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We study the phenomenon of loss of stability of one-phase critical points of the en-
ergy functional of a two-phase elastic medium under perturbations of the temperature.
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1 Introduction

This section contains necessary preliminary information (cf. details in the survey [1]). In
quadratic approximation, the strain energy density of an elastic medium is given by

FE(M) = (A% (e(M) — (F),e(M) — ¢F), (1.1)

where M € R™*™ is an m xm matrix, m > 1, e(M) = 1/2(M +M*), (* € R™*™ are symmetric
m X m matrices, AT : RT™>™ — RT™™ are linear mappings that are symmetric and positive
definite with respect to the inner product («, 5) = traf, a, f € RT"™*™, i.e.

(AFE, Q) = (£, A%Q), VIEP < (AFEE < vl €7 = (€,€), (1.2)

forall ¢, ¢ € R7”™ and some v € (0,1). Based on (1.1), we introduce the strain energy functional
of a two-phase medium

Tolu, v, 1] = /{X(F+(w) i)+ (1= )P (Vu)} da, (1.3)
0

where u = u(z), v € 2 C R™ is an m-dimensional vector-valued function, Vu is the matrix
of coeflicients (Vu);; = u;j, i,j =1,...,m, t € R, and xy = x(x) is a characteristic function
whose support is occupied by the phase labeled by +. In applications, u(x) is a displacement
field, e(Vu) is the strain tensor, (* is the residual strain tensor of the corresponding phase,
and ¢ is the temperature (constant in §2) of the two-phase medium. Let the functional (1.3) be
defined on pairs of functions

weX=WY2,R"), yeZ, (1.4)
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where Z/ is the collection of all measurable characteristic functions. Sometimes, we indicate the
dependence of the functional (1.3) and sets (1.4) on the domain 2. Throughout the paper, (2
is assumed to be bounded.

By the equilibrium state of a two-phase elastic medium with fixed ¢t we mean the solution to
the variational problem

IO[ahj(\tat] = uésignxfez’ I()[U,X,t], at € X? X\t € Z/- (15)

The equilibrium state is one-phase if

Xe=x"=1 or Xi=x"=0 (1.6)
and two-phase in the opposite case. It is easy to see that the variational problems

Lat, x,t] = inf Llu,x, 1], Io[u~,x",t] = inf Io[u,x_,t], ateX, (1.7)
ueX ueX

are uniquely solvable and their solutions are given by
ut =0, u =0. (1.8)

Therefore, one-phase equilibrium states are realized only with zero displacement field.

It is proved that for the problem (1.5) there exist the phase transition temperatures t1 € R
independent of {2

bt Sty 7= —[(AG Q)= —((ATCh ) = (A7) (1.9)
(both identities in (1.9) are realized simultaneously) that are characterized by

in the case t_ < t4,

a single solution to the problem (1.5) with ¢ < ¢_ is a pair 4y = 4", X = x ™,
a single solution to the problem (1.5) with ¢ > ¢, isa pairu; =u, Xt = X,
for t € (t_,t+) the problem (1.5) has no one-phase equilibrium state

(1.10)

and

in the case t3 = t*, the first two assertions in (1.10) hold,
for t = t* the unique solution to the problem (1.5) is the pair u = 0, X+, (1.11)
where X+ is an arbitrary element of Z/'.

In the case (1.10), for ¢t € (t_,t4) the problem (1.5) can have a solution or be unsolvable. It
turns out that

[AC] = (AT¢T — A=(7) = 0 is a criterion for equality of t_ and t,. (1.12)
We set

|2li(t) = inf Z’ Iolu, x,t, 2], |2|imin(t) = Iolu, x,t, £2]. (1.13)

in
ueX,x€ weX,x={xT,x"}
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The functions i(t) and i, (t) are continuous with respect to t € R!. By (1.8), the second
infimum in (1.13) has the form

Ifut, x*t] =t + (AT¢H,(F), t<t,
imin(t) = (1.14)
IO[a_ax_at] = <A_<_7C_>’ t> t.

It is obvious that iy () > i(t). The equality imin(to) = i(to) for some to means that the problem
(1.5) with t = to possesses the equilibrium state ut, x* for ¢y < t* and u—, x~ for tg > t*.
Furthermore, (t_,t,) = 2, where

H ={t € R": im(t) >i(t)}, (1.15)

and the pairs ut, xT for all ¢ are critical points of the energy functional (1.3).

2 The Main Results

Since imin(t) = i(t) for t € RY\ 7,

ut, xT is an equilibrium state only for t < t_,

(2.1)
u—, X is an equilibrium state only for t > ¢,

(cf. (1.6), (1.8)). For fixed t a pair u € X, X € Z' is a Wy -saddle point of the energy functional
if for any 6 > 0 there are v{. € X and ¥4, € Z’ such that |[v]|x < 6, |X — ¥%|/z, < ¢ and

I()[ﬂ‘i‘"l)i,ibi,ﬂ >10[ﬁ7%7ﬂ7 ( )
2.2
I(][a"— ’U(S_,Q,/)(S_,t] < 10[177 %7 ﬂ
Theorem 2.1. If for a given t some pair U™, x* is not a solution to the problem (1.5), then

it is a W4-saddle point of the energy functional (1.3).

