STABILITY OF ONE-PHASE STATES IN VARIATIONAL PROBLEM OF THE THEORY OF ELASTICITY IN TWO-PHASE MEDIA. THE MULTI-DIMENSIONAL CASE

V. G. Osmolovskii

St. Petersburg State University 28, Universitetskii pr., Petrodvorets, St. Petersburg 198504, Russia victor.osmolovskii@gmail.com UDC 517.9

We study the phenomenon of loss of stability of one-phase critical points of the energy functional of a two-phase elastic medium under perturbations of the temperature. Bibliography: 1 *title.*

1 Introduction

This section contains necessary preliminary information (cf. details in the survey [1]). In quadratic approximation, the strain energy density of an elastic medium is given by

$$
F^{\pm}(M) = \langle A^{\pm}(e(M) - \zeta^{\pm}), e(M) - \zeta^{\pm} \rangle, \tag{1.1}
$$

where $M \in R^{m \times m}$ is an $m \times m$ matrix, $m \geq 1$, $e(M) = 1/2(M + M^*)$, $\zeta^{\pm} \in R_s^{m \times m}$ are symmetric $m \times m$ matrices, $A^{\pm}: R_s^{m \times m} \to R_s^{m \times m}$ are linear mappings that are symmetric and positive definite with respect to the inner product $\langle \alpha, \beta \rangle = \text{tr } \alpha \beta, \alpha, \beta \in R_s^{m \times m}$, i.e.

$$
\langle A^{\pm}\xi, \zeta \rangle = \langle \xi, A^{\pm}\zeta \rangle, \quad \nu |\xi|^2 \leqslant \langle A^{\pm}\xi, \xi \rangle \leqslant \nu^{-1} |\xi|^2, \quad |\xi|^2 = \langle \xi, \xi \rangle,\tag{1.2}
$$

for all $\xi, \zeta \in R_{\kappa}^{m \times m}$ and some $\nu \in (0, 1)$. Based on (1.1) , we introduce the strain energy functional of a two-phase medium

$$
I_0[u, \chi, t] = \int_{\Omega} \{ \chi(F^+(\nabla u) + t) + (1 - \chi)F^-(\nabla u) \} dx, \tag{1.3}
$$

where $u = u(x)$, $x \in \Omega \subset R^m$ is an m-dimensional vector-valued function, ∇u is the matrix of coefficients $(\nabla u)_{ij} = u^i_{x_j}, i, j = 1, \ldots, m, t \in R^1$, and $\chi = \chi(x)$ is a characteristic function whose support is occupied by the phase labeled by $+$. In applications, $u(x)$ is a displacement field, $e(\nabla u)$ is the strain tensor, ζ^{\pm} is the residual strain tensor of the corresponding phase, and t is the temperature (constant in Ω) of the two-phase medium. Let the functional (1.3) be defined on pairs of functions

$$
u \in \mathbb{X} = \overset{\circ}{W}_2^1(\Omega, R^m), \quad \chi \in \mathbb{Z}', \tag{1.4}
$$

Translated from *Problemy Matematicheskogo Analiza* **⁹¹**, 2018, pp. 169-174.

1072-3374/18/2313-0473 *-***c 2018 Springer Science+Business Media, LLC**

where \mathbb{Z}' is the collection of all measurable characteristic functions. Sometimes, we indicate the dependence of the functional (1.3) and sets (1.4) on the domain Ω . Throughout the paper, Ω is assumed to be bounded.

