BOUNDS ON THE DYNAMIC CHROMATIC NUMBER OF A GRAPH IN TERMS OF ITS CHROMATIC NUMBER

N. Y. Vlasova^{*} and D. V. Karpov[†]

UDC 519.174.7

A vertex coloring of a graph is called dynamic if the neighborhood of any vertex of degree at least 2 contains at least two vertices of distinct colors. Similarly to the chromatic number $\chi(G)$ of a graph G, one can define its dynamic number $\chi_d(G)$ (the minimum number of colors in a dynamic coloring) and dynamic chromatic number $\chi_2(G)$ (the minimum number of colors in a proper dynamic coloring). We prove that $\chi_2(G) \leq \chi(G) \cdot \chi_d(G)$ and construct an infinite series of graphs for which this bound on $\chi_2(G)$ is tight.

For a graph G, set $k = \lceil \frac{2\Delta(G)}{\delta(G)} \rceil$. We prove that $\chi_2(G) \leq (k+1)c$. Moreover, in the case where $k \geq 3$ and $\Delta(G) \geq 3$, we prove the stronger bound $\chi_2(G) \leq kc$. Bibliography: 9 titles.

1. NOTATION AND MAIN RESULTS

In this note, we consider finite undirected graphs without loops and multiple edges and their proper colorings.

We use the standard notation. The vertex set of a graph G is denoted by V(G).

We denote the *degree* of a vertex x in a graph G by $d_G(x)$. We denote the maximum and minimum vertex degree of a graph G by $\Delta(G)$ and $\delta(G)$, respectively.

Let $N_G(w)$ denote the *neighborhood* of a vertex $w \in V(G)$ (i.e., the set of all vertices of a graph G adjacent to w).

When considering a vertex coloring ρ of a graph G, we denote by $\rho(v)$ the color of a vertex v.

Definition 1. (1) A vertex coloring is proper if any two adjacent vertices have distinct colors. (2) A vertex coloring of a graph G is dynamic if for every vertex $v \in V(G)$ with $d_G(x) \ge 2$, its neighborhood $N_G(v)$ contains vertices of at least two distinct colors.

(3) A vertex coloring of a hypergraph is proper if every hyperedge contains at least two vertices of distinct colors.

Given a graph G, consider the hypergraph \mathcal{G} on the vertex set of G whose hyperedges are the neighborhoods of vertices of G. Then a proper dynamic vertex coloring of the graph G is a proper coloring of G and, simultaneously, a proper vertex coloring of the hypergraph \mathcal{G} .

Definition 2. (1) The chromatic number of a graph (or hypergraph) G (denoted by $\chi(G)$) is the smallest positive integer such that there is a proper vertex coloring of G with $\chi(G)$ colors.

(2) The dynamic number of a graph G (denoted by $\chi_d(G)$) is the smallest positive integer such that there is a dynamic vertex coloring of G with $\chi_d(G)$ colors.

(3) The dynamic chromatic number of a graph G (denoted by $\chi_2(G)$) is the smallest positive integer such that there is a proper dynamic vertex coloring of G with $\chi_2(G)$ colors.

Let G be a connected graph with $\Delta(G) \geq 3$ different from a complete graph K_{d+1} on d+1 vertices. Brooks' theorem [1] tells us that $\chi(G) \leq \Delta(G)$.

1072-3374/18/2321-0021 ©2018 Springer Science+Business Media, LLC

^{*}St.Petersburg State University, St.Petersburg, Russia, e-mail: evropa2100@mail.ru.

[†]St.Petersburg Department of Steklov Institute of Mathematics and St.Petersburg State University, St.Petersburg, Russia, e-mail: dvk0@yandex.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 450, 2016, pp. 37–42. Original article submitted October 11, 2016.

In [2], it is proved that $\chi_2(G) \leq \Delta(G) + 1$. Moreover, if $\Delta(G) \leq 3$, then the inequality $\chi_2(G) \leq 4$ holds with the only exception, the case where G is the cycle on 5 vertices.

In [5] and [7], an analog of Brooks' theorem for proper dynamic colorings is proved: for any connected graph G with $\Delta(G) \leq d$ and $d \geq 6$, with several exceptions, the inequality $\chi_2(G) \leq \Delta(G)$ holds.

