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SMOOTH CONTACT OF A SEMIINFINITE PUNCH WITH ROUNDED EDGE  
AND AN ELASTIC STRIP 

Т. V. Klimchuk  and  V. І. Ostryk  UDC 539.3 

We consider a problem of contact of an elastic strip with a semiinfinite punch with rounded edge indent-
ed into one face of the strip, while the other face of the strip is fixed.  Friction forces in the contact zone 
are neglected.  By the Wiener–Hopf method, we obtain the exact analytic solution of the problem.   
The distributions of contact stresses, the stresses inside the strip and along its fixed face, and the normal 
displacements of points of a part of the load-free face of the strip are determined.  We construct the iso-
chores and determine the position of the point at which the maximum values of the principal shear 
stresses are attained.  

Contact problems of the theory of elasticity for a strip in the case where a semiinfinite punch with rectiline-
ar horizontal base is indented into a face of the strip, while the other face of the strip is under the conditions of 
smooth contact with the rigid base or is fixed were considered in [1, 2, 6].  The exact analytic solutions of these 
problems were found by the Wiener–Hopf method.  

In what follows, we construct an analytic solution of the contact problem for an elastic strip in the case 
where the edge of a punch is rounded.  The influence of rounding of the edge of a punch on the distribution of 
contact stresses in contact problems posed for an elastic half space was investigated in [8, 9]. 

1.  Statement of the Problem 

Consider the state of plane deformation in an elastic strip  −∞ < x < ∞ ,  −h ≤ y ≤ h   of width  2h   with 
Poisson’s ratio  ν   and shear modulus  G   (Fig. 1).  The bottom face  y = −h ,  −∞ < x < ∞ ,  of the strip is rigid-
ly fixed and a semiinfinite punch with rectilinear base and rounded edge is indented into the top face of the 
strip  y = h   within the interval  0 ≤ x < ∞   under the action of a uniformly distributed normal load with intensi-
ty  p .  The remaining part  −∞ < x < 0   of the face  y = h   of the strip is free of loads.  We neglect the friction 
forces acting in the contact zone  0 ≤ x < ∞ ,  y = h ,  of the punch and the strip. 

The boundary conditions of the problem are as follows:  

 
 
uy y=h

= f0(x)H (ℓ − x) − δ ,    0 ≤ x < ∞ , 

 σ y y=h
= 0 ,    −∞ < x < 0 , (1) 

 τyx y=h
= 0 ,      ux y=−h = 0 ,      uy y=−h

= 0 ,    −∞ < x < ∞ , 
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Fig. 1 

where   

 
 
y = f0(x) ≡ 1

2R (x − ℓ)2 ,      x ≤ ℓ , 

is the equation of the rounded edge of the punch,  R   is the radius of curvature of the curvilinear part of the 
punch contour at the point   x = ℓ ,  H (x)   is a Heaviside function, and  δ   is the depression of the strip under the 
punch.  In view of the conditions imposed at infinity,   

 σ y = − p ,      εx = 0,       εy = −δ/(2h),      x → ∞ ,   

we express the depression  δ   in terms of pressure  p   as follows: 

 δ
2h

= 1− 2ν
1− ν

p
2G

. (2) 

2.  Integral Equation 

We now introduce an unknown function of normal contact stresses 

 σ(x) = 1
2G

σ y
y=h

,    0 < x < ∞ , (3) 

and its Fourier transform  (σ(x) = 0 ,  −∞ < x < 0 ) 

 
 
!σ(µ) = 1

2π
σ(r) eiµr dr

0

∞

∫ . (4) 

To deduce the integral equation, we consider the principal mixed boundary-value problem for the strip with 
the following conditions: 

