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ON SOME PROPERTIES OF ENDOMORPHISM RINGS
OF ABELIAN GROUPS

V. M. Misyakov UDC 512.541

Abstract. Some equivalent conditions under which a group can be (fully) transitive, endotransitive, or
weakly transitive are presented.

The term “(full) transitivity” was introduced by I. Kaplansky in [24] in studying modules over the
complete discrete valuation rings. Fully transitive torsion free Abelian groups were studied first by
P. A. Krylov in [25] (he called these groups transitive). The definition of an arbitrary (fully) transitive
Abelian group was introduced by Yu. B. Dobrusin in [6]. Describing (fully) transitive groups is still
an open problem although studies connected with these objects are steadily being carried out. For
example, (fully) transitive torsion groups were considered in [1, 4, 5, 11, 15, 16, 23, 31]; torsion free groups,
in [3,17,26,27]; mixed groups, in [9,18–20,30]; (fully) transitive modules, in [10,22]; and weakly transitive
torsion free groups, in [14, 29]. Endotransitive groups introduced in [7] for torsion free groups were also
studied in [2, 8, 21].

This paper demonstrates some connections between these concepts and presents some equivalent
conditions for a group to be (fully) transitive, endotransitive, or weakly transitive.

In [4], Corner considers the following concept: let Φ be a subring with unity of the ring E(G), and
let H be a Φ-invariant subgroup of a reduced p-group G; then, he says that Φ acts (fully) transitively
on H if the existence of an (element ϕ ∈ Φ) invertible element ϕ ∈ Φ such that ϕ(x) = y follows for any
x, y ∈ H such that (UG(x) ≤ UG(y)) UG(x) = UG(y). Roughly speaking, we say that the subgroup H
is (fully) transitive over Φ. Thus, G is a (fully) transitive group in the sense of Kaplansky if and only if
E(G) acts (fully) transitively on G. Theorem 6 describes (fully) transitive action of the ring E(G) on an
arbitrary reduced group G.

The following Problem 41.1 was posed in [28]: “Is the class of transitive [strongly homogeneous]
torsion free groups with respect to taking direct summands?” We recall that homogeneous transitive
torsion free groups are called strongly homogeneous. Theorem 8 yields necessary and sufficient conditions
under which a direct summand of an arbitrary transitive group is a transitive group.

In this work, the word “group” means an Abelian group. All standard definitions and designations
can be found in [12,13]. If G is a group, then the group (ring) of all its automorphisms (endomorphisms)
is denoted as Aut(G) (E(G)); H(a)A denotes the height matrix of an element a in a subgroup A of the
group G; Hp(a)A denotes a row of the height matrix H(a)A corresponding to a prime number p; Tp(G)
denotes the p-component of the periodic subgroup T (G) of the group G.

We recall that a group G is called (fully) transitive if the existence of ϕ ∈ Aut(G) (ϕ ∈ E(G))
carrying an element a into element b follows for any pair of elements a, b ∈ G such that H(a) = H(b)
(H(a) ≤ H(b)).

Let us consider fully invariant subgroups of the group G associated with a nonzero element a ∈ G:

bfc(a) = {b ∈ G | H(a) ≤ H(b)},
lfc(a) = {b ∈ G | ∃ϕ ∈ E(G), ϕ(a) = b}.
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We call them the large and small fully invariant subgroups of the group G containing the element a,
respectively.

Remark 1. For any nonzero element a ∈ G, there exists an epimorphism ψa : E+(G) → lfc(a) acting by
the rule ψa(ϕ) = ϕ(a) for any ϕ ∈ E+(G).

Further, we consider some equivalent conditions of full transitivity of the group G.

Proposition 1. For a reduced group G, the following conditions are equivalent :
(1) G is a fully transitive group;
(2) bfc(a) = lfc(a) for any nonzero element a ∈ G;
(3) for any nonzero element a ∈ G, there exists an epimorphism ψa : E+(G) → bfc(a) acting by the

rule ψa(ϕ) = ϕ(a) for any ϕ ∈ E+(G).

Proof. (1) =⇒ (2). Let a be an arbitrary element of the group G. Since lfc(a) ⊆ bfc(a), let c ∈ bfc(a).
Then H(a) ≤ H(c). Since G is a fully transitive group, there exists ϕ ∈ E(G) such that ϕ(a) = c.
Therefore, c ∈ lfc(a) and bfc(a) = lfc(a).

(2) =⇒ (1). Consider arbitrary elements a, b ∈ G such that H(a) ≤ H(b). Since b ∈ bfc(a) and
bfc(a) = lfc(a), there exists ϕ ∈ E(G) such that ϕ(a) = b.

(2) =⇒ (3). Follows from the condition and Remark 1.
(3) =⇒ (2). Let a be an arbitrary element of the group G. Since lfc(a) ⊆ bfc(a), let c be an

arbitrary element of the subgroup bfc(a). Then, for the element c, there exists η ∈ E+(G) such that
c = ψa(η) = η(a). Therefore, c ∈ lfc(a) and bfc(a) = lfc(a).

By analogy with fully invariant subgroups of the group G that are connected with a nonzero element
a ∈ G, we consider invariant subsets of the group G

bc(a) = {b ∈ G | H(b) = H(a)},
lc(a) = {b ∈ G | ∃ϕ ∈ Aut(G), ϕ(a) = b},

which we call large and small invariant subsets of the group G containing the element a. Here, by an
invariant subset of the group G we mean a subset closed with respect to the action of automorphisms of
the group G.

Remark 2. For an arbitrary nonzero element a ∈ G, we have the following connection between fully
invariant subgroups and invariant subsets defined above:

lc(a) ⊆ lfc(a) ⊆ bfc(a),

lc(a) ⊆ bc(a) ⊆ bfc(a).

Below, the term “weakly transitive group” introduced for torsion free groups in [14] is defined for an
arbitrary Abelian group.

Definition 1. A group G is called weakly transitive if for arbitrary elements x, y ∈ G the existence of
endomorphisms ϕ, ψ ∈ E(G) such that ϕ(x) = y, ψ(y) = x implies the existence of α ∈ Aut G such that
α(x) = y.

For a characterization of weakly transitive groups, we need the following set defined for any nonzero
element a ∈ G:

weak(a) = {b ∈ G | ∃ϕ, ψ ∈ E(G), ϕ(a) = b, ψ(b) = a}.
Remark 3. It is easy to verify that lc(a) ⊆ weak(a) ⊆ bc(a) and lc(a) ⊆ weak(a) ⊆ lfc(a) for any nonzero
element a ∈ G.

Lemma 2. A group G is weakly transitive if and only if weak(a) = lc(a) for any nonzero element a ∈ G.
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Proof. Necessity. Let G be a weakly transitive group. Then, for any nonzero element a ∈ G and for any
x ∈ weak(a), there exist ϕ, ψ ∈ E(G) such that ϕ(x) = a and ψ(a) = x. Since G is a weakly transitive
group, there exists α ∈