In [6], the following result for dynamic colorings is proved.

Theorem 1. Let G be a connected graph and $k = \left\lceil \frac{2\Delta(G)}{\delta(G)} \right\rceil$. Then

- (1)
- $\chi_d(G) \leq k+1;$ if $\delta(G) \geq 3$ and $k \geq 3$, then $\chi_d(G) \leq k$. (2)

Recently, several attempts to estimate the dynamic chromatic number of a graph in terms of its chromatic number have appeared. In [8], it is proved that a connected graph Gwith $\chi(G) \geq 6$ has a proper coloring with $\chi(G)$ colors such that the set of bad vertices is independent (a vertex x is bad if $d_G(x) > 2$ and all vertices in $N_G(x)$ have the same color).

In [4], it is proved that any regular bipartite graph G has a proper dynamic coloring with 4 colors. Moreover, in this coloring each of the two parts of G is divided into two new colors.

In this paper, we estimate the dynamic chromatic number of a graph in terms of its dynamic and chromatic numbers.

Theorem 2. For any graph G, the inequality $\chi_2(G) \leq \chi_d(G) \cdot \chi(G)$ holds.

In what follows, we prove this theorem (the proof is quite easy) and construct a series of graphs for which the bound of Theorem 2 is attained.

An immediate corollary of Theorems 2 and 1 is the following result, generalizing that proved in [4] for an arbitrary chromatic number and a graph that is not necessarily regular.

Corollary 1. Let $k = \left\lceil \frac{2\Delta(G)}{\delta(G)} \right\rceil$, $c = \chi(G)$. Then (1) $\chi_2(G) \leq (k+1)c$; (2)if $\delta(G) > 3$ and k > 3, then $\chi_2(G) < kc$.

The bound from Corollary 1 is not tight. For a regular bipartite graph G, Corollary 1 gives $\chi_2(G) \leq 6$, while the result of [4] gives $\chi_2(G) \leq 4$. However, for a bipartite graph with a small difference between $\delta(G)$ and $\Delta(G)$, Corollary 1 also provides the bound $\chi_2(G) \leq 6$, which is much more interesting. Note that Corollary 1 provides rather good bounds on $\chi_2(G)$ for graphs G with small $\frac{\Delta(\bar{G})}{\delta(G)}$.

2. Proof of Theorem 2 and a series of examples

Proof of Theorem 2. Consider a dynamic coloring ρ_d of G with $\chi_d(G)$ colors and a proper vertex coloring ρ_c of G with $\chi(G)$ colors. Define a new coloring ρ as follows:

$$\rho(v) = (\rho_c(v), \rho_d(v))$$

Clearly, the coloring ρ uses $\chi(G) \cdot \chi_d(G)$ colors. Since ρ_c is a proper coloring, ρ is also proper. Let v be a vertex with $d_G(v) \ge 2$. Then there are two vertices in $N_G(v)$ having different colors in the dynamic coloring ρ_d . Clearly, these two vertices have different colors in ρ . Hence ρ is a proper dynamic vertex coloring of G.

Thus $\chi_2(G) \leq \chi(G) \cdot \chi_d(G)$.

Let us construct a series of graphs for which $\chi_2(G) = \chi(G) \cdot \chi_d(G)$. For any positive integers $k \geq 2$ and c, we construct a graph G with

$$\chi_d(G) = k$$
, $\chi(G) = c$, and $\chi_2(G) = kc$.

Let \mathcal{H} be a hypergraph with $\chi(\mathcal{H}) = k$. Clearly, such a hypergraph exists. Indeed, for any positive integer $n \geq 2$, we can construct a hypergraph \mathcal{H} such that $|V(\mathcal{H})| = k(n-1)$ and any n vertices of $V(\mathcal{H})$ form a hyperedge. If we color the vertices of \mathcal{H} with at most k-1colors, then we can find n vertices of the same color. Since these vertices form a hyperedge, the coloring is not proper. But if we color the vertices with k colors so that the number of vertices of each color is exactly n-1, then, clearly, we obtain a proper coloring of \mathcal{H} . Hence $\chi(\mathcal{H}) = k$.