 1
2G

σ y
y=h

= σ(x),      τyx y=h
= 0 , 

   (5) 
 ux y=−h = 0 ,      uy y=−h

= 0 . 
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The general solution of the equilibrium equations for the strip has the form [5, 6]  

 ux = ∂
∂x

u(µ, y) e−iµx dµ
−∞

∞

∫ ,      uy = v(µ, y) e−iµx dµ
−∞

∞

∫ , 

 1
2G

σ x = σ1(µ, y) e−iµx dµ
−∞

∞

∫ ,      1
2G

σ y = σ2(µ, y) e−iµx dµ
−∞

∞

∫ , 

 1
2G

τyx = ∂
∂x τ(µ, y) e−iµx dµ

−∞

∞

∫ , 

 µ2u(µ, y) = µA(µ) cosh µy + µB(µ) sinh µy   

  + C(µ) (3− 4ν) cosh µy + µy sinh µy[ ]   

  – D(µ) (3− 4ν) sinh µy + µy cosh µy[ ] , 
   (6) 
 v(µ, y) = A(µ) sinh µy + B(µ) cosh µy + C(µ)y cosh µy − D(µ)y sinh µy , 

 σ1(µ, y) = −µA(µ) cosh µy − µB(µ) sinh µy   

  – C(µ) (3− 2ν) cosh µy + µy sinh µy[ ]  

  + D(µ) (3− 2ν) sinh µy + µy cosh µy[ ], 

 σ2(µ, y) = µA(µ) cosh µy + µB(µ) sinh µy   

  + C(µ) (1− 2ν) cosh µy + µy sinh µy[ ]  

  – D(µ) (1− 2ν) sinh µy + µy cosh µy[ ], 

 µτ(µ, y) = µA(µ) sinh µy + µB(µ) cosh µy   

  + C(µ) 2(1− ν) sinh µy + µy cosh µy[ ]  

  – D(µ) 2(1− ν) cosh µy + µy sinh µy[ ], 

where  A(µ),  B(µ),  C(µ),  and  D(µ)  are arbitrary functions.  
Substituting solution (6) in the boundary conditions (5), we get the following system of linear algebraic 

equations: 

  σ2(µ, h) = !σ(µ) ,      τ(µ, h) = 0 ,      u(µ, −h) = 0 ,      v(µ, −h) = 0  (7) 
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for the unknowns  A(µ),  B(µ),  C(µ),  and  D(µ).  Hence, we find 

  A(µ) = {2(1− ν)(3− 4ν) cosh 3µh  +  [(2µh)
2 + 2(1− ν)(3− 4ν)]cosh µh  

  +    2µh[(3− 4ν)(cosh 2µh +1) + 2(1− ν)]sinh µh}!σ(µ)(µΔ(2µh))−1, 

   B(µ) = {2(1− ν)(3− 4ν) sinh 3µh − [(2µh)2 + 2(1− ν)(3− 4ν)]sinh µh  

  +    2µh[(3− 4ν)(cosh 2µh −1) − 2(1− ν)]cosh µh}!σ(µ)(µΔ(2µh))−1, 

    C(µ) = −[(3− 4ν) cosh 3µh + cosh µh + 4µh sinh µh] !σ(µ)(Δ(2µh))−1, (8) 

    D(µ) = [(3− 4ν) sinh 3µh − sinh µh − 4µh cosh µh] !σ(µ)(Δ(2µh))−1, 

 Δ(2µh) = (3− 4ν)(cosh 4µh −1) + 2(2µh)2 + 8(1− ν)2 . 

Relations (6) and (8) yield, in particular, the expressions for the normal displacements at the points of the 
top face of the strip 

 
  
uy y=h

= 2h K (2µh) !σ(µ)e−iµx dµ
−∞

∞

∫ , 

 
 
K (2µh) = λ(2µh)

2µhΔ(2µh)
,  (9) 

  λ(2µh) = 2(1− ν)[(3− 4ν) sinh 4µh − 4µh]. 