By the *equilibrium state* of a two-phase elastic medium with fixed t we mean the solution to the variational problem

$$
I_0[\widehat{u}_t, \widehat{\chi}_t, t] = \inf_{u \in \mathbb{X}, \chi \in \mathbb{Z}'} I_0[u, \chi, t], \quad \widehat{u}_t \in \mathbb{X}, \quad \widehat{\chi}_t \in \mathbb{Z}'. \tag{1.5}
$$

The equilibrium state is *one-phase* if

$$
\widehat{\chi}_t = \chi^+ \equiv 1 \quad \text{or} \quad \widehat{\chi}_t = \chi^- \equiv 0 \tag{1.6}
$$

and *two-phase* in the opposite case. It is easy to see that the variational problems

$$
I_0[\hat{u}^+,\chi^+,t] = \inf_{u \in \mathbb{X}} I_0[u,\chi^+,t], \quad I_0[\hat{u}^-,\chi^-,t] = \inf_{u \in \mathbb{X}} I_0[u,\chi_-,t], \quad \hat{u}^\pm \in \mathbb{X},\tag{1.7}
$$

are uniquely solvable and their solutions are given by

$$
\hat{u}^+ \equiv 0, \quad \hat{u}^- \equiv 0. \tag{1.8}
$$

Therefore, one-phase equilibrium states are realized only with zero displacement field.

It is proved that for the problem (1.5) there exist the phase transition temperatures $t_{\pm} \in R^{1}$ independent of Ω

$$
t_- \leq t^* \leq t_+, \quad t^* = -[\langle A\zeta, \zeta \rangle] \equiv -(\langle A^+\zeta^+, \zeta^+ \rangle - \langle A^-\zeta^-, \zeta^- \rangle) \tag{1.9}
$$

(both identities in (1.9) are realized simultaneously) that are characterized by

in the case $t_{-} < t_{+}$, a single solution to the problem (1.5) with $t < t_-\,$ is a pair $\hat{u}_t = \hat{u}^+, \hat{\chi}_t = \chi^+, \hat{\chi}_t = \chi^+$, a single solution to the problem (1.5) with $t>t_+$ is a pair $\hat{u}_t = \hat{u}^-, \hat{\chi}_t = \chi^-,$ for $t \in (t_-, t_+)$ the problem (1.5) has no one-phase equilibrium state (1.10)

and

in the case $t_{\pm} = t^*$, the first two assertions in (1.10) hold, for $t = t^*$ the unique solution to the problem (1.5) is the pair $\hat{u}_{t^*} \equiv 0$, $\hat{\chi}_{t^*}$, where $\hat{\chi}_{t^*}$ is an arbitrary element of \mathbb{Z}' . (1.11)

In the case (1.10), for $t \in (t_-, t_+)$ the problem (1.5) can have a solution or be unsolvable. It turns out that

$$
[A\zeta] \equiv (A^+\zeta^+ - A^-\zeta^-) = 0
$$
 is a criterion for equality of t_- and t_+ . (1.12)

We set

$$
|\Omega|i(t) = \inf_{u \in \mathbb{X}, \chi \in \mathbb{Z}'} I_0[u, \chi, t, \Omega], \quad |\Omega|i_{\min}(t) = \inf_{u \in \mathbb{X}, \chi = \{\chi^+, \chi^-\}} I_0[u, \chi, t, \Omega]. \tag{1.13}
$$

The functions $i(t)$ and $i_{\min}(t)$ are continuous with respect to $t \in R¹$. By (1.8), the second infimum in (1.13) has the form

$$
i_{\min}(t) = \begin{cases} I_0[\widehat{u}^+, \chi^+, t] = t + \langle A^+ \zeta^+, \zeta^+ \rangle, & t \leq t^*, \\ I_0[\widehat{u}^-, \chi^-, t] = \langle A^- \zeta^-, \zeta^- \rangle, & t \geq t^*. \end{cases}
$$
(1.14)

It is obvious that $i_{\min}(t) \geq i(t)$. The equality $i_{\min}(t_0) = i(t_0)$ for some t_0 means that the problem (1.5) with $t = t_0$ possesses the equilibrium state \hat{u}^+, χ^+ for $t_0 \leq t^*$ and \hat{u}^-, χ^- for $t_0 \geq t^*$.
Furthermore $(t, t) = \mathscr{K}$ where Furthermore, $(t_-, t_+) = \mathcal{K}$, where

$$
\mathcal{K} = \{ t \in R^1 : i_{\min}(t) > i(t) \},\tag{1.15}
$$

and the pairs \hat{u}^{\pm} , χ^{\pm} for all t are critical points of the energy functional (1.3).