The pair u™, x* is not an equilibrium state for the functional (1.3) only for ¢ > ¢_. Theo-
rem 2.1 asserts that the stability of this pair is lost for ¢ > ¢_ under small energy perturbations
of u™ and small perturbations of x in L1 (£2).

The pair u—, x~ is not an equilibrium state of the functional (1.3) only for ¢t < t;. Theo-
rem 2.1 asserts that the stability of this pair is lost for ¢ < ¢4 under small energy perturbations
of u~ and small perturbations of x~ in the space L1 (£2).

The perturbation v® providing instability can be obtained for every § > 0 in a constructive
way. It satisfies the inclusion v® € WL (£2, R™), but HUE”WOIO does not tend to zero as 6 — 0.
Therefore, the perturbation used in the proof of Theorem 2.1 below is not small in the W1 -norm.

We try to clarify whether the pairs u®, xy* are stable under small perturbations of u* in
the WL (£2, R™)-norms and perturbations of x* in L;(£2). It turns out that such a relaxation

of perturbations of u* essentially changes the stability character for the pairs a*, x*.

We adapt the definition of a saddle pont to the case of perturbations of 7% in WL .

For fixed t a pair u € X, ¥ € Z' is a WL -saddle point of the energy functional if for any § > 0
there are functions v € XN WL (2, R™), ¥ € Z' such that HUiHW(}O <6, IX =%z, <6 and
(2.2) holds.
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Theorem 2.2. Fort < t* the pair u™, x " is a local minimum of the energy functional under
small perturbations of Ut in WL (2, R™) and any perturbations of x* in L1(2), whereas for
t > t* it is a WL -saddle point of this functional. Fort > t* the pair u~, x~ is a local minimum
of the energy functional under small perturbations of U~ in WL (82, R™) and any perturbations
of X~ in L1(82), whereas for t < t* it is a WL -saddle point of this functional.

In the case t_ < ty, t =t*, the pairs Ut x* are WL -saddle points of the energy functional.

In Theorems 2.1 and 2.2, the loss of stability of one-phase states u*, x* is caused (depending
on the values of the temperature t) by perturbation of only distributions of phases x* or by
consistent perturbation of displacement fields 4+ and phase distribution y*.

3 Proof of the Main Results

Proof of Theorem 2.1. Since 4T is a unique solution to the problems (1.7), for any ¢ the

first inequality in (2.2) holds with @ = 4%, ¥ = % = x*, v3 € X, v} # 0. Since

Lﬂa+,x,ﬂ::fom*,x+,ﬂ-—(t—t*)/kx+-—x>dx,
(9]

%Wimﬂ:hWiXﬁ%%f—ﬂ/u—xWM,

(9}
for every ¢t > t* the second inequality in (2.2) holds with 7 = a+, v® =0, ¢¥% = x, X = xT for
any x # x T, whereas for each ¢t < t* the same inequality holds with & = a—, v =0, ¥% = ¥,

X =X forany x # x.
It remains to consider the case t_ < t; and for any sufficiently small 6 > 0 establish the
existence of v? € X, ¢ € Z’ such that

Lfat +o2, 92,1 < o[t x*. 6, olllx <6, IIxt —¢2ll, <6, te b7, 6.1)
3.1
Lo +02, 90 8 < Io[a™,x 7, t], [02lx <6 92 = x"lle, <6, e[t ty).
Taking into account (1.14) and the inequality i(t) < ipmin(t) for ¢t € (t_,t+), we find us,uc €
X(£2), x>, X< € Z'(£2) such that
I(_)[U<,X<,t, Q] < |Q|me(t) :IO[a+aX+7ta Q]a te (t77t*]7 (3 2)
Dlus, x>, t, 2] < |Q2)imin(t) = Lolu,x ,t, 2], te]thty).
By the strict inequality in (3.2), the functions u~, u< do not vanish. By the continuity of
Ipl., x, t] in the space X, we can assume that these functions belong to the class C§°(£2, R™).

For any sufficiently small A > 0 we choose { = {(A) such that the domain 2\ = (¢
constructed by the rule $2¢y = {z € R™ : o« = A\x +§,x € 2}, A > O & € R™, lies, together

with its closure, in £2. We consider the pairs u., y< of functions u’ 2, X deﬁned by the rule
ul(z) = Muc(@), xi(z)=x<(F), TR, ze (3.3)
The change of variables yields
1 1
|Q | [U<,X<,t, Q)\] ‘Q’IO[U<7X<at’ Q] (34)
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We denote by 42 the extension of u2 by 0 and by X% the extension of x2 by 1 from £2) to 2.
Then @} € X(£2) and X2 € Z'(£2). Using (3.4) and the first inequality in (3.2), we have

2, .
Lo, 21, 2] = Dol x>, 6, 2] 4 192\ 0| (F(0) + 1) = %IO[UQXQR 2412\ 2 limin(®)