Substituting the expression for  uy y=h
  from (9) in the first boundary condition in (1), we obtain the follow-

ing equation: 

 
   
2h K (2µh) !σ(µ) e−iµx dµ

−∞

∞

∫ = f0(x)H (ℓ − x) − δ ,    0 ≤ x < ∞ . (10) 

In view of the behavior of the unknown function of contact stresses σ(x)  from (3) at infinity,  

 (  σ(x) ∼ − p/(2G),  x → ∞ ),   

we can represent it as follows: 

 σ(x) = − p
2G

+ σ∗(x) ,    σ∗(∞) = 0 . (11) 
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Then 

 
 
!σ(µ) = − p

4G
δ(µ) + i

πµ
⎛
⎝

⎞
⎠ +

1
2π

σ∗(r) eiµr dr
0

∞

∫ , (12) 

where  δ(µ)  is the Dirac delta-function. 
By the change of variables 

 x = 2hξ ,      r = 2hη ,      τ = 2µh ,        a = ℓ/(2h), (13) 

we pass to the following new unknown function:  

 ϕ(ξ) = − 2π 2h
δ

σ∗(2hξ) ,    0 ≤ ξ < ∞ . (14) 

As a result, we transform Eq. (10) into the integral equation 

 k(ξ − η)ϕ(η) dη
0

∞

∫ = f (ξ) ,    0 ≤ ξ < ∞ , (15) 

where 

 
 
k(ξ − η) = 1

2π
K (τ) e−iτ(ξ−η) dτ

−∞

∞

∫ , 

 f (ξ) = 2π δ−1 − f0(2hξ)H (a − ξ) + hp
G

λ(isk )
sk2 ′Δ (isk )

e−skξ
k=1

∞

∑
⎛

⎝⎜
⎞

⎠⎟
; 

here,  s k ,  k = 1, 2,…,  are the roots of the equation  Δ(is) = 0   from the half plane  Re s > 0 .  The function  f (ξ)   
and the right-hand side of Eq. (15) have been transformed by using the residue theory. 

3.  Solution of the Integral Equation by the Wiener–Hopf Method [3] 

We now extend the integral equation (15) to the entire real axis by assuming that  ϕ(η) = 0   for  η < 0   and 
apply the Fourier integral transformation to this equation.  We now introduce the following unknown functions 
of the complex variable  z : 

 Φ+ (z) = 1
2π

ϕ(ξ) eizξ dξ
0

∞

∫ , 

   (16) 

 Φ− (z) = 1
2π

eizξ dξ
−∞

0

∫ k(ξ − η)ϕ(η) dη
0

∞

∫ , 

analytic in the half planes  Im z > c+   and  Im z < c−   (c+ < 0 ,  c− > 0 ),  respectively. 
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By using the theorem on convolution for the Fourier integral transformation and representations (16), we 
reduce the integral equation (15) to the following functional equation: 

  K (z)Φ+ (z) − Φ− (z) = F+ (z) ,      c+ < Im z < c− . (17) 

The right-hand side of this equation 

 F+ (z) = 1
2π

f (ξ) eizξ dξ
0

∞

∫    

  =  1
δ

(2h)2

2R

⎡

⎣
⎢
⎢

a2

iz
+ 2a
(iz)2

− 2
(iz)3

(eiza −1)
⎛

⎝⎜
⎞

⎠⎟
 – hp

G
λ(isk )

sk2 ′Δ (isk )
1

iz − sk
⎤

⎦
⎥

k=1

∞

∑  (18) 

is an analytic function in the half plane  Im z > c+ .  
We now represent the coefficient   K (z)  in Eq. (17) in the form of an infinite product 

  K (z) = K (0)K + (z)K − (z),      
 
K (0) = 1− 2ν

1− ν
, 

   (19) 

 
 
K + (z) ≡ K − (−z) = 1− iz

ζk
⎛
⎝⎜

⎞
⎠⎟

1− iz
sk

⎛
⎝⎜

⎞
⎠⎟
−1

k=1

∞

∏ , 

where  ζ k ,   k = 1, 2,…,  are the roots of the equation  λ(is) = 0   from the half plane  Re s > 0 . 