2 The Main Results

Since $i_{\min}(t) = i(t)$ for $t \in R^1 \setminus \mathcal{K}$,

$$
\hat{u}^+, \chi^+
$$
 is an equilibrium state only for $t \leq t_-,$
\n \hat{u}^-, χ^- is an equilibrium state only for $t \geq t_+$ (2.1)

(cf. (1.6), (1.8)). For fixed t a pair $\widetilde{u} \in \mathbb{X}$, $\widetilde{\chi} \in \mathbb{Z}'$ is a W_2^1 -saddle point of the energy functional
if for any $\delta > 0$ there are $x^{\delta} \in \mathbb{X}$ and $x^{(\delta)} \in \mathbb{Z}'$ such that $\|x^{\delta}\|_{\infty} \leq \delta$ if for any $\delta > 0$ there are $v_{\pm}^{\delta} \in \mathbb{X}$ and $\psi_{\pm}^{\delta} \in \mathbb{Z}'$ such that $||v_{\pm}^{\delta}||_{\mathbb{X}} < \delta$, $||\widetilde{\chi} - \psi_{\pm}^{\delta}||_{L_1} < \delta$ and

$$
I_0[\widetilde{u} + v_+^{\delta}, \psi_+^{\delta}, t] > I_0[\widetilde{u}, \widetilde{\chi}, t],
$$

\n
$$
I_0[\widetilde{u} + v_-^{\delta}, \psi_-^{\delta}, t] < I_0[\widetilde{u}, \widetilde{\chi}, t].
$$
\n(2.2)

Theorem 2.1. *If for a given t some pair* \hat{u}^{\pm} *,* χ^{\pm} *is not a solution to the problem* (1.5)*, then it is a* W_2^1 -saddle point of the energy functional (1.3) *.*

The pair \hat{u}^+ , χ^+ is not an equilibrium state for the functional (1.3) only for $t>t_$. Theorem 2.1 asserts that the stability of this pair is lost for $t>t_−$ under small energy perturbations of \hat{u}^+ and small perturbations of χ^+ in $L_1(\Omega)$.

The pair \hat{u} , χ ⁻ is not an equilibrium state of the functional (1.3) only for $t < t_{+}$. Theorem 2.1 asserts that the stability of this pair is lost for $t < t_{+}$ under small energy perturbations of \hat{u}^- and small perturbations of χ^- in the space $L_1(\Omega)$.

The perturbation v_{-}^{δ} providing instability can be obtained for every $\delta > 0$ in a constructive way. It satisfies the inclusion $v_{\infty}^{\delta} \in W_{\infty}^{1}(\Omega, R^{m})$, but $||v_{-}^{\delta}||_{W_{\infty}^{1}}$ does not tend to zero as $\delta \to 0$. Therefore, the perturbation used in the proof of Theorem 2.1 below is not small in the W^1_{∞} -norm.

We try to clarify whether the pairs \hat{u}^{\pm} , χ^{\pm} are stable under small perturbations of \hat{u}^{\pm} in the $W^1_\infty(\Omega, R^m)$ -norms and perturbations of χ^{\pm} in $L_1(\Omega)$. It turns out that such a relaxation of perturbations of \hat{u}^{\pm} essentially changes the stability character for the pairs \hat{u}^{\pm} , χ^{\pm} .

