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We study the phenomenon of loss of stability of one-phase critical points of the en-

ergy functional of a two-phase elastic medium under perturbations of the temperature.
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1 Introduction

This section contains necessary preliminary information (cf. details in the survey [1]). In

quadratic approximation, the strain energy density of an elastic medium is given by

F±(M) = 〈A±(e(M)− ζ±), e(M)− ζ±〉, (1.1)

where M ∈ Rm×m is an m×m matrix, m � 1, e(M) = 1/2(M+M∗), ζ± ∈ Rm×m
s are symmetric

m × m matrices, A± : Rm×m
s → Rm×m

s are linear mappings that are symmetric and positive

definite with respect to the inner product 〈α, β〉 = trαβ, α, β ∈ Rm×m
s , i.e.

〈A±ξ, ζ〉 = 〈ξ, A±ζ〉, ν|ξ|2 � 〈A±ξ, ξ〉 � ν−1|ξ|2, |ξ|2 = 〈ξ, ξ〉, (1.2)

for all ξ, ζ ∈ Rm×m
s and some ν ∈ (0, 1). Based on (1.1), we introduce the strain energy functional

of a two-phase medium

I0[u, χ, t] =

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx, (1.3)

where u = u(x), x ∈ Ω ⊂ Rm is an m-dimensional vector-valued function, ∇u is the matrix

of coefficients (∇u)ij = uixj
, i, j = 1, . . . ,m, t ∈ R1, and χ = χ(x) is a characteristic function

whose support is occupied by the phase labeled by +. In applications, u(x) is a displacement

field, e(∇u) is the strain tensor, ζ± is the residual strain tensor of the corresponding phase,

and t is the temperature (constant in Ω) of the two-phase medium. Let the functional (1.3) be

defined on pairs of functions

u ∈ X =
◦
W 1

2(Ω,Rm), χ ∈ Z
′, (1.4)
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where Z
′ is the collection of all measurable characteristic functions. Sometimes, we indicate the

dependence of the functional (1.3) and sets (1.4) on the domain Ω. Throughout the paper, Ω

is assumed to be bounded.

By the equilibrium state of a two-phase elastic medium with fixed t we mean the solution to

the variational problem

I0[ût, χ̂t, t] = inf
u∈X,χ∈Z′ I0[u, χ, t], ût ∈ X, χ̂t ∈ Z

′. (1.5)

The equilibrium state is one-phase if

χ̂t = χ+ ≡ 1 or χ̂t = χ− ≡ 0 (1.6)

and two-phase in the opposite case. It is easy to see that the variational problems

I0[û
+, χ+, t] = inf

u∈X
I0[u, χ

+, t], I0[û
−, χ−, t] = inf

u∈X
I0[u, χ−, t], û± ∈ X, (1.7)

are uniquely solvable and their solutions are given by

û+ ≡ 0, û− ≡ 0. (1.8)

Therefore, one-phase equilibrium states are realized only with zero displacement field.

It is proved that for the problem (1.5) there exist the phase transition temperatures t± ∈ R1

independent of Ω

t− � t∗ � t+, t∗ = −[〈Aζ, ζ〉] ≡ −(〈A+ζ+, ζ+〉 − 〈A−ζ−, ζ−〉) (1.9)

(both identities in (1.9) are realized simultaneously) that are characterized by

in the case t− < t+,

a single solution to the problem (1.5) with t < t− is a pair ût = û+, χ̂t = χ+,

a single solution to the problem (1.5) with t > t+ is a pair ût = û−, χ̂t = χ−,
for t ∈ (t−, t+) the problem (1.5) has no one-phase equilibrium state

(1.10)

and

in the case t± = t∗, the first two assertions in (1.10) hold,

for t = t∗ the unique solution to the problem (1.5) is the pair ût∗ ≡ 0, χ̂t∗ ,

where χ̂t∗ is an arbitrary element of Z′.
(1.11)

In the case (1.10), for t ∈ (t−, t+) the problem (1.5) can have a solution or be unsolvable. It

turns out that

[Aζ] ≡ (A+ζ+ −A−ζ−) = 0 is a criterion for equality of t− and t+. (1.12)

We set

|Ω|i(t) = inf
u∈X,χ∈Z′ I0[u, χ, t, Ω], |Ω|imin(t) = inf

u∈X,χ={χ+,χ−}
I0[u, χ, t, Ω]. (1.13)
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The functions i(t) and imin(t) are continuous with respect to t ∈ R1. By (1.8), the second

infimum in (1.13) has the form

imin(t) =

⎧⎨
⎩
I0[û

+, χ+, t] = t+ 〈A+ζ+, ζ+〉, t � t∗,

I0[û
−, χ−, t] = 〈A−ζ−, ζ−〉, t � t∗.