We divide Eq. (17) by   K
− (z)  and represent the obtained right-hand side in the form  

 
 

F+ (z)
K − (z)

= f + (z) − f − (z),      c+ < Im z < c− , (20) 

where  f + (z)  and  f − (z)  are functions analytic in the half planes  Im z > c+   and  Im z < c− ,  respectively.  We 
represent the function  f + (z)  in the form of a Cauchy-type integral as follows: 

 
 
f + (z) = 1

2πi
F+ (ζ) dζ

K − (ζ)(ζ − z)−∞

∞

∫ = f1+ (z) + f2+ (z) ,    Im z > 0 , 

 
 
f1+ (z) = 1

δ
(2h)2

2R
K (0)
2πi

ζΔ(ζ)K + (ζ)
λ(ζ)(ζ − z)

a2

iζ
+ 2a
(iζ)2

− 2
(iζ)3

(eiζa −1)
⎛

⎝⎜
⎞

⎠⎟
dζ

−∞

∞

∫ , (21) 

 
 
f2+ (z) = −1

δ
hp
G

K (0)
2πi

ζΔ(ζ)K + (ζ)
λ(ζ)(ζ − z)

λ(isk )
sk2 ′Δ (isk )

1
iζ − sk

dζ
k=1

∞

∑
−∞

∞

∫ . 
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We find the integral for  f1+ (z)  via the residues of the integrand at its simple poles  ζ = iζk ,   k = 1, 2,…,  
ζ = z   from the half plane  Im ζ > 0  in which  eiζa → 0   for  ζ → ∞ .  Therefore, 

 
 
f1+ (z) = −1

δ
(2h)2

2R
K (0) iζkK + (iζk )Δ(iζk )

′λ (iζk )(iζk − z)
a2

ζk
− 2a
ζk2

− 2
ζk3

(e−ζka −1)
⎛

⎝⎜
⎞

⎠⎟k=1

∞

∑
⎡

⎣
⎢   

  + 
 

zΔ(z)K + (z)
λ(z)

−a
2

iz
− 2a
(iz)2

+ 2
(iz)3

(eiza −1)
⎛

⎝⎜
⎞

⎠⎟
⎤

⎦
⎥
⎥
. (22) 

In expansion (22), we sum the components of the series that do not contain the coefficient  e−ζka   by passing 
from the series in terms of residues from the half plane  Im τ > c ,  0 < c < ζ1,  to the integral along the straight 
line  Im ζ = c .  We compute this integral via the residue at the single pole  ζ = 0   from the half plane  Im τ < c .  
Hence, we get  

 
 
K (0) iζkK + (iζk )Δ(iζk )

′λ (iζk )(iζk − z)
a2

ζk
− 2a
ζk2

+ 2
ζk3

⎛

⎝⎜
⎞

⎠⎟k=1

∞

∑  

  =  
 
− 1
K − (z)

−a
2

iz
− 2a
(iz)2

− 2
(iz)3

⎛

⎝⎜
⎞

⎠⎟
 

   + 
 

1
2πi

1
K − (τ)(τ − z)

−a
2

iτ
− 2a
(iτ)2

− 2
(iτ)3

⎛

⎝⎜
⎞

⎠⎟
dτ

−∞+ic

∞+ic

∫  

  =  
 
− 1
K (−z)

−a
2

iz
− 2a
(iz)2

− 2
(iz)3

⎛

⎝⎜
⎞

⎠⎟
+ a1

z
+ a2
z2

+ a3
z3

. (23) 

Here, 

 a1 = i(a2 + 2ab1 + 2b2 ) ,      a2 = 2(a + b1) ,      a3 = −2i , 

 
  

1
K − (z)

= 1+ b1iz + b2(iz)2 +O((iz)3),      z → 0 , 

 b1 = 1
sk

− 1
ζk

⎛
⎝⎜

⎞
⎠⎟k=1

∞

∑ , (24) 

 b2 = 1
sk

− 1
ζk

⎛
⎝⎜

⎞
⎠⎟

1
sm

− 1
ζm

⎛
⎝⎜

⎞
⎠⎟
− 1
ζkm=k+1

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥

k=1

∞

∑  

  =  1
2

b1
2 −

ν(1− 4ν)
3(1− ν)(1− 2ν)