We adapt the definition of a saddle pont to the case of perturbations of \hat{u}^{\pm} in W^1_{∞} .
 Γ

For fixed t a pair $\widetilde{u} \in \mathbb{X}$, $\widetilde{\chi} \in \mathbb{Z}'$ is a W^1_{∞} -saddle point of the energy functional if for any $\delta > 0$
so are functions $v^{\delta} \in \mathbb{X} \cap W^1$ (O P^m) $v^{\delta} \in \mathbb{Z}'$ such that $||v^{\delta}||_{\infty} \leq \delta$ there are functions $v_{\pm}^{\delta} \in \mathbb{X} \cap W_{\infty}^1(\Omega, R^m)$, $\psi_{\pm}^{\delta} \in \mathbb{Z}'$ such that $||v_{\pm}^{\delta}||_{W_{\infty}^1} < \delta$, $||\widetilde{\chi} - \psi_{\pm}^{\delta}||_{L_1} < \delta$ and $(2, 2)$ bolds (2.2) holds.

Theorem 2.2. *For* $t < t^*$ *the pair* \hat{u}^+ *,* χ^+ *is a local minimum of the energy functional under small perturbations of* \hat{u}^+ *in* $W^1_{\infty}(\Omega, R^m)$ *and any perturbations of* χ^+ *in* $L_1(\Omega)$ *, whereas for* $t > t^*$ *it is a* W^1 *and dle point of this functional. For* $t > t^*$ *the poin* \hat{u}^- , χ^- *i* $t > t^*$ *it is a* W^1_{∞} -saddle point of this functional. For $t > t^*$ the pair \hat{u}^- , χ^- is a local minimum
of the energy functional under email perturbations of \hat{u}^- in W^1 (O R^m) and any perturbations *of the energy functional under small perturbations of* \hat{u}^- *in* $W^1_{\infty}(\Omega, R^m)$ *and any perturbations* \hat{u}^+ *in* $L(\Omega)$ *whereas for* $t < t^*$ *it is a* W^1 *saddle point of this functional of* χ ⁻ *in* $L_1(\Omega)$ *, whereas for* $t < t^*$ *it is a* W^1_{∞} *-saddle point of this functional.*

In the case $t_{-} < t_{+}$, $t = t^{*}$, the pairs $\hat{u}^{\pm} \chi^{\pm}$ are W_{∞}^{1} -saddle points of the energy functional.

In Theorems 2.1 and 2.2, the loss of stability of one-phase states \hat{u}^{\pm} , χ^{\pm} is caused (depending on the values of the temperature t) by perturbation of only distributions of phases χ^{\pm} or by consistent perturbation of displacement fields \hat{u}^{\pm} and phase distribution χ^{\pm} .

3 Proof of the Main Results

Proof of Theorem 2.1. Since \hat{u}^{\pm} is a unique solution to the problems (1.7), for any t the first inequality in (2.2) holds with $\widetilde{u} = \widehat{u}^{\pm}$, $\widetilde{\chi} = \psi_{\pm}^{\delta} = \chi^{\pm}$, $v_{+}^{\delta} \in \mathbb{X}$, $v_{+}^{\delta} \neq 0$. Since

$$
I_0[\hat{u}^+, \chi, t] = I_0[\hat{u}^+, \chi^+, t] - (t - t^*) \int_{\Omega} (\chi^+ - \chi) \, dx,
$$

$$
I_0[\hat{u}^-, \chi, t] = I_0[\hat{u}^-, \chi^-, t] - (t^* - t) \int_{\Omega} (\chi - \chi^-) \, dx,
$$

for every $t > t^*$ the second inequality in (2.2) holds with $\tilde{u} = \hat{u}^+, v^{\delta} = 0, \psi^{\delta} = \chi, \tilde{\chi} = \chi^+$ for any $\chi \neq \chi^+$, whereas for each $t < t^*$ the same inequality holds with $\tilde{u} = \hat{u}^-, v^{\delta} = 0, \psi^{\delta} = \chi$, $\tilde{v} = v^-$ for any $\chi \neq \chi^ \widetilde{\chi} = \chi^-$ for any $\chi \neq \chi^-$.

