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OSCILLATION CRITERION FOR AUTONOMOUS DIFFERENTIAL
EQUATIONS WITH BOUNDED AFTEREFFECT

V. V. Malygina UDC 517.929

Abstract. For autonomous functional-differential equations with delays, we obtain an oscillation cri-

terion, which allows one to reduce the oscillation problem to the calculation of a unique root of a

real-valued function determined by the coefficients of the original equation. The criterion is illustrated

by examples of equations with concentrated and distributed aftereffect, for which convenient oscillation

tests are obtained.
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Consider the functional-differential equation of the form

ẋ(t) + μ

r∫

0

x(t− s)dk(s) = 0, t ≥ 0, (1)

where μ and r are real numbers, r > 0, k is a function of bounded variation satisfying the condition
k(0) = 0, and the integral is meant in the Riemann–Stieltjes sense. As is known (see [1]), under
these assumptions, there exists a unique solution of Eq. (1) with given initial conditions in the class

of locally absolutely continuous functions.
A continuous function defined on the semi-axis is said to be oscillating if the sequence of its zeros

is unbounded from the right. Equation (1) is said to be oscillating if all its solutions are oscillating
functions.

To Eq. (1), we put in correspondence the characteristic function

F (λ) ≡ −λ+ μ

r∫

0

eλt dk(t), λ ∈ C.

The following assertion states the relation between the oscillation property of Eq. (1) and the properties

of its characteristic function.

Theorem 1 (see [4]). Equation (1) is an oscillating equation if and only if the equation F (λ) = 0 has
no real roots.

Generally speaking, the function F has a complicated structure, and a direct study of the set of its
real roots is a difficult problem. In the present paper, we obtain a criterion that is more efficient for

analysis of the oscillation property of Eq. (1) than Theorem 1.
We exclude from consideration the trivial case where (1) is an ordinary differential equation. We

assume that k is a nondecreasing on [0, r] function. In this case, if μ = 0, then F (0) = 0, and if μ < 0,

then F (0)F (−∞) < 0, i.e., for μ ≤ 0 the characteristic function has real roots. Therefore, we assume
that μ > 0.
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Introduce the notation

G(ζ) ≡ ζ

r∫

0

seζsdk(s)−
r∫

0

eζsdk(s),

where ζ ∈ R. It is easy to see that G(ζ) < 0 for ζ ≤ 0, whereas for ζ > 0 we have G′(ζ) > 0, i.e.,
G monotonically increases on the positive semi-axis. Since G(ζ) → +∞ as ζ → +∞, the equation

G(ζ) = 0 has a unique (moreover, positive) root on the real axis. We denote this root by ζ∗.

Theorem 2. The function F is positive for all ζ ≥ 0 if and only if

μ

r∫

0

eζ∗s dk(s) > ζ∗,

where ζ∗ is the root of the equation G(ζ) = 0.

The conditions of the theorem and the property ζ∗ imply that
r∫

0

eζ∗s dk(s) > 0.

Introduce the notation

μ∗ = ζ∗
/ r∫

0

eζ∗s dk(s)

and consider on the set R the function

F∗(ζ) = −ζ + μ∗

r∫

0

eζs dk(s)

and its derivatives

F ′
∗(ζ) = −1 + μ∗

r∫

0

s eζsdk(s), F ′′
∗ (ζ) = μ∗

r∫

0

s2 eζsdk(s).

Since F ′′∗ (ζ) > 0 for all ζ ∈ R, we conclude that F ′∗ monotonically increases on R from −1 to +∞;
therefore, there exists a unique point ζ0 ∈ R at which F ′∗(ζ0) = 0. On the other hand,

r∫

0

seζ∗sdk(s) =
1

ζ∗

r∫

0

eζ∗sdk(s) =
1

μ∗
;

therefore,

F ′
∗(ζ∗) = −1 +

μ∗
μ∗

= 0

and hence ζ0 = ζ∗. Thus,
F∗(ζ0) = F ′

∗(ζ0) = 0

and, moreover, ζ0 is a minimum point of the function F∗. Therefore, F∗(ζ) ≥ 0 for all ζ ≥ 0.

