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LOWER BOUNDS ON THE NUMBER OF LEAVES IN
SPANNING TREES

D. V. Karpov∗ UDC 519.172.1

Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal
chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the
maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(v(G)− k− 2)+ 2

where αg,1 = [ g+1
2 ]

4[ g+1
2 ]+1

and αg,k = 1
2k+2 for k ≥ 2. We present an infinite series of examples

showing that all these bounds are tight. Bibliography: 14 titles.

1. Introduction

We consider finite undirected graphs without loops and multiple edges and use the standard
notation. For a graph G, we denote the set of its vertices by V (G) and the set of its edges
by E(G). We use the notation v(G) and e(G) for the number of vertices and edges of G,
respectively.

We denote the degree of a vertex x in G by dG(x) and, as usual, denote the minimum vertex
degree of the graph G by δ(G).

Let NG(w) denote the neighborhood of a vertex w ∈ V (G) (i.e., the set of all vertices adjacent
to w).

We denote the girth of the graph G (i.e., the length of a minimal cycle of G) by g(G). If G
is a forest, then we set g(G) = ∞.

Let R ⊂ V (G) ∪ E(G). We denote by G − R the graph obtained from G by deleting all
vertices and edges from the set R and all edges incident to vertices from R.

For a connected graph G, we denote by u(G) the maximum number of leaves in a spanning
tree of G.

Remark 1. Obviously, if F is a tree, then u(F ) is the number of its leaves.

There are several papers about lower bounds on u(G). In 1981, Storer [1] conjectured that
u(G) > 1

4v(G) for δ(G) ≥ 3. Linial formulated a stronger conjecture: u(G) ≥ δ(G)−2
δ(G)+1v(G)+c for

δ(G) ≥ 3, where c > 0 is a constant that depends only on δ(G). This conjecture is suggested by
the fact that for every d ≥ 3 one can easily construct an infinite series of graphs with minimum
degree d for which u(G)

v(G) tends to d−2
d+1 . Thus Linial’s conjecture is asymptotically tight in the

cases where it holds.
For δ(G) = 3 and δ(G) = 4, Linial’s conjecture was proved by Kleitman and West [3] in

1991, for δ(G) = 5 it was proved by Griggs and Wu [4] in 1992. In both papers, the proofs are
based on the method of dead vertices. There are considerable difficulties with extending this
method to the case δ(G) ≥ 6, and no further results in this direction are obtained. It follows
from [5–7] that Linial’s conjecture fails for sufficiently large δ(G). However, for small δ(G) > 5,
the question remains open.

A number of papers consider spanning trees in classes of graphs with various constraints.
First, in 1989, Griggs, Kleitman, and Shastri [2] proved that u(G) ≥ v(G)+4

3 for a connected
cubic graph without K−

4 (a complete subgraph on four vertices without one edge). Later, in
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2008, Bonsma [8] proved two bounds for a connected graph with δ(G) ≥ 3; namely, u(G) ≥
v(G)+4

3 for a graph without triangles (that is, with g(G) ≥ 4) and u(G) ≥ 2v(G)+12
7 for a graph

without K−
4 .

These results do not answer the question of how to estimate the number of leaves in a
spanning tree for a connected graph with vertices of degrees 1 and 2. Recently, some papers
were published in which vertices of degree 1 and 2 do not affect the construction of a spanning
tree with many leaves. It is proved in [9] that u(G) ≥ v3+4

3 for a connected graph G with
g(G) ≥ 4 and v3 vertices of degree at least 3 (in fact, in [9, Theorem 1] this bound was stated
and proved for a more general class of graphs). In [11], for a connected graph G with v3 vertices
of degree 3 and v4 vertices of degree at least 4, the bound u(G) ≥ 2v4

5 + 2v3
15 is proved.

Let G be a connected graph with v(G) ≥ 2 and s vertices of degree different from 2. Karpov
and Bankevich [13] proved that u(G) ≥ 1

4(s − 2) + 2. In the same notation, for a triangle-free
graph (i.e., a graph of girth at least 4), Bankevich [14] proved the bound u(G) ≥ 1

3(s − 2) + 2.
Both bounds are tight, infinite series of graphs are constructed for which these bounds are
attained. Looking at these results, one may conjecture that u(G) ≥ g−2

2g−2(s − 2) + 2 for a
connected graph of girth at least g. However, it is shown in [14] that this conjecture fails for
g ≥ 10.