< |*Q)\‘imin<t) + ’Q \ Q)\’imin(t) = ‘Q‘Zmln(t) = [0[a+; X+7t7 Q]a te (t—vt*]

(the condition t € (t_,t*] was used to change F1(0) + t with imin(t) and [£2|imin(t) with
Io[u™, x*,t, 2]). Using the obtained inequality Io[u}, x2,t] < Io[ut, x*,t] and the relations

\X/\ (Vi Pda:/\ (Vi) da

|9A/ )2 QAl/ 2
dr = d
02

/\x —X<\dw—/lx X dr = m|/' * — A dr = |Q|/\ * x| de,

|2,]|92|71 = A\, we arrive at the first estimate in (3.1) with

Vo=ak—at =k, =X, = AT lucx) + AT = X<l (3.6)

The second estimate in (3.1) is proved in a similar way, but for i;‘ one should take the extension
of Xé by 0 from 2, to (2. O

By (3.6) and (3.3), for all § the quantity ||Vv° || () = [Vu<|r (o) is a positive constant
independent of § (recall that u< # 0). Therefore, the perturbation v® constructed in the proof
of Theorem 2.1 is not small in the space WL (£2, R™) as § — 0.

Proof of Theorem 2.2. Since the functional is quadratic property (cf. (1.1)), we have

. 1
Io[u, x,t] — Io[u™, x",t] = §FJ\Z~J~MH /eij(Vu)ekl(Vu) dx

(%
@0 =) = (FF = F g, (0)eis (V) do
2
=5 [0 = F )i (Fen(Tu)) da.
19 (3.7)
Io[u, x,t] — Io[u™, x~,t] = §FJ\71iijz /eij(Vu)ekl(Vu) dx
/ ((t— %) ~F)ar, (0)es; (Vu)) da
(%
% X(F* = P g, anei(Va)en(Vu) de.
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Then for all u € XN WL (2, R™), x € Z' and some positive constant v from the assumption
(1.2) it follows that

Io[u, x,t] — Ip[a™, x,t] > 1// le(Vu)|? dx
(]
+ / (1= = 1) = A1+ [Vl )|Vl de, (3.8)
(93

Iolu, x,t] = Tolu™, X t] > V/ Ie(W)Ide/X((t—t*) =7+ [Vul L) IVul Lo, ) de
[0 0]

and for all u € X, y € Z/

Fi
Iolu, xt,t] — Ip[ut, xT,t] = w /ez'jekl dzx,
Q

IO[a+7X7t] - IO[a+7X+7t] = ‘Q‘(l - Q)(t* - t)a
_ ~— _ F]Qiijl
Io[u,x™,t] = Io[u™,x~,t] = —y | esemdz, (3.9)
9}
IO[a_>Xat] - IO[a_vx_vt] = |“Q|Q(t - t*)v

e =e(Vu), Qzﬁ/xdw.
2

From (3.7) with t = ¢* and e = e(Vu) we find

Io[u, x, t*] — Ip[u*, x T, t*] Z/{X<A+6, e)+ (1= x)(A7e,e) +2(x — x)([AC], €) } da,

2
(3.10)

Iolu, x, t*] = Io[a™, x ", t"] :/{X<A+€» )+ (L=x)(A7e ) = 2(x — x7){[Ac], e) } da.
2

We study the stability of the pair u™, x*. Let ¢t < ¢*. Then (3.8) implies
Io[U, X5 t] > Io[il,\—’—, X+7 t]

for x € 2/, w € XN W5 (0,0), t* =t > y(1 + [ Vull L) Vull o, [[3F = ullx + X = xlz, > 0.
Let ¢ > t*. Then (3.9) implies

IO[U7X+7t] >IO[a+7X+7t] VueX, u%a+7
IO[a+’X7t] <10[a+7x+7t] VXGZ/a X#X+
Let ¢ = t*. Then (3.10) implies

Iofu, x ", t'] > Do[at, x",t"] VueX, uzut
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In the case t_ < t4, we have [A(] # 0 in view of (1.12). Therefore, there exists a function
up € C§°(£2, R™), |luollw = 1, such that ([A(],e(Vup)) # 0. Then, based on the equality

[ 140 evuoy az = o

2

we conclude that the set E_ = {x € 2: ([A(],e(Vug(z))) < 0} has positive measure. For every
§ > 0 we fix a function x = ¢® € Z' such that supp(x* —¢?) C E_ and ||x* — ¢’ |1, < 6. By
the first identity in (3.10), for all sufficiently small ¢ > 0 we have

Io[eug, 2, t*] — Lo[at, x 7, t*] = € /{¢5_<A+e, e) + (1 -2 ) (A e e)} dx
2

+ 26/(X+ — 2 ){[AC],e)dx < 0, e=e(Vug).
2

Thus, we obtain the second inequality in (2.2) for some € = €(§) € (0,6), u = a", x = xT,
v? = €(0)ug, and the above function 1° . The pair %, x~ is considered in a similar way. O
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