(1.14)

It is obvious that imin(t) � i(t). The equality imin(t0) = i(t0) for some t0 means that the problem

(1.5) with t = t0 possesses the equilibrium state û+, χ+ for t0 � t∗ and û−, χ− for t0 � t∗.
Furthermore, (t−, t+) = K , where

K = {t ∈ R1 : imin(t) > i(t)}, (1.15)

and the pairs û±, χ± for all t are critical points of the energy functional (1.3).

2 The Main Results

Since imin(t) = i(t) for t ∈ R1 \K ,

û+, χ+ is an equilibrium state only for t � t−,

û−, χ− is an equilibrium state only for t � t+
(2.1)

(cf. (1.6), (1.8)). For fixed t a pair ũ ∈ X, χ̃ ∈ Z
′ is a W 1

2 -saddle point of the energy functional

if for any δ > 0 there are vδ± ∈ X and ψδ± ∈ Z
′ such that ‖vδ±‖X < δ, ‖χ̃− ψδ±‖L1 < δ and

I0[ũ+ vδ+, ψ
δ
+, t] > I0[ũ, χ̃, t],

I0[ũ+ vδ−, ψ
δ
−, t] < I0[ũ, χ̃, t].

(2.2)

Theorem 2.1. If for a given t some pair û±, χ± is not a solution to the problem (1.5), then

it is a W 1
2 -saddle point of the energy functional (1.3).

The pair û+, χ+ is not an equilibrium state for the functional (1.3) only for t > t−. Theo-

rem 2.1 asserts that the stability of this pair is lost for t > t− under small energy perturbations

of û+ and small perturbations of χ+ in L1(Ω).

The pair û−, χ− is not an equilibrium state of the functional (1.3) only for t < t+. Theo-

rem 2.1 asserts that the stability of this pair is lost for t < t+ under small energy perturbations

of û− and small perturbations of χ− in the space L1(Ω).

The perturbation vδ− providing instability can be obtained for every δ > 0 in a constructive

way. It satisfies the inclusion vδ− ∈ W 1∞(Ω,Rm), but ‖vδ−‖W 1∞ does not tend to zero as δ → 0.

Therefore, the perturbation used in the proof of Theorem 2.1 below is not small in theW 1∞-norm.

We try to clarify whether the pairs û±, χ± are stable under small perturbations of û± in

the W 1∞(Ω,Rm)-norms and perturbations of χ± in L1(Ω). It turns out that such a relaxation

of perturbations of û± essentially changes the stability character for the pairs û±, χ±.
We adapt the definition of a saddle pont to the case of perturbations of û± in W 1∞.

For fixed t a pair ũ ∈ X, χ̃ ∈ Z
′ is a W 1∞-saddle point of the energy functional if for any δ > 0

there are functions vδ± ∈ X∩W 1∞(Ω,Rm), ψδ± ∈ Z
′ such that ‖vδ±‖W 1∞ < δ, ‖χ̃− ψδ±‖L1 < δ and

(2.2) holds.
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Theorem 2.2. For t < t∗ the pair û+, χ+ is a local minimum of the energy functional under

small perturbations of û+ in W 1∞(Ω,Rm) and any perturbations of χ+ in L1(Ω), whereas for

t > t∗ it is a W 1∞-saddle point of this functional. For t > t∗ the pair û−, χ− is a local minimum

of the energy functional under small perturbations of û− in W 1∞(Ω,Rm) and any perturbations

of χ− in L1(Ω), whereas for t < t∗ it is a W 1∞-saddle point of this functional.

In the case t− < t+, t = t∗, the pairs û± χ± are W 1∞-saddle points of the energy functional.

In Theorems 2.1 and 2.2, the loss of stability of one-phase states û±, χ± is caused (depending

on the values of the temperature t) by perturbation of only distributions of phases χ± or by

consistent perturbation of displacement fields û± and phase distribution χ±.

3 Proof of the Main Results

Proof of Theorem 2.1. Since û± is a unique solution to the problems (1.7), for any t the

first inequality in (2.2) holds with ũ = û±, χ̃ = ψδ± = χ±, vδ+ ∈ X, vδ+ �= 0. Since

I0[û
+, χ, t] = I0[û

+, χ+, t]− (t− t∗)
∫

Ω

(χ+ − χ) dx,

I0[û
−, χ, t] = I0[û

−, χ−, t]− (t∗ − t)

∫

Ω

(χ− χ−) dx,

for every t > t∗ the second inequality in (2.2) holds with ũ = û+, vδ− = 0, ψδ− = χ, χ̃ = χ+ for

any χ �= χ+, whereas for each t < t∗ the same inequality holds with ũ = û−, vδ− = 0, ψδ− = χ,

χ̃ = χ− for any χ �= χ−.
It remains to consider the case t− < t+ and for any sufficiently small δ > 0 establish the

existence of vδ− ∈ X, ψδ− ∈ Z
′ such that

I0[û
+ + vδ−, ψ

δ
−, t] < I0[û

+, χ+, t], ‖vδ−‖X < δ, ‖χ+ − ψδ
−‖L1 < δ, t ∈ (t−, t∗],

I0[û
− + vδ−, ψ

δ
−, t] < I0[û

−, χ−, t], ‖vδ−‖X < δ, ‖ψδ
− − χ−‖L1 < δ, t ∈ [t∗, t+).