Consider c copies $\mathcal{H}_1, \ldots, \mathcal{H}_c$ of the hypergraph \mathcal{H} with $V(\mathcal{H}_i) = A_i$ and $E(\mathcal{H}_i) = B_i$. Set $B = \bigcup_{i=1}^{c} B_i$. We will construct a graph G on the vertex set

$$V = \left(\bigcup_{i=1}^{c} A_i\right) \cup B$$

(i.e., the vertices of G correspond to the vertices and edges of the c copies of \mathcal{H}). The sets A_1, \ldots, A_c are independent in G, and any two vertices of different sets A_i and A_j are adjacent in G. Any vertex $b \in B_i$ is adjacent in G to all vertices of the corresponding hyperedge of \mathcal{H}_i .

Let us find the dynamic, chromatic, and dynamic chromatic numbers of G.

1. $\chi(G) = c$.

Clearly, for distinct $i, j \in \{1, ..., c\}$, the sets A_i and A_j cannot contain vertices of the same color. Hence $\chi(G) \ge c$. On the other hand, one can color each set A_i with color i, and then color the vertices of each set B_i with any color different from i. Clearly, we obtain a proper coloring. Hence $\chi(G) = c$.

2. $\chi_d(G) = k$.

Since $\chi(\mathcal{H}) = k$, for any vertex coloring of G with less than k colors, the hypergraph \mathcal{H}_1 has a hyperedge $b \in B_i$ whose all vertices have the same color. Hence $N_G(b)$ is colored with one color, and the coloring is not dynamic.

On the other hand, there is a proper coloring of \mathcal{H} with k colors. Let us color all copies of \mathcal{H} as in this coloring. After that, color all vertices of B with color 1. Let us prove that the obtained coloring of G is dynamic. A vertex $b \in B$ is not bad, since the corresponding hyperedge contains two vertices of distinct colors (recall that the coloring of each copy of \mathcal{H} is proper). A vertex $a \in A_i$ is adjacent to all vertices of A_j (where $j \neq i$), and these vertices are colored with $\chi(\mathcal{H}) = k \geq 2$ colors.

Thus $\chi_d(G) = k$.

3. $\chi_2(G) \ge kc$.

Consider a proper dynamic coloring of G. As proved in Claim 2 above, in a dynamic coloring the vertices of each of the sets A_1, \ldots, A_c must be colored with at least k colors. Recall that for $i \neq j$, any vertex of A_i is adjacent to any vertex of A_j . Since the coloring is proper, A_i and A_j cannot contain vertices of the same color. Hence $\chi_2(G) \geq kc$.

The research is partially supported by the President of the Russian Federation grant NSh-9721.2016.1, by the Government of the Russian Federation grant 14.Z50.31.0030, and by the RFBR grant 14-01-00545.

Translated by D. V. Karpov.

REFERENCES

 R. L. Brooks, "On coloring the nodes of a network," Proc. Cambridge Philos. Soc., 37, 194–197 (1941).

- H.-J. Lui, B. Montgomery, and H. Poon, "Upper bounds of dynamic chromatic number," Ars Combin., 68, 193–201 (2003).
- S. Akbari, M. Ghanbari, and S. Jahanbekam, "On the list dynamic coloring of graphs," Discrete Appl. Math., 157, No. 14, 3005–3007 (2009).
- S. Akbari, M. Ghanbari, and S. Jahanbekam, "On the dynamic chromatic number of graphs," *Contemp. Math.*, 531, 11–18 (2010).
- 5. D. V. Karpov, "Dynamic proper colorings of a graph," Zap. Nauchn. Semin. POMI, **381**, 47–77 (2010).
- N. V. Gravin and D. V. Karpov, "On proper colorings of hypergraphs," Zap. Nauchn. Semin. POMI, 391, 79–89 (2011).
- D. Karpov, "An analog of Brooks' theorem for dynamic colorings," Moscow J. Combin. Number Theory, 6, No. 1 (2016).
- A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari, "On the difference between chromatic number and dynamic chromatic number of graphs," *Discrete Math.*, **312**, No. 17, 2579–2583 (2012).
- S.-J. Kim, S. J. Lee, and W.-J Park, "Dynamic coloring and list dynamic coloring of planar graphs," *Discrete Appl. Math.*, 161, 2207–2212 (2013).