It remains to consider the case $t_ - < t_+$ and for any sufficiently small $\delta > 0$ establish the existence of $v_-^{\delta} \in \mathbb{X}, \psi_-^{\delta} \in \mathbb{Z}'$ such that

$$
I_0[\hat{u}^+ + v_-^{\delta}, \psi_-^{\delta}, t] < I_0[\hat{u}^+, \chi^+, t], \quad \|v_-^{\delta}\|_{\mathbb{X}} < \delta, \quad \| \chi^+ - \psi_-^{\delta} \|_{L_1} < \delta, \quad t \in (t_-, t^*],
$$
\n
$$
I_0[\hat{u}^- + v_-^{\delta}, \psi_-^{\delta}, t] < I_0[\hat{u}^-, \chi^-, t], \quad \|v_-^{\delta}\|_{\mathbb{X}} < \delta, \quad \| \psi_-^{\delta} - \chi^- \|_{L_1} < \delta, \quad t \in [t^*, t_+). \tag{3.1}
$$

Taking into account (1.14) and the inequality $i(t) < i_{\min}(t)$ for $t \in (t_-, t_+)$, we find $u_>, u_< \in$ $\mathbb{X}(\Omega)$, χ >, χ < $\in \mathbb{Z}'(\Omega)$ such that

$$
I_0[u_<, \chi_<, t, \Omega] < |\Omega| i_{\min}(t) = I_0[\hat{u}^+, \chi^+, t, \Omega], \quad t \in (t_-, t^*],
$$

\n
$$
I_0[u_>, \chi_>, t, \Omega] < |\Omega| i_{\min}(t) = I_0[\hat{u}^-, \chi^-, t, \Omega], \quad t \in [t^*, t_+).
$$
\n(3.2)

By the strict inequality in (3.2), the functions $u_>, u₀$ do not vanish. By the continuity of $I_0[., \chi, t]$ in the space X, we can assume that these functions belong to the class $C_0^{\infty}(\Omega, R^m)$.

For any sufficiently small $\lambda > 0$ we choose $\xi = \xi(\lambda)$ such that the domain $\Omega_{\lambda} = \Omega_{\xi(\lambda),\lambda}$ constructed by the rule $\Omega_{\xi,\lambda} = \{x \in \mathbb{R}^m : x = \lambda \tilde{x} + \xi, \tilde{x} \in \Omega\}, \lambda > 0, \xi \in \mathbb{R}^m$, lies, together with its closure, in Ω . We consider the pairs u_1, χ_2 of functions u_1, χ_2 defined by the rule

$$
u_{<}(x) = \lambda u_{<}(\tilde{x}), \quad \chi_{<}(x) = \chi_{<}(\tilde{x}), \quad \tilde{x} \in \Omega, \quad x \in \Omega_{\lambda}.\tag{3.3}
$$

The change of variables yields

$$
\frac{1}{|\Omega_{\lambda}|}I_0[u_\leq^{\lambda}, \chi_\leq^{\lambda}, t, \Omega_{\lambda}] = \frac{1}{|\Omega|}I_0[u_\leq, \chi_\leq, t, \Omega].
$$
\n(3.4)

We denote by $\tilde{u}^{\lambda}_{\leq}$ the extension of u^{λ}_{\leq} by 0 and by $\tilde{\chi}^{\lambda}_{\leq}$ the extension of χ^{λ}_{\leq} by 1 from Ω_{λ} to Ω .
Then $\tilde{u}^{\lambda}_{\leq} \subset \mathbb{X}(\Omega)$ and $\tilde{\chi}^{\lambda}_{\leq} \subset \mathbb{Z}(\Omega)$. Using (3. Then $\tilde{u}^{\lambda}_{\leq} \in \mathbb{X}(\Omega)$ and $\tilde{\chi}^{\lambda}_{\leq} \in \mathbb{Z}'(\Omega)$. Using (3.4) and the first inequality in (3.2), we have