⎛
⎝⎜

⎞
⎠⎟

. 
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We transform the integral for  f2+ (z)  with the help of residues at the points  ζ = − isk ,   k = 1, 2,…,  from the 
half plane  Im ζ < 0   into a series 

 
 
f2+ (z) = i

δ
hp
G

λ(isk )
sk2 ′Δ (isk )

1
K − (−isk )(z + isk )k=1

∞

∑  (25) 

and find the sum of this series by analogy with (23).  We find 

 
 
f2+ (z) = i

δ
hp
G

K (0) 1− K + (z)
z

. (26) 

As a result, we obtain 

 
 
f + (z) = −1

δ
(2h)2

2R
2K (0) K + (iζk )Δ(iζk )

iζk2 ′λ (iζk )(iζk − z)
e−ζka

k=1

∞

∑
⎛

⎝⎜
 

  + 
 

1
K − (z)

2
(iz)3

eiza + a1
z
+ a2
z2

+ a3
z3

⎞
⎠⎟
+ i
δ
hp
G

K (0) 1− K + (z)
z

. (27) 

The operations performed according to relations (19) and (20) enable us to rewrite Eq. (17) in the form  

 
 
K (0)K + (z)Φ+ (z) − f + (z) = Φ− (z)

K − (z)
− f − (z),      c+ < Im z < c− . (28) 

We place the functions analytic in the half plane  Im z > c+   on the left-hand side of Eq. (28) and the func-
tions analytic in the half plane  Im z < c−   on its right-hand side.  In view of the fact that the half planes have 
the common band of analyticity  c+ < Im z < c− ,  the left- and right-hand sides of Eq. (28) serve as analytic  
extensions of each other to the entire complex plane and determine an entire function  P(z).  In view of the esti-
mates   

   K
+ (z) = O(z−1/2 ) ,     Φ+ (z) = o(1),     f + (z) = O(z−1),     z → ∞ ,   

we determine the asymptotic behavior of the function  P(z)  as  z → ∞ :   P(z) = o(z−1/2 ).  Hence, we conclude 
that  P(z) ≡ 0.  Thus, we get the following solution of the functional equation (17): 

 
 
Φ+ (z) = f + (z)

K (0)K + (z)
,            Φ

− (z) = f − (z)K − (z). (29) 

According to the Watson lemma [7],  it follows from the behavior of the function   Φ
+ (z) = O(z−1/2 )  

as z → ∞   and relations (3), (11), (14), and (16) that the contact stresses  σ y y=h
  are unbounded at the end  

of the contact zone  (x → + 0).  We demand that the stresses must be bounded at the point  x = 0 ,  y = h   and 
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impose the condition   

 lim
z →∞

z f + (z) = 0 .   

In view of (27), this condition can be represented in the form 

 
 
K (0) − 2 hG

pR
2K (0) Δ(iζk )K + (iζk )

ζk2 ′λ (iζk )
e−ζka + a1

k=1

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥ = 0 . (30) 

Equation (30) connects the relative size    a = ℓ/(2h)   of the curvilinear part of the punch base operating in 
contacts with the elastic strip with the cumulative parameter   hG/(pR)   of the problem.  Under condition (30), 
the behavior of contact stresses at the end of the contact zone can be described as follows:  

 σ y y=h
= O x( ) ,   x → + 0 . 

Applying the inverse Fourier transformation to the first equality of (16) and taking into account (29), we ob-
tain the solution of the integral equation (15) in the form  

 
 
ϕ(ξ) = 1

2π
Φ+ (τ)e−iτξ dτ

−∞

∞

∫ = 1
2π

f + (τ)
K (0)K + (τ)

e−iτξ dτ
−∞

∞

∫ . (31) 

4.  Determination of Stresses and Displacements 

We now find the contact stresses by using relations (3) and (31) with the help of relations (11) and (14).   
As a result of the transformation of the integral from (31) according to the residue theory, we get 

 1
p
σ y

y=h
= −1− 1

KK (0)
2hG
pR

2ν(1− 4ν)
3(1− ν)(1− 2ν)