(3.1)

Taking into account (1.14) and the inequality i(t) < imin(t) for t ∈ (t−, t+), we find u>, u< ∈
X(Ω), χ>, χ< ∈ Z

′(Ω) such that

I0[u<, χ<, t, Ω] < |Ω|imin(t) = I0[û
+, χ+, t, Ω], t ∈ (t−, t∗],

I0[u>, χ>, t, Ω] < |Ω|imin(t) = I0[û
−, χ−, t, Ω], t ∈ [t∗, t+).

(3.2)

By the strict inequality in (3.2), the functions u>, u< do not vanish. By the continuity of

I0[., χ, t] in the space X, we can assume that these functions belong to the class C∞
0 (Ω,Rm).

For any sufficiently small λ > 0 we choose ξ = ξ(λ) such that the domain Ωλ = Ωξ(λ),λ

constructed by the rule Ωξ,λ = {x ∈ Rm : x = λx̃ + ξ, x̃ ∈ Ω}, λ > 0, ξ ∈ Rm, lies, together

with its closure, in Ω. We consider the pairs u<, χ< of functions uλ<, χ
λ
< defined by the rule

uλ<(x) = λu<(x̃), χλ
<(x) = χ<(x̃), x̃ ∈ Ω, x ∈ Ωλ. (3.3)

The change of variables yields

1

|Ωλ|I0[u
λ
<, χ

λ
<, t, Ωλ] =

1

|Ω|I0[u<, χ<, t, Ω]. (3.4)
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We denote by ũλ< the extension of uλ< by 0 and by χ̃λ
< the extension of χλ

< by 1 from Ωλ to Ω.

Then ũλ< ∈ X(Ω) and χ̃λ
< ∈ Z

′(Ω). Using (3.4) and the first inequality in (3.2), we have

I0[ũ
λ
<, χ̃

λ
<, t, Ω] = I0[u

λ
<, χ

λ
<, t, Ωλ] + |Ω \Ωλ|(F+(0) + t)=

|Ωλ|
|Ω| I0[u<, χ<, t, Ω]+|Ω \Ωλ|imin(t)

< |Ωλ|imin(t) + |Ω \Ωλ|imin(t) = |Ω|imin(t) = I0[û
+, χ+, t, Ω], t ∈ (t−, t∗]

(the condition t ∈ (t−, t∗] was used to change F+(0) + t with imin(t) and |Ω|imin(t) with

I0[u
+, χ+, t, Ω]). Using the obtained inequality I0[ũ

λ
<, χ̃

λ
<, t] < I0[û

+, χ+, t] and the relations

‖ũλ<‖2X =

∫

Ω

|e(∇ũλ<)|2 dx =

∫

Ωλ

|e(∇uλ<)|2 dx

=
|Ωλ|
|Ωλ|

∫

Ωλ

|e(∇uλ<)|2 dx =
|Ωλ|
|Ω|

∫

Ω

|e(∇u<)|2 dx,

∫

Ω

|χ+ − χ̃λ
<| dx =

∫

Ωλ

|χ+ − χλ
<| dx =

|Ωλ|
|Ωλ|

∫

Ωλ

|χ+ − χλ
<| dx =

|Ωλ|
|Ω|

∫

Ω

|χ+ − χ<| dx,

(3.5)

|Ωλ||Ω|−1 = λm, we arrive at the first estimate in (3.1) with

vδ− = ũλ< − û+ = ũλ<, ψδ
− = χ̃λ

<, δ = λ
m
2 ‖u<‖X(Ω) + λm‖χ+ − χ<‖L1(Ω). (3.6)

The second estimate in (3.1) is proved in a similar way, but for χ̃λ
> one should take the extension

of χλ
> by 0 from Ωλ to Ω.

By (3.6) and (3.3), for all δ the quantity ‖∇vδ−‖L∞(Ω) = ‖∇u<‖L∞(Ω) is a positive constant

independent of δ (recall that u< �≡ 0). Therefore, the perturbation vδ− constructed in the proof

of Theorem 2.1 is not small in the space W 1∞(Ω,Rm) as δ → 0.