$$
I_0[\widetilde{u}^\lambda_<,\widetilde{\chi}^\lambda_<,t,\Omega] = I_0[u^\lambda_<,\chi^\lambda_<,t,\Omega_\lambda] + |\Omega \setminus \Omega_\lambda| (F^+(0) + t) = \frac{|\Omega_\lambda|}{|\Omega|} I_0[u_<,\chi_<,t,\Omega] + |\Omega \setminus \Omega_\lambda| i_{\min}(t)
$$

$$
< |\Omega_\lambda| i_{\min}(t) + |\Omega \setminus \Omega_\lambda| i_{\min}(t) = |\Omega| i_{\min}(t) = I_0[\widehat{u}^+, \chi^+, t,\Omega], \quad t \in (t_-, t^*]
$$

(the condition $t \in (t_-, t^+]$ was used to change $F^+(0) + t$ with $i_{\min}(t)$ and $|\Omega(i_{\min}(t))|$ with $I_0[u^+, \chi^+, t, \Omega]$). Using the obtained inequality $I_0[\tilde{u}^{\lambda}_\leq, \tilde{\chi}^{\lambda}_\leq, t] < I_0[\hat{u}^+, \chi^+, t]$ and the relations

$$
\|\widetilde{u}_{&<}^{\lambda}\|_{\mathbb{X}}^{2} = \int_{\Omega} |e(\nabla \widetilde{u}_{&<}^{\lambda})|^{2} dx = \int_{\Omega_{\lambda}} |e(\nabla u_{&<}^{\lambda})|^{2} dx
$$

\n
$$
= \frac{|\Omega_{\lambda}|}{|\Omega_{\lambda}|} \int_{\Omega_{\lambda}} |e(\nabla u_{&<}^{\lambda})|^{2} dx = \frac{|\Omega_{\lambda}|}{|\Omega|} \int_{\Omega} |e(\nabla u_{&<})|^{2} dx,
$$
\n(3.5)
\n
$$
\int_{\Omega} |\chi^{+} - \widetilde{\chi}_{&<}^{\lambda}| dx = \int_{\Omega_{\lambda}} |\chi^{+} - \chi_{&<}^{\lambda}| dx = \frac{|\Omega_{\lambda}|}{|\Omega_{\lambda}|} \int_{\Omega_{\lambda}} |\chi^{+} - \chi_{&<}^{\lambda}| dx = \frac{|\Omega_{\lambda}|}{|\Omega|} \int_{\Omega} |\chi^{+} - \chi_{&<}| dx,
$$

 $|\Omega_{\lambda}| |\Omega|^{-1} = \lambda^{m}$, we arrive at the first estimate in (3.1) with

$$
v_{-}^{\delta} = \widetilde{u}_{<}^{\lambda} - \widehat{u}^{+} = \widetilde{u}_{<}^{\lambda}, \quad \psi_{-}^{\delta} = \widetilde{\chi}_{<}^{\lambda}, \quad \delta = \lambda^{\frac{m}{2}} \|u_{<}\|_{\mathbb{X}(\Omega)} + \lambda^{m} \| \chi^{+} - \chi_{<}\|_{L_{1}(\Omega)}.
$$
 (3.6)

The second estimate in (3.1) is proved in a similar way, but for $\tilde{\chi}^{\lambda}_{>}$ one should take the extension of x^{λ}_{λ} by 0 from Q_{λ} to Q_{λ} of $\chi^{\lambda}_{>}$ by 0 from Ω_{λ} to Ω . \Box

By (3.6) and (3.3), for all δ the quantity $\|\nabla v^{\delta}_{-}\|_{L_{\infty}(\Omega)} = \|\nabla u_{<}\|_{L_{\infty}(\Omega)}$ is a positive constant independent of δ (recall that $u < \neq 0$). Therefore, the perturbation v_1^{δ} constructed in the proof of Theorem 2.1 is not small in the space $W^1_{\infty}(\Omega, R^m)$ as $\delta \to 0$.

