(ωs̃) < c(s̃) dσ(ω),

where c(·) is a bounded function on S∗.

Proof. It follows from the formula for the characteristic functional of the measure σ that
∫

E(S×X)

exp
(
−

∑

(s,x)∈ω

f(s, x)
)

dσ(ωs̃) = exp
( ∫

S×X

(e−f(ss−1
0 ) − e−u(s)) dμ(x)dm(x)

)
.

The right-hand side of this equality can be written as the product

exp
( ∫

S×X

(e−f(ss−1
0 ) − e−u(s)) dμ(x)dm(x)

)
= J1J2,

where

J1 = exp
( ∫

S×X

(e−f(s) − e−u(s)) dμ(ss0x)dm(x)
)

,

J2 = exp
( ∫

S×X

(e−u(ss−1
0 ) − e−u(s)) dμ(x)dm(x)

)
.

It follows from condition (ii) and the formula for the characteristic functional of σ that

J + 1 ≤ c(s̃)
∫

E(S×X)

exp
(
−

∑

(s,x)∈ω

f(s, x)
)

dσ(ω).

Condition (i) implies that the integral J2 converges. Thus we obtain the bound
∫

E(S×X)

exp
(
−

∑

(s,x)∈ω

f(s, x)
)

dσ(ωs̃) ≤ c

∫

E(S×X)

exp
(
−

∑

(s,x)∈ω

f(s, x)
)

dσ(ω),

where c is a constant.
It follows that dσ(ωs̃) < cdσ(ω).
This property of the measure σ will be called the almost projective equivalence with respect

to the transformation group SX . Note that if ν is an invariant measure, then we have dσ(ωs̃) =
c(s̃)c dσ(ω), where c(s̃) is a character on SX . �

Definition 7. A representation of the group SX in the quasi-Poisson space QPS(E(Y ), σ,K)
is defined by the formula

(U(s̃)f)(ω) = f(ωs̃), s̃ ∈ SX .

The above theorem implies that the operators U(s̃) for s̃ ∈ SX are bounded.
It is not difficult to see that these operators, together with the operators corresponding to

the elements of the group NX , generate a representation of the whole group PX = SX � NX

by bounded operators in the quasi-Poisson space QPS(E(Y ), σ,K).
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7.4. Formulas for the representation operators of the group U(p, q)X . Let us give
a unified formula for the operators of the representation of U(p, q)X on some total subset in
QPS(E(Y ), σ,K).

Denote by KY , where Y = S × X, the set of maps v : S × X → K such that
(i) fv(ω) ≡ ⊕

(s,x)∈ω

v(s, x) ∈ K⊕
ω for almost all configurations ω ∈ E(Y );

(ii)
∫

E(Y )

‖f + v(ω)‖2 dσ(ω) < ∞.

Thus we have a map KY → QPS(E(Y ), σ,K) of the form

v �→ fv(ω) =
⊕

(s,x)∈ω

v(s, x).

The set of functions f + v(ω) thus defined is total in the space QPS(E(Y ), σ,K); hence, in
order to describe the representation U of the group U(p, q)X , it suffices to describe its action
only on the functions from this set.

The original representation T̃ of the group U(p, q) in the space K induces a pointwise
representation of the group of currents U(p, q)X in the space K̃Y of all sections v(s, x) of the
fiber bundle over S ×X with fiber K, whose operators will be denoted by the same symbol T̃ ,
i.e.,

(T̃ (g( · ))v)(s, x) = T̃ (g + x)y(s, x),

where the operator in the right-hand side is the operator of the representation of U(p, q)X

acting on v as a function of s.

Theorem 15. The operators T̃ of the group U(p, q)X preserve the set KY ; the action of the
operators U(g̃) of the representation of U(p, q)X in the quasi-Poisson space QPS(E(Y ), σ,K)
on the subset of functions fv(ω) is given by the following formula:

(U(g̃)fv)(ω) = fT̃ (g̃)(ω). (19)

Denote by A the operators of the affine representation of U(p, q)X in the space FX
ν associated

with the linear representation T and its 1-cocycle b:

A(g)v = T (g)v + b(g).