− (ξ − a)2⎛
⎝⎜

⎞
⎠⎟
H a − ξ( )  

  – 
 

ζkΔ(iζk )
′λ (iζk )

K + (iζk )e−ζkξ
k=1

∞

∑ 4hG
pR

1
ζk3K + (iζk )

⎡

⎣
⎢

⎧
⎨
⎪

⎩⎪
 

  × sgn (ξ − a) eζk (ξ− ξ−a ) − 1
ζk3

+ a2
2ζk2

+ a1
2ζk

⎛
⎝⎜

⎞
⎠⎟

 

  – 
 
K (0) Δ(iζn )K + (iζn )

ζn2 ′λ (iζn )(ζn + ζk )
e−ζna

n=1

∞

∑
⎤

⎦
⎥ + K (0) 1

ζk

⎫
⎬
⎪

⎭⎪
, (32) 

 ξ = x
2h

,    0 < x < ∞ . 
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In view of expression (9) and equalities (12)–(14), and (16), the normal displacements of points of the load-
free part of the top face of the strip can be transformed as follows:  

 
 
uy y=h

= − δ
2π

K (τ)Φ+ (τ)e−iτξ dτ
−∞

∞

∫ − hp
2G

K (τ) δ(τ) + i
πτ

⎡
⎣⎢

⎤
⎦⎥
e−iτξ dτ

−∞

∞

∫ . (33) 

Substituting the solution  Φ+ (τ)  from (29) in (33), after necessary transformations, we get 

 
 

1
δ
uy

y=h
=

k=1

∞

∑ λ(isk )
sk ′Δ (isk )K + (isk )

eskξ 4h2

Rδ
⎧
⎨
⎩⎪

Δ(iζn )K + (iζn )
ζn2 ′λ (iζn )(sk − ζn )

⎡

⎣
⎢ e−ζna  

  + 
 

1
K (0)

1
sk3

− a2
2sk2

+ a1
2sk

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥ −

1
K (0)sk

⎫
⎬
⎪

⎭⎪
, 

   (34) 

 ξ = x
2h

,    −∞ < x < 0 . 

By using representations (6) and (8), we write the stresses at any point of the strip in the form of the follow-
ing expressions: 

 
 

1
2G (σ x + σ y ) = [D(µ) − C(µ)]eµy − [C(µ) + D(µ)]e−µy{ } e−iµx dµ

−∞

∞

∫ , 

   (35) 

 
 

1
2G (σ y − σ x + 2iτyx ) = 2 µ[A(µ) + B(µ)]{ eµy

−∞

∞

∫  

  + 
 
[2(1− ν) + µy][C(µ) − D(µ)]eµy } e−iµx dµ. 

Hence, in view of equalities (8), (12)–(14), (16), and (29), we obtain 

 1
p
(σ x + σ y ) = − 1

2(1− ν)
+ 1
π

M1(τ,ζ) e−iξτ dτ
−∞

∞

∫ ,      ζ = y
2h ,    −h ≤ y ≤ h , 

   (36) 

 
 

1
p
(σ y − σ x + 2iτyx ) = −1

2
K (0) + 1

π M 2(τ,ζ) e−iξτ dτ
−∞

∞

∫ , 

where 

 
 
M j (τ,ζ) =

α j (τ,ζ)
Δ(τ)K + (τ)

1
iτ

− f1+ (τ)
⎛
⎝⎜

⎞
⎠⎟ ,    j = 1, 2 , 
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Fig. 2 

 α1(τ,ζ) = 3− 4ν( ) cosh 3
2
+ ζ⎛

⎝⎜
⎞
⎠⎟ τ + cosh ζ − 1

2
⎛
⎝⎜

⎞
⎠⎟ τ − 2τ sinh ζ − 1

2
⎛
⎝⎜

⎞
⎠⎟ τ , 

 
 
α2(τ,ζ) = (3− 4ν)τ 1

2
− ζ⎛

⎝⎜
⎞
⎠⎟ e

(3/2+ζ)τ  

  + 
 
4(1− ν)(1− 2ν) + τ 1

2
− ζ⎛

⎝⎜
⎞
⎠⎟ + 2τ2 1

2
+ ζ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
e(ζ−1/2)τ . 