Proof of Theorem 2.2. Since the functional is quadratic property (cf. (1.1)), we have

$$
I_0[u, \chi, t] - I_0[\hat{u}^+, \chi^+, t] = \frac{1}{2} F^+_{M_{ij}M_{kl}} \int_{\Omega} e_{ij}(\nabla u) e_{kl}(\nabla u) dx + \int_{\Omega} (1 - \chi)((t^* - t) - (F^+ - F^-)_{M_{ij}}(0) e_{ij}(\nabla u)) dx - \frac{1}{2} \int_{\Omega} (1 - \chi)((F^+ - F^-)_{M_{ij}M_{kl}} e_{ij}(\nabla u) e_{kl}(\nabla u)) dx, I_0[u, \chi, t] - I_0[\hat{u}^-, \chi^-, t] = \frac{1}{2} F^-_{M_{ij}M_{kl}} \int_{\Omega} e_{ij}(\nabla u) e_{kl}(\nabla u) dx + \int_{\Omega} \chi((t - t^*) + (F^+ - F^-)_{M_{ij}}(0) e_{ij}(\nabla u)) dx + \frac{1}{2} \int \chi((F^+ - F^-)_{M_{ij}M_{kl}} e_{ij}(\nabla u) e_{kl}(\nabla u)) dx.
$$

2

Ω

Then for all $u \in \mathbb{X} \cap W^1_{\infty}(\Omega, R^m)$, $\chi \in \mathbb{Z}'$ and some positive constant γ from the assumption (1.2) it follows that

$$
I_0[u, \chi, t] - I_0[\hat{u}^+, \chi^+, t] \ge \nu \int_{\Omega} |e(\nabla u)|^2 dx
$$

+
$$
\int_{\Omega} (1 - \chi)((t^* - t) - \gamma (1 + \|\nabla u\|_{L_{\infty}}) \|\nabla u\|_{L_{\infty}}) dx,
$$
(3.8)

$$
I_0[u, \chi, t] - I_0[\hat{u}^-, \chi^-, t] \ge \nu \int_{\Omega} |e(\nabla u)|^2 dx + \int_{\Omega} \chi((t - t^*) - \gamma (1 + \|\nabla u\|_{L_{\infty}}) \|\nabla u\|_{L_{\infty}}) dx
$$

and for all $u\in \mathbb{X},\, \chi \in \mathbb{Z}'$

$$
I_0[u, \chi^+, t] - I_0[\hat{u}^+, \chi^+, t] = \frac{F^+_{M_{ij}M_{kl}}}{2} \int_{\Omega} e_{ij}e_{kl} dx,
$$

\n
$$
I_0[\hat{u}^+, \chi, t] - I_0[\hat{u}^+, \chi^+, t] = |\Omega|(1 - Q)(t^* - t),
$$

\n
$$
I_0[u, \chi^-, t] - I_0[\hat{u}^-, \chi^-, t] = \frac{F^-_{M_{ij}M_{kl}}}{2} \int_{\Omega} e_{ij}e_{kl} dx,
$$

\n
$$
I_0[\hat{u}^-, \chi, t] - I_0[\hat{u}^-, \chi^-, t] = |\Omega|Q(t - t^*),
$$

\n
$$
e = e(\nabla u), \quad Q = \frac{1}{|\Omega|} \int_{\Omega} \chi dx.
$$
\n(3.9)

From (3.7) with $t = t^*$ and $e = e(\nabla u)$ we find

$$
I_0[u, \chi, t^*] - I_0[\hat{u}^+, \chi^+, t^*] = \int_{\Omega} \{ \chi \langle A^+e, e \rangle + (1 - \chi) \langle A^-e, e \rangle + 2(\chi^+ - \chi) \langle [A\zeta], e \rangle \} dx,
$$

\n
$$
I_0[u, \chi, t^*] - I_0[\hat{u}^-, \chi^-, t^*] = \int_{\Omega} \{ \chi \langle A^+e, e \rangle + (1 - \chi) \langle A^-e, e \rangle - 2(\chi - \chi^-) \langle [A\zeta], e \rangle \} dx.
$$
\n(3.10)