7.5. Irreducibility conditions for the representation U of the group U(p, q)X

Theorem 16. If a representation T of the subgroup N is irreducible and the representations Ts

conjugate with it are pairwise nonequivalent, then the representation Ũ of the group PX =
SX � NX in the quasi-Poisson space QPS(E(Y ), σ,K) is irreducible.

Proof. Since the representation T of the subgroup N is irreducible, it follows that for almost
every configuration ω ∈ E(Y ), the representation Uω of the group NX in the space K⊕

ω is
irreducible.

Since the representations Ts are pairwise nonequivalent, it follows that the representa-
tions Uω of the group NX in the spaces K⊕

ω are pairwise nonequivalent. Hence every bounded
operator A on QPS(E(Y ), σ,K) that commutes with the operators of the subgroup NX is the
operator of multiplication by a function f(ω). If A commutes also with the operators of the
subgroup SX , then the function f(ω) is constant on the orbits of this subgroup in E(Y ). To-
gether with the ergodicity of the quasi-Poisson measure σ with respect to the transformations
from the group SX , this implies that f(ω) = const. �
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8. Construction of an extension of a nonunitary representation

of the group PX
to a representation of the group U(p, q)X

8.1. Setting of the problem. We proceed to the final stage of our construction, that of
constructing an extension of a representation from the group PX to the whole group of cur-
rents U(p, q)X .

To this end, we replace the original quasi-Poisson space QPS(E(Y ), σ,K⊗) with an invari-
ant pre-Hilbert subspace linearly spanned by a fixed vector and its group translations. This
approach is reasonable, since, by the irreducibility of the representation of the group PX ,
every such subspace is dense in the space of the original representation. We will describe an
extension of the representation of the group PX in this subspace to the whole group U(p, q)X .

Fix the following vector:

Q(ω) =
⊗

(s,x)∈ω

f(s, x), where f(s, x) = e−
1
2 |s|21S ∈ KS . (20)

The formula for the characteristic functional of the quasi-Poisson measure σ implies that
this vector lies in the space QPS(E(Y ), σ,K⊗) and has norm 1.

Denote by b(g̃) = b(g( · )) the trivial 1-cocycle in the space L generated by the vector Q,
i.e.,

b̃(g) = U(g̃)Q − Q.

We will denote by L = L(E(Y ), σ,K⊗) the pre-Hilbert space linearly spanned by the vec-
tors b(g(·)).

The construction of the desired extension literally reproduces the construction of the anal-
ogous extension of a representation of the Iwasawa group to the group U(p, q). Namely, let K
be the maximal compact subgroup in U(p, q). Consider the decomposition

U(p, q)X = PXKX .

As in the case of the group U(p, q), we define the action of an element of the group KX on
the set of vectors b(p̃), p̃ ∈ PX , as a permutation:

U(k̃)b(p̃) = b(p̃′), p̃′ ∈ PX ,

where p̃′ is determined by the relation k̃p̃ = p̃′k̃′, k̃′ ∈ KX . The operators thus defined for the
elements of KX satisfy the group property, and they can be extended by linearity to operators
on the whole space L.

It is not difficult to check that together with the representation operators of the original
group PX they generate a representation of the whole group U(p, q)X .

Note that in the resulting representation, the operators corresponding to elements of the
center of U(p, q) are identity operators.

8.2. The involution operator w. The group of currents U(p, q)X is algebraically generated
by the set of elements of the group PX and a single element w of the compact group K; hence,
to extend the representation of PX in the space L to U(p, q)X , it suffices to describe the
action of the single operator U(w). It follows from the definition that this action is given by
the formula analogous to the formula for the action of the involution in the representation T
of the group U(p, q).

Conclusion

Our construction is completed: we have obtained a well-defined (nonunitary) operator-
irreducible representation of the group of measurable currents with values in U(p, q) for arbi-
trary positive integers p, q with q ≥ p in a quasi-Poisson pre-Hilbert space, where the operators
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corresponding to the subgroup of currents of the Iwasawa group act by bounded (everywhere
defined) operators, and the involution is defined, in general, only on a dense subspace.

The further investigation of the properties of this and similar representations is a matter
for the future. One can expect that this investigation will lead to a considerable extension of
tools and possibilities of representation theory.

Supported by the RSF grant 17-71-20153.

Translated by N. V. Tsilevich.
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