Denote by �(G) the number of vertices in a maximal chain of successively adjacent vertices
of degree 2 in a graph G.

For a connected graph G with �(G) ≤ k (where k ≥ 1), the bound u(G) > 1
2k+4v(G) + 3

2
is proved in [12]. It is also tight. In this paper, we prove two new bounds, taking in account
both the girth of a graph and the length of a maximal chain of successively adjacent vertices
of degree 2.

Theorem 1. Let G be a connected graph such that v(G) ≥ 2, g(G) ≥ g ≥ 4, �(G) ≤ k, where
g and k ≥ 1 are positive integers. Then u(G) ≥ αg,k(v(G) − k − 2) + 2 where

αg,k =

{ � g
2
�−1

4(� g
2
�−1)+1

if k = 1,
1

2k+2 if k ≥ 2.

2. Auxiliary lemmas

In this section, we state necessary lemmas, proved in [13] and [12].

Definition 1. 1. Let G1 and G2 be two graphs with marked vertices x1 ∈ V (G1) and x2 ∈
V (G2), respectively, and V (G1) ∩ V (G2) = ∅. By gluing the graphs G1 and G2 at the vertices
x1 and x2 we mean contracting the vertices x1 and x2 into one vertex x, making it incident to
all edges incident to x1 or x2 in both graphs G1 and G2. All the other vertices and edges of the
graphs G1 and G2 become vertices and edges of the resulting graph (see Fig. 1).

2. For any edge e ∈ E(G), we denote by G · e the graph obtained by merging the endpoints
of the edge e = xy into one vertex and making it incident to all edges incident to x or y. We
say that the graph G · e is obtained from G by contracting the edge e.

Fig. 1. Gluing graphs.

37



Remark 2. 1. Contracting a bridge does not lead to the appearance of loops and multiple
edges.

2. Assume that a graph H is obtained from a graph H ′ by contracting several bridges not
incident to pendant vertices. Then, obviously, u(H) = u(H ′).

Lemma 1 ([13, Lemma 1]). Let G1 and G2 be connected graphs with V (G1) ∩ V (G2) = ∅,
v(G1) ≥ 2, v(G2) ≥ 2. Let x1 ∈ V (G1) and x2 ∈ V (G2) be pendant vertices. Denote by G
the graph obtained by gluing G1 and G2 at the vertices x1 and x2 and subsequently contracting
m′ − 1 bridges not incident to pendant vertices. Then the following assertions hold.

(i) u(G) = u(G′
1) + u(G′

2) − 2.
(ii) Let

u(G1) ≥ α(v(G1) − m) + 2, u(G2) ≥ α(v(G2) − m) + 2, and m′ ≥ m. (1)

Then u(G) ≥ α(v(G) − m) + 2. If all three inequalities in (1) become equalities, then u(G) =
α(v(G) − m) + 2.

Our method uses the theory of blocks and cutpoints. Recall its basic notions. Proofs of the
classical facts on blocks and cutpoints can be found in [10].

Definition 2. A cutpoint of a connected graph G is a vertex x ∈ V (G) such that the graph
G − x is disconnected.

A graph is biconnected if it is connected, has at least three vertices, and has no cutpoints.
A block of a graph G is a maximal (by inclusion) subgraph of G without cutpoints.
A bridge of a graph G is an edge that does not belong to any cycle.

Definition 3. Let B be a block of a graph G.
The boundary of B (denoted by Bound(B)) is the set of all cutpoints of G contained in B.

The interior of B is the set Int(B) = V (B) \ Bound(B). Vertices of Int(B) are called internal
vertices of the block B.

A block B is called empty if it has no internal vertices (i.e., Int(B) = ∅). Otherwise, it is
called nonempty.

A block B is called large if |Int(B)| > |Bound(B)|.
Lemma 2 ( [12, Lemma 2]). Let G be a connected graph with more than 2 vertices. Then there
exists a set of edges F ⊂ E(G) satisfying the following conditions:

(1◦) the graph G − F is connected;
(2◦) the graph G − F has no large blocks;
(3◦) if vertices x and y are adjacent in G − F and dG−F (x) = dG−F (y) = 2, then dG(x) =

dG(y) = 2.