Proof of Theorem 2.2. Since the functional is quadratic property (cf. (1.1)), we have

I0[u, χ, t]− I0[û
+, χ+, t] =

1

2
F+
MijMkl

∫

Ω

eij(∇u)ekl(∇u) dx

+

∫

Ω

(1− χ)((t∗ − t)− (F+ − F−)Mij (0)eij(∇u)) dx

− 1

2

∫

Ω

(1− χ)((F+ − F−)MijMkl
eij(∇u)ekl(∇u)) dx,

I0[u, χ, t]− I0[û
−, χ−, t] =

1

2
F−
MijMkl

∫

Ω

eij(∇u)ekl(∇u) dx

+

∫

Ω

χ((t− t∗) + (F+ − F−)Mij (0)eij(∇u)) dx

+
1

2

∫

Ω

χ((F+ − F−)MijMkl
eij(∇u)ekl(∇u)) dx.

(3.7)
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Then for all u ∈ X ∩ W 1∞(Ω,Rm), χ ∈ Z
′ and some positive constant γ from the assumption

(1.2) it follows that

I0[u, χ, t]− I0[û
+, χ+, t] � ν

∫

Ω

|e(∇u)|2 dx

+

∫

Ω

(1− χ)((t∗ − t)− γ(1 + ‖∇u‖L∞)‖∇u‖L∞) dx, (3.8)

I0[u, χ, t]− I0[û
−, χ−, t] � ν

∫

Ω

|e(∇u)|2 dx+
∫

Ω

χ((t− t∗)− γ(1 + ‖∇u‖L∞)‖∇u‖L∞) dx

and for all u ∈ X, χ ∈ Z
′

I0[u, χ
+, t]− I0[û

+, χ+, t] =
F+
MijMkl

2

∫

Ω

eijekl dx,

I0[û
+, χ, t]− I0[û

+, χ+, t] = |Ω|(1−Q)(t∗ − t),

I0[u, χ
−, t]− I0[û

−, χ−, t] =
F−
MijMkl

2

∫

Ω

eijekl dx,

I0[û
−, χ, t]− I0[û

−, χ−, t] = |Ω|Q(t− t∗),

e = e(∇u), Q =
1

|Ω|
∫

Ω

χdx.

(3.9)

From (3.7) with t = t∗ and e = e(∇u) we find

I0[u, χ, t
∗]− I0[û

+, χ+, t∗] =
∫

Ω

{χ〈A+e, e〉+ (1− χ)〈A−e, e〉+ 2(χ+ − χ)〈[Aζ], e〉} dx,

I0[u, χ, t
∗]− I0[û

−, χ−, t∗] =
∫

Ω

{χ〈A+e, e〉+ (1− χ)〈A−e, e〉 − 2(χ− χ−)〈[Aζ], e〉} dx.
(3.10)

We study the stability of the pair û+, χ+. Let t < t∗. Then (3.8) implies

I0[u, χ, t] > I0[û
+, χ+, t]

for χ ∈ Z
′, u ∈ X ∩W 1∞(0, l), t∗ − t > γ(1 + ‖∇u‖L∞)‖∇u‖L∞ , ‖û+ − u‖X + ‖χ+ − χ‖L1 > 0.

Let t > t∗. Then (3.9) implies

I0[u, χ
+, t] > I0[û

+, χ+, t] ∀ u ∈ X, u �= û+,

I0[û
+, χ, t] < I0[û

+, χ+, t] ∀ χ ∈ Z
′, χ �= χ+.

Let t = t∗. Then (3.10) implies

I0[u, χ
+, t∗] > I0[û

+, χ+, t∗] ∀ u ∈ X, u �= û+.

478



In the case t− < t+, we have [Aζ] �= 0 in view of (1.12). Therefore, there exists a function

u0 ∈ C∞
0 (Ω,Rm), ‖u0‖W 1∞ = 1, such that 〈[Aζ], e(∇u0)〉 �≡ 0. Then, based on the equality

∫

Ω

〈[Aζ], e(∇u0)〉 dx = 0,

we conclude that the set E− = {x ∈ Ω : 〈[Aζ], e(∇u0(x))〉 < 0} has positive measure. For every

δ > 0 we fix a function χ = ψδ− ∈ Z
′ such that supp(χ+ − ψδ−) ⊂ E− and ‖χ+ − ψδ−‖L1 < δ. By

the first identity in (3.10), for all sufficiently small ε > 0 we have

I0[εu0, ψ
δ
−, t

∗]− I0[û
+, χ+, t∗] = ε2

∫

Ω

{ψδ
−〈A+e, e〉+ (1− ψδ

−)〈A−e, e〉} dx

+ 2ε

∫

Ω

(χ+ − ψδ
−)〈[Aζ], e〉 dx < 0, e = e(∇u0).

Thus, we obtain the second inequality in (2.2) for some ε = ε(δ) ∈ (0, δ), ũ = û+, χ̃ = χ+,

vδ− = ε(δ)u0, and the above function ψδ−. The pair û−, χ− is considered in a similar way.
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