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BOUNDS ON THE DYNAMIC CHROMATIC NUMBER
OF A GRAPH IN TERMS OF ITS CHROMATIC
NUMBER

N. Y. Vlasova∗ and D. V. Karpov† UDC 519.174.7

A vertex coloring of a graph is called dynamic if the neighborhood of any vertex of degree at
least 2 contains at least two vertices of distinct colors. Similarly to the chromatic number χ(G)
of a graph G, one can define its dynamic number χd(G) (the minimum number of colors in a
dynamic coloring) and dynamic chromatic number χ2(G) (the minimum number of colors in a
proper dynamic coloring). We prove that χ2(G) ≤ χ(G) · χd(G) and construct an infinite series
of graphs for which this bound on χ2(G) is tight.

For a graph G, set k = � 2Δ(G)
δ(G) �. We prove that χ2(G) ≤ (k + 1)c. Moreover, in the case where

k ≥ 3 and Δ(G) ≥ 3, we prove the stronger bound χ2(G) ≤ kc. Bibliography: 9 titles.

1. Notation and main results

In this note, we consider finite undirected graphs without loops and multiple edges and their
proper colorings.

We use the standard notation. The vertex set of a graph G is denoted by V (G).
We denote the degree of a vertex x in a graph G by dG(x). We denote the maximum and

minimum vertex degree of a graph G by Δ(G) and δ(G), respectively.
Let NG(w) denote the neighborhood of a vertex w ∈ V (G) (i.e., the set of all vertices of a

graph G adjacent to w).
When considering a vertex coloring ρ of a graph G, we denote by ρ(v) the color of a vertex v.

Definition 1. (1) A vertex coloring is proper if any two adjacent vertices have distinct colors.
(2) A vertex coloring of a graph G is dynamic if for every vertex v ∈ V (G) with dG(x) ≥ 2,

its neighborhood NG(v) contains vertices of at least two distinct colors.
(3) A vertex coloring of a hypergraph is proper if every hyperedge contains at least two

vertices of distinct colors.

Given a graph G, consider the hypergraph G on the vertex set of G whose hyperedges are
the neighborhoods of vertices of G. Then a proper dynamic vertex coloring of the graph G is
a proper coloring of G and, simultaneously, a proper vertex coloring of the hypergraph G.

Definition 2. (1) The chromatic number of a graph (or hypergraph) G (denoted by χ(G)) is
the smallest positive integer such that there is a proper vertex coloring of G with χ(G) colors.

(2) The dynamic number of a graph G (denoted by χd(G)) is the smallest positive integer
such that there is a dynamic vertex coloring of G with χd(G) colors.

(3) The dynamic chromatic number of a graph G (denoted by χ2(G)) is the smallest positive
integer such that there is a proper dynamic vertex coloring of G with χ2(G) colors.

Let G be a connected graph with Δ(G) ≥ 3 different from a complete graph Kd+1 on d + 1
vertices. Brooks’ theorem [1] tells us that χ(G) ≤ Δ(G).
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In [2], it is proved that χ2(G) ≤ Δ(G) + 1. Moreover, if Δ(G) ≤ 3, then the inequality
χ2(G) ≤ 4 holds with the only exception, the case where G is the cycle on 5 vertices.

In [5] and [7], an analog of Brooks’ theorem for proper dynamic colorings is proved: for
any connected graph G with Δ(G) ≤ d and d ≥ 6, with several exceptions, the inequality
χ2(G) ≤ Δ(G) holds.

In [6], the following result for dynamic colorings is proved.

Theorem 1. Let G be a connected graph and k =
⌈

2Δ(G)
δ(G)

⌉
. Then

(1) χd(G) ≤ k + 1;
(2) if δ(G) ≥ 3 and k ≥ 3, then χd(G) ≤ k.

Recently, several attempts to estimate the dynamic chromatic number of a graph in terms
of its chromatic number have appeared. In [8], it is proved that a connected graph G
with χ(G) ≥ 6 has a proper coloring with χ(G) colors such that the set of bad vertices is
independent (a vertex x is bad if dG(x) ≥ 2 and all vertices in NG(x) have the same color).

In [4], it is proved that any regular bipartite graph G has a proper dynamic coloring with
4 colors. Moreover, in this coloring each of the two parts of G is divided into two new colors.

In this paper, we estimate the dynamic chromatic number of a graph in terms of its dynamic
and chromatic numbers.

Theorem 2. For any graph G, the inequality χ2(G) ≤ χd(G) · χ(G) holds.

In what follows, we prove this theorem (the proof is quite easy) and construct a series of
graphs for which the bound of Theorem 2 is attained.