3. Proof of Theorem 1

1. Descent. We say that a graph G′ is smaller than G if either u(G′) < u(G), or u(G′) = u(G)
and e(G′) < e(G). In the first part of the proof, we analyze cases where the conclusion of
Theorem 1 for our graph G follows from this conclusion for all smaller graphs.

Let a spine be a tree that has no vertices of degree more than 2 and is joined by an edge
incident to one of its leaves to a cutpoint a. The cutpoint a will be called the base of the spine.

We say that a cutpoint a of a graph G is inessential if the graph G − a has exactly two
connected components and one of these components is a spine with base a. Otherwise, we call
a an essential cutpoint.

In some cases (if the condition of case 1.1 or 1.2 holds), we perform a descent from G to
smaller graphs.

38



1.1. The graph G has an essential cutpoint a. We will prove that G has an essential
cutpoint of degree at least 3. Let dG(a) = 2. Then the vertex a belongs to a chain of successively
adjacent vertices of degree 2; let the endpoints of this chain be adjacent to vertices b and b′ of
degree different from 2. Since a is an essential cutpoint, dG(b) > 2 and dG(b′) > 2. Clearly,
both b and b′ are essential cutpoints.

Hence it suffices to consider the case dG(a) ≥ 3. The vertex a is an essential cutpoint of the
graph G, hence there exist connected graphs G1 and G2 such that V (G1)∪V (G2) = V (G) and
V (G1) ∩ V (G2) = {a}. Moreover, none of the graphs G1 and G2 is a spine with base a.

Let us construct a graph G′
1 from the graph G1. If dG1(a) = 1, then G′

1 = G1. If dG1(a) ≥ 2,
then attach a spine with k + 1 vertices to the vertex a. Thus �(G′

1) ≤ k, g(G′
1) ≥ g(G). We

also construct a graph G′
2 in a similar way.

Since 3 ≤ dG(a) = dG1(a) + dG2(a), we have dG1(a) ≥ 2 or dG2(a) ≥ 2. Hence, when
constructing at least one of the graphs G′

1 or G′
2, we have added a spine with k + 1 vertices.

Since a is a vertex of both graphs G′
1 and G′

2, we obtain the inequality

v(G′
1) + v(G′

2) ≥ v(G) + k + 2.

The graph G is obtained by gluing the graphs G′
1 and G′

2 at two pendant vertices (these
vertices are copies of a or endpoints of attached spines) and contracting at least k + 1 bridges
(since at least one spine was attached when constructing G′

1 and G′
2). As a result, two copies

of the vertex a in the graphs G′
1 and G′

2 are contracted into the vertex a of the graph G.
By claim (i) of Lemma 1, we have u(G) = u(G′

1) + u(G′
2) − 2. Since the graphs G1 and G2

are not spines with base a, we have u(G′
1), u(G′

2) ≥ 3 and, consequently, u(G′
1) < u(G) and

u(G′
2) < u(G). Then, by the inductive assumption, we have

u(G′
1) ≥ αg,k(v(G′

1) − k − 2) + 2, u(G′
2) ≥ αg,k(v(G′

2) − k − 2) + 2.

By claim (ii) of Lemma 1, we obtain the inequality u(G) ≥ αg,k(v(G)− k − 2)+ 2, as required.
1.2. The graph G has large blocks. By Lemma 2, we can choose a set of edges F ⊂ E(G)
such that the graph G′ = G − F is connected, has no large blocks, and for any two vertices
x and y adjacent in G′ with dG′(x) = dG′(y) = 2 we have dG(x) = dG(y) = 2. Hence
�(G′) = max(�(G), 1) ≤ k. Obviously, g(G′) ≥ g(G) = g. Thus we can apply the inductive
assumption to the smaller graph G′. Since any spanning tree of G′ is a spanning tree of G, we
obtain u(G) ≥ u(G′) ≥ αg,k(v(G) − k − 2) + 2, as required.
2. The base. Let us reduce our graph by performing steps 1.1 and 1.2 while it is possible. It
remains to verify the conclusion of the theorem only for graphs G without essential cutpoints
and large blocks. Every cutpoint a of such a graph G splits G into two connected components,
and one of these components is a spine with base a.