Proof of Theorem 2. Assume that the conditions of the theorem hold. Taking into account the nota-
tion introduced above, we can write the condition in the form μ > μ∗. Then for any ζ ∈ [0,∞) we
have

F (ζ) = −ζ + μ

r∫

0

eζs dk(s) = F∗(ζ) + (μ− μ∗)
r∫

0

eζs dk(s) > 0,
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which was required. Conversely, if μ ≤ μ∗, then

F (ζ∗) = F∗(ζ∗) + (μ − μ∗)
r∫

0

eζs dk(s) = (μ − μ∗)
r∫

0

eζs dk(s) ≤ 0;

therefore, the function F is not positive on [0,∞).

Combining Theorems 1 and 2, we obtain the following result.

Theorem 3. Let k be a nondecreasing on [0, r] function. Then the following assertions are equivalent :

(1) Eq. (1) is an oscillating equation;
(2) the characteristic function of Eq. (1) is positive on [0,∞);
(3) the following inequality is valid :

μ

r∫

0

eζ∗s dk(s) > ζ∗,

where ζ∗ is the root of the equation G(ζ) = 0;
(4) the following inequality is valid :

μ

r∫

0

seζ∗s dk(s) > 1,

where ζ∗ is the root of the equation G(ζ) = 0.

Proof. Obviously, F (ζ) > 0 for ζ < 0; therefore, by Theorem 1, the assertions (1) and (2) are

equivalent. Theorem 2 provides the equivalence of the assertions (2) and (3), and the definition of the
root ζ∗ — the equivalence of the assertions (3) and (4).

Corollary 1. If

μ

r∫

0

s dk(s) > 1/e,

then Eq. (1) is an oscillating equation.

The function k, as any function of bounded variation, can be represented as the sum k(t) = k1(t)+
k2(t) + k3(t), where k1(t) is a jump function, k2(t) is an absolutely continuous function, and k3(t)
is a singular function. Each of these functions corresponds to its own type of functional-differential

equations. We illustrate Theorem 3 by examples of equations with various types of aftereffect.

A. Equations with concentrated delays. Let μ = 1,

k(t) = k1(t) =

n∑
k=1

akχ(t− rk),

where ak > 0, 0 < r1 < r2 < · · · < rn = r, and χ is the Heaviside function. Equation (1) takes the
form

ẋ(t) +
n∑

k=1

akx(t− rk) = 0, t ≥ 0. (2)

Applying Corollary 1, we obtain the well-known oscillation condition (see [2]).
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Condition 1. If ak > 0 for any k = 1, n and

n∑
k=1

akrk >
1

e
,

then Eq. (2) is an oscillating equation.

Setting n = 1 in Eq. (2), we obtain the equation

ẋ(t) + ax(t− r) = 0, t ≥ 0, (3)

for which

G(ζ) ≡ eζr(ζr − 1), ζ∗ =
1

r
.

Applying assertions (3) or (4) of Theorem 3, we obtain for Eq. (3) the following oscillation criterion.

Condition 2 (see [3]). Equation (3) is an oscillating equation if and only if ar > 1/e.

Thus, in the case of a singe term, Condition 1 becomes a criterion. In particular, this implies that
the constant 1/e in Condition 1 cannot be improved; moreover, the strict inequality cannot be replaced
by nonstrict.

B. Equations with distributed delays. Let

k(t) = k2(t) =

t∫

0

p(s)ds,

where p is a summable on [0, r] nonnegative function. Equation (1) takes the form

ẋ(t) + μ

r∫

0

p(s)x(t− s)ds = 0, t ≥ 0. (4)

We clarify Corollary 1 for Eq. (4): in this case, the strict inequality can be replaced by nonstrict.

Condition 3. If

μ

r∫

0

p(s)s ds ≥ 1

e
,

then Eq. (4) is an oscillating equation.

Proof. The inequality eζ∗s > esζ∗ valid for all s 	= 1/ζ∗ and Condition (3) imply that μ > 0 and

r∫

0

p(s)s ds > 0,

we have

μ

r∫

0

p(s) eζ∗sds > μeζ∗

r∫

0

p(s)s ds ≥ eζ∗
e

= ζ∗.