An immediate corollary of Theorems 2 and 1 is the following result, generalizing that proved
in [4] for an arbitrary chromatic number and a graph that is not necessarily regular.

Corollary 1. Let k =
⌈

2Δ(G)
δ(G)

⌉
, c = χ(G). Then

(1) χ2(G) ≤ (k + 1)c;
(2) if δ(G) ≥ 3 and k ≥ 3, then χ2(G) ≤ kc.

The bound from Corollary 1 is not tight. For a regular bipartite graph G, Corollary 1 gives
χ2(G) ≤ 6, while the result of [4] gives χ2(G) ≤ 4. However, for a bipartite graph with a small
difference between δ(G) and Δ(G), Corollary 1 also provides the bound χ2(G) ≤ 6, which
is much more interesting. Note that Corollary 1 provides rather good bounds on χ2(G) for
graphs G with small Δ(G)

δ(G) .

2. Proof of Theorem 2 and a series of examples

Proof of Theorem 2. Consider a dynamic coloring ρd of G with χd(G) colors and a proper
vertex coloring ρc of G with χ(G) colors. Define a new coloring ρ as follows:

ρ(v) = (ρc(v), ρd(v)).

Clearly, the coloring ρ uses χ(G) ·χd(G) colors. Since ρc is a proper coloring, ρ is also proper.
Let v be a vertex with dG(v) ≥ 2. Then there are two vertices in NG(v) having different colors
in the dynamic coloring ρd. Clearly, these two vertices have different colors in ρ. Hence ρ is a
proper dynamic vertex coloring of G.

Thus χ2(G) ≤ χ(G) · χd(G). �
Let us construct a series of graphs for which χ2(G) = χ(G) · χd(G).
For any positive integers k ≥ 2 and c, we construct a graph G with

χd(G) = k, χ(G) = c, and χ2(G) = kc.
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Let H be a hypergraph with χ(H) = k. Clearly, such a hypergraph exists. Indeed, for any
positive integer n ≥ 2, we can construct a hypergraph H such that |V (H)| = k(n − 1) and
any n vertices of V (H) form a hyperedge. If we color the vertices of H with at most k − 1
colors, then we can find n vertices of the same color. Since these vertices form a hyperedge,
the coloring is not proper. But if we color the vertices with k colors so that the number of
vertices of each color is exactly n − 1, then, clearly, we obtain a proper coloring of H. Hence
χ(H) = k.

Consider c copies H1, . . . , Hc of the hypergraph H with V (Hi) = Ai and E(Hi) = Bi. Set

B =
c⋃

i=1
Bi. We will construct a graph G on the vertex set

V =
( c⋃

i=1

Ai

)
∪ B

(i.e., the vertices of G correspond to the vertices and edges of the c copies of H). The sets
A1, . . . , Ac are independent in G, and any two vertices of different sets Ai and Aj are adjacent
in G. Any vertex b ∈ Bi is adjacent in G to all vertices of the corresponding hyperedge of Hi.

Let us find the dynamic, chromatic, and dynamic chromatic numbers of G.

1. χ(G) = c.
Clearly, for distinct i, j ∈ {1, . . . , c}, the sets Ai and Aj cannot contain vertices of the same
color. Hence χ(G) ≥ c. On the other hand, one can color each set Ai with color i, and then
color the vertices of each set Bi with any color different from i. Clearly, we obtain a proper
coloring. Hence χ(G) = c.

2. χd(G) = k.
Since χ(H) = k, for any vertex coloring of G with less than k colors, the hypergraph H1 has
a hyperedge b ∈ Bi whose all vertices have the same color. Hence NG(b) is colored with one
color, and the coloring is not dynamic.

On the other hand, there is a proper coloring of H with k colors. Let us color all copies
of H as in this coloring. After that, color all vertices of B with color 1. Let us prove that
the obtained coloring of G is dynamic. A vertex b ∈ B is not bad, since the corresponding
hyperedge contains two vertices of distinct colors (recall that the coloring of each copy of H is
proper). A vertex a ∈ Ai is adjacent to all vertices of Aj (where j �= i), and these vertices are
colored with χ(H) = k ≥ 2 colors.

Thus χd(G) = k.

3. χ2(G) ≥ kc.
Consider a proper dynamic coloring of G. As proved in Claim 2 above, in a dynamic coloring

the vertices of each of the sets A1, . . . , Ac must be colored with at least k colors. Recall that
for i �= j, any vertex of Ai is adjacent to any vertex of Aj. Since the coloring is proper, Ai

and Aj cannot contain vertices of the same color. Hence χ2(G) ≥ kc.
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