Let us consider several cases.
2.1. The graph G is a tree. Recall that the tree G has no essential cutpoints. Let a and b be
two vertices of degree at least 3. We will prove that a is an essential cutpoint. Let G1 contain
a and exactly one connected component of G− a, namely, the component that contains b (see
Fig. 2a). Clearly, G1 is not a spine. Let G2 contain a and all other connected components of
G − a. Then a is not a pendant vertex of G2, i.e., G2 is not a spine with base a. We obtain a
contradiction.

Let G have a vertex a of degree at least 4. Then, clearly, a is an essential cutpoint (see
Fig. 2b).

If Δ(G) ≤ 2, then G has two leaves and at most �(G) = k vertices of degree 2. Then for any
αg,k we have

u(G) = 2 ≥ αg,k(v(G) − k − 2) + 2.
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Fig. 2. An essential cutpoint of a tree.

The only remaining case is where the tree G has one vertex of degree 3 and all other vertices
have degree at most 2. Then G has three leaves and at most 3 · �(G) = 3k vertices of degree 2.
Hence v(G) ≤ 3k + 4. It is easy to see that in this case for δk = 1

2k+2 the following inequality
holds:

u(G) = 3 ≥ δk(2k + 2) + 2 ≥ δk(v(G) − k − 2) + 2.

2.2. The graph G has a cycle. Since G has no essential cutpoints, each cutpoint of G splits
it into two connected components and one of them is a spine with base a. Let H be the graph
obtained from G by deleting all vertices of all these spines. It is easy to see that the graph H
is biconnected (any cutpoint of H would be an essential cutpoint of G). Then H is a block of
G. Since G has a cycle, H also has a cycle.

Let h = v(H) and m be the number of cutpoints of the graph G. Since H is not a large
block of G, we have m ≥ v(H)

2 . Every cutpoint separates from the graph a spine with at most
�(G) + 1 ≤ k + 1 vertices. Hence v(G) ≤ h + (k + 1)m.

A biconnected graph H has a cycle with at most h vertices. Hence h ≥ g(G) = g. Consider
two cases.
a. m = h. Then v(G) ≤ (k + 2)h and u(G) ≥ h. A straightforward calculation shows that in
this case

u(G) ≥ βh,k(v(G) − k − 2) + 2 for βh,k =
h − 2

(h − 1)(k + 2)
.

It is easy to see that βh,k increases as h increases. Since h ≥ g, we have βh,k ≥ βg,k. Clearly,
g ≥ 4. Then for k ≥ 2,

βg,k ≥ β4,k ≥ 4 − 2
(4 − 1)(k + 2)

=
2

3k + 6
≥ 1

2k + 2
= δk. (1)

For g ≥ 5 and k = 1,

βg,1 ≥ 5 − 2
(5 − 1)(1 + 2)

=
3
12

=
1
4

= δ1. (2)

b. m < h. In the case under consideration, H is a nonempty block. Choose a vertex
u ∈ Int(H). It is easy to pick in G a spanning tree whose leaves are m endpoints of spines and
the vertex u. Thus u(G) ≥ m + 1. A straightforward calculation shows that

u(G) ≥ γh,m,k(v(G) − k − 2) + 2 for γh,m,k =
m − 1

(k + 1)(m − 1) + h − 1
. (3)

Note that γh,m,k increases as m increases. Since m ≥ 	h
2 
, we obtain

γh,m,k ≥ εh,k =
	h
2 
 − 1

(	h
2 
 − 1)(k + 1) + h − 1

.

Note that

ε2t,k =
t − 1

(t − 1)(k + 1) + 2t − 1
<

t − 1
(t − 1)(k + 1) + 2t − 2

= ε2t−1,k.
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Moreover, ε2t,k = t−1
(k+3)(t−1)+1 increases as t increases. In view of the above discussion and

since h ≥ g, we conclude that the minimum coefficient in inequality (3) is equal to ε2t,k, where
t = 	g

2
 ≥ 2. Note that

ε2t,k =
t − 1

(k + 3)(t − 1) + 1
<

1
2k + 2

= δk ⇐⇒ (1 − k)(t − 1) > −1 ⇐⇒ k = 1. (4)

Let us summarize the cases analyzed above.
For k ≥ 2, inequalities (1) and (4) imply that

u(G) ≥ 1
2k + 2

(v(G) − k − 2) + 2.