It remains to apply item (3) of Theorem 3.
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Apply Theorem 3 to an equation of the form (4) for a specific family of functions p(t) = tα, where

α > −1. Equation (4) takes the form

ẋ(t) + μ

r∫

0

sαx(t− s) ds = 0, t ≥ 0. (5)

Introduce the notation

I(ξ) =

1∫

0

sαeξsds;

then
r∫

0

k(s)eζsds = rα+1I(rζ), ζ

r∫

0

k(s)seζs ds = rα+1(eζr − (α+ 1)I(rζ)),

and the equation G(ζ) = 0 is equivalent to the equation

(α+ 2)I(ξ) = eξ, (6)

where ξ = rζ. In this notation, the inequality from item (3) of Theorem 3 takes the form

μrα+2 > (α+ 2)ξe−ξ.

Thus, we obtain the following oscillation criterion for Eq.(5).

Condition 4. Equation (5) is an oscillating equation if and only if

μrα+2 > (α+ 2)ξαe
−ξα ,

where ξα is the root of Eq. (6).

We indicate a simple particular case of Eq. (5) for α = 0.

Condition 5. The equation

ẋ(t) + μ

r∫

0

x(t− s) ds = 0

is an oscillating equation if and only if

μr2 > 2ξ0e
−ξ0 ,

where ξ0 is the positive root of the equation

1− ξ

2
= e−ξ.

A numerical calculation yields

ξ0 ≈ 1.594, 2ξ0e
−ξ0 ≈ 0.648.

The roots of Eq. (6) for other values of α > −1 can also be easily found:

ζ−1/2 ≈ 1.914, ζ1 ≈ 1.361, ζ2 ≈ 1,262, ζ3 ≈ 1,206, ζ1/2 ≈ 1,447, ζ3/2 ≈ 1,303.

To each root, its own oscillation conditions corresponds.
We note the following interesting fact: Condition 4 allows one to prove the exactness of the con-

stant 1/e in Condition 3. To prove this, we first obtain certain properties of the family ξα.
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Lemma 1. For all α > −1, the inequality

ξα > 1

holds. Moreover,

lim
α→∞ ξα = 1.

Proof. From the definition of ξα we have

(α+ 2)

1∫

0

sαeξα(s−1)ds = 1.

Integrating by parts, we obtain

(α+ 2)

1∫

0

sα+1eξα(s−1)ds =
1

ξα
.

Subtracting the second relation from the first, we have

1− 1

ξα
= (α+ 2)

1∫

0

sα(1− s)eξα(s−1)ds, (7)

which immediately implies that for any α > −1 the estimate ξα > 1 is valid. Taking this inequality

into account, we obtain from (7)

0 < 1− 1

ξα
≤ (α+ 2)

1∫

0

(sα − sα+1)ds =
1

α+ 1

and hence

lim
α→∞ ξα = 1.

The lemma is proved.

We show that in Condition (3) the constant 1/e cannot be improved. Setting r = 1 in Eq. (5) and
applying Condition 3, we obtain the following sufficient condition of oscillation:

μrα+2 ≥ α+ 2

e
.

Applying Condition (4), we obtain the following oscillation criterion:

μrα+2 > (α+ 2)ξαe
−ξα .

By Lemma 1, ξα > 1; therefore,

ξαe
−ξα <

1

e
,

but

ξαe
−ξα → 1

e
;

therefore, it is impossible to decrease the constant 1/e in Condition 3.
There are very few examples of functional-differential equations with singular components. We

mention the paper [5] in which an equation of the form (1) was examined, where r = 1 and k is the
Cantor function. For this equation, the exact domain of positivity of the fundamental solution in the
form μ ≤ μ0 was found in [5], where μ0 is determined by a root of a certain auxiliary transcendent

equation; its approximate value is μ0 ≈ 0.618.

722



Since the positivity of the fundamental solution is equivalent to the presence of real roots of the

characteristic function, Theorem 1 implies that the domain of oscillation for this equation has the
form μ > μ0.
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