We study the stability of the pair \hat{u}^+, χ^+ . Let $t < t^*$. Then (3.8) implies

$$
I_0[u, \chi, t] > I_0[\widehat{u}^+, \chi^+, t]
$$

for $\chi \in \mathbb{Z}'$, $u \in \mathbb{X} \cap W^1_{\infty}(0, l)$, $t^* - t > \gamma(1 + ||\nabla u||_{L_{\infty}}) ||\nabla u||_{L_{\infty}}$, $||\hat{u}^+ - u||_{\mathbb{X}} + ||\chi^+ - \chi||_{L_1} > 0$. Let $t > t^*$. Then (3.9) implies

$$
I_0[u, \chi^+, t] > I_0[\hat{u}^+, \chi^+, t] \quad \forall u \in \mathbb{X}, \quad u \neq \hat{u}^+,
$$

$$
I_0[\hat{u}^+, \chi, t] < I_0[\hat{u}^+, \chi^+, t] \quad \forall \chi \in \mathbb{Z}', \quad \chi \neq \chi^+.
$$

Let $t = t^*$. Then (3.10) implies

$$
I_0[u, \chi^+, t^*] > I_0[\hat{u}^+, \chi^+, t^*] \quad \forall u \in \mathbb{X}, u \neq \hat{u}^+.
$$

In the case $t_ - < t_+$, we have $[A\zeta] \neq 0$ in view of (1.12). Therefore, there exists a function $u_0 \in C_0^{\infty}(\Omega, R^m)$, $||u_0||_{W^1_{\infty}} = 1$, such that $\langle [A\zeta], e(\nabla u_0) \rangle \not\equiv 0$. Then, based on the equality

$$
\int_{\Omega} \langle [A\zeta], e(\nabla u_0) \rangle \, dx = 0,
$$

we conclude that the set $E_ = \{x \in \Omega : \langle [A\zeta], e(\nabla u_0(x)) \rangle < 0\}$ has positive measure. For every $\delta > 0$ we fix a function $\chi = \psi_{-}^{\delta} \in \mathbb{Z}'$ such that $\text{supp}(\chi^{+} - \psi_{-}^{\delta}) \subset E_{-}$ and $\|\chi^{+} - \psi_{-}^{\delta}\|_{L_1} < \delta$. By the first identity in (3.10), for all sufficiently small $\epsilon > 0$ we have

$$
I_0[\epsilon u_0, \psi_-^{\delta}, t^*] - I_0[\hat{u}^+, \chi^+, t^*] = \epsilon^2 \int_{\Omega} {\{\psi_-^{\delta} \langle A^+e, e \rangle + (1 - \psi_-^{\delta}) \langle A^-e, e \rangle\}} dx
$$

+
$$
2\epsilon \int_{\Omega} (\chi^+ - \psi_-^{\delta}) \langle [A\zeta], e \rangle dx < 0, \quad e = e(\nabla u_0).
$$

Thus, we obtain the second inequality in (2.2) for some $\epsilon = \epsilon(\delta) \in (0, \delta)$, $\tilde{u} = \hat{u}^+, \tilde{\chi} = \chi^+,$
 $v_{-}^{\delta} = \epsilon(\delta)u_0$, and the above function ψ_{-}^{δ} . The pair \hat{u}^-, χ^- is considered in a similar way. $v_-^{\delta} = \epsilon(\delta)u_0$, and the above function ψ_-^{δ} . The pair \hat{u}^- , χ^- is considered in a similar way.

Acknowledgments

The work is supported by the Russian Foundation for Basic Research (project No. 17-01- 00678).

References

1. V. G. Osmolovskii, "Mathematical aspects of the theory of phase transitions" [in Russian], *Algebra Anal.* **29**, No. 5, 111-178 (2017).

Submitted on December 15, 2017