One of the assertions of the theorem is proved.
For k = 1, we obtain the following inequality:

u(G) ≥ αg,1(v(G) − 3) + 2,

where αg,1 is the minimum coefficient obtained when analyzing cases a and b. For g ≥ 5,
inequality (2) implies

αg,1 ≥ min
(
ε2� g

2
�,1, β1

)
= min

( 	g
2
 − 1

4(	g
2
 − 1) + 1

,
1
4

)
=

	g
2
 − 1

4(	g
2
 − 1) + 1

.

In this case, the theorem is proved.
For g = 4, we have

α4,1 ≥ min (β4,1, ε4,1) = min
(

2
9
,
1
5

)
=

1
5

= ε4,1.

Now the proof of Theorem 1 is complete.

4. Extremal examples

We describe an infinite series of examples showing that all bounds of Theorem 1 are tight.
Our reasoning is quite simple: we construct a graph for which all inequalities proved in the
theorem become equalities. Let �(G) = k, g(G) = g. Consider two cases.

1. k = 1. Let n = 	g+1
2 
 − 1. In the case under consideration, αg,1 = n

4n+1 . Let Bg,1 be a
cycle of length 2n + 2 with n + 1 marked vertices (no two marked vertices are adjacent) and
a spine with two vertices attached to each marked vertex. All marked vertices are cutpoints
of our graph. Unmarked vertices are vertices of degree 2. Thus no two vertices of degree 2
are adjacent in our graph. We have �(Bg,1) = 1, g(Bg,1) = 2n + 2 ≥ g, v(Bg,1) = 4n + 4. An
example of such a graph for n = 2 (i.e., g = 5 or g = 6) is shown in Fig. 3a.

Fig. 3. An extremal example for k = 1.

Let us compute u(Bg,1). All n + 1 pendant vertices of Bg,1 (endpoints of spines) are leaves
of any spanning tree of Bg,1. Since deleting leaves of a spanning tree cannot make the graph

41



disconnected, only one nonpendant vertex of Bg,1 can be a leaf of a spanning tree (of course,
this vertex will not be the base of a spine). Thus u(Bg,1) = n + 2. It is easy to check that

u(Bg,1) = n + 2 = 2 +
n

4n + 1
· (v(Bg,1) − 1 − 2

)
.

Therefore, the bound of Theorem 1 is tight for the graph Bg,1.
2. k ≥ 2. In this case, αg,k = δk = 1

2k+2 . Let Bg,k be the following tree: a vertex of degree 3
with three spines (with k+1 vertices each) attached to it. Then g(Bg,k) = ∞, v(Bg,k) = 3k+4,
�(Bg,k) = k, u(Bg,k) = 3. An example of such a graph for k = 3 is shown in Fig. 4a. It can be
easily checked that

u(Bg,k) = 3 = 2 +
1

2k + 2
· (v(Bg,k) − k − 2

)
.

Therefore, the bound of Theorem 1 is tight for the graph Bg,k.

Fig. 4. An extremal example for k ≥ 2.

3. Now we show how one can construct extremal examples from the details Bg,k in both
cases. Let G be a graph satisfying the conditions

u(G) = αg,k · (v(G) − k − 2) + 2, g(G) ≥ g, �(G) ≤ k

and having at least one pendant vertex a. We construct a graph G′ as follows: merge the
vertex a of G with an endpoint of a spine of Bg,k, and then contract k +1 bridges (edges of the
attached spine of Bg,k). As a result, we obtain a graph G′ satisfying the following conditions:

v(G′) = v(G) + v(Bg,k) − k − 2, g(G′) ≥ g, �(G′) ≤ k.

By claim (ii) of Lemma 1, we have u(G′) = αg,k · (v(G′) − k − 2) + 2, i.e., the graph G′ is
also an extremal example, which confirms that the bound of Theorem 1 is tight. First we take
G = Bg,k, and then we can construct arbitrarily large extremal examples by gluing each time
a new graph Bg,k to the graph we already have. Two such examples are shown in Figs. 3b
and 4b.

The research is partially supported by the President of the Russian Federation grant NSh-
9721.2016.1, by the Government of the Russian Federation grant 14.Z50.31.0030, and by the
RFBR grant 14-01-00156.

Translated by D. V. Karpov.
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