Note that the integrals from (36) are exponentially convergent for  −h ≤ y < h   and slowly convergent (with 
a power rate) for  y = h .  In this case, it is necessary to transform the integrals into series according to the resi-
due theory, as in the case of contact stresses (32).  The convergence of these series is exponential except the 
point  x = 0 .  

5.  Numerical Results  

We performed calculations for Poisson’s ratio   ν = 1/3   and different values of the relative size    a = ℓ/(2h)   
of the curvilinear part of the punch base operating in contact with the elastic strip. 

In Fig. 2, the distributions of the dimensionless contact stresses   

 σ = 1
p
σ y

y=h
 

given by relation (32) for different values of  a   are displayed by the solid curves.  As the parameter  a   de-
creases from  a = 0.8   to  a = 0.1,  the contact stresses approach their limit distribution for  a = 0   (the dashed 
curve), which corresponds to a punch with rectilinear base without rounding [6].  As the parameter  a   increases 
from  a = 1.0   to  a = 2.0 ,  the contact stresses insignificantly differ from the contact stresses obtained in the 
case of a parabolic punch with finite contact zone   0 ≤ x ≤ 2ℓ  [4]. 
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Fig. 3 

 

Fig. 4 

In Figs. 3 and 4, we present the distributions of the dimensionless normal   

 
 

⌢σ = 1
p
σ y

y=−h
   

and tangential   

  
⌢τ  = 1

p
τyx

y=−h
  

stresses along the fixed face of the strip for the following values of the parameter:   

 a = 0,  0.2,  0.6,  1.0,  1.5,   and   2.0.   

In Fig. 5, we display the distributions of dimensionless tangential stresses inside the strip along the straight 
lines parallel to the faces of the strip for  a = 0.2 . 
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Fig. 5 

 

Fig. 6 

 

Fig. 7 

In Figs. 6 and 7, we show the isochores, i.e., level lines of the principal shear stresses (related to the value 
of  p ):  

 τmax = 1
2

σ y − σ x + 2iτxy ,   
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Table 1 

  max τmax  
 0.479 0.370 0.332 0.315 0.305 0.289 0.279 0.272 0.268 

  a    0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 

  ξ    0.105 0.266 0.464 0.672 0.857 1.310 1.783 2.265 2.750 

  ζ    0.398 0.298 0.192 0.096 0.048 0.034 0.067 0.103 0.127 

  α    2.841 0.940 0.480 0.294 0.199 0.096 0.056 0.037 0.026 

Table 2 

umax  
 

0.433 0.428 0.423 0.417 0.410 0.403 0.395 0.387 0.379 

− ξ  0.954 0.924 0.897 0.872 0.85 0.831 0.814 0.798 0.785 

  a  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

for  a = 0.2   and  a = 1,  respectively.  If  a = 0.2 ,  then the value of   

 τmax  = 1
p
τmax  

attains its maximum value  max τmax = 0.479   at the point   ξ = x/(2h) = 0.105 ,   ζ = y/(2h) = 0.398 .  If  a = 1,  
then the value max τmax = 0.305   is attained at the point  ξ = 0.857,  ζ = 0.048 . 

The values of max τmax   for different  a ,  together with the dimensionless coordinates  ξ , ζ   of the corre-
sponding points and the values of the cumulative parameter   α = hG/(pR) ,  are presented in Table 1. 

In finding the normal displacements at points of the free part of the top face of the strip according to rela-
tions (34), as in the case of a punch without rounding [6], it is established that, at a certain distance from the end 
of the contact zone, the deformed boundary of the strip elevates and forms a hill.  In Table 2, we present  
the maximum relative values of displacements   umax = 10 max uy/δ   and corresponding dimensionless coordi-
nates ξ  of the top face of the strip, which determine the height of the hill and the position of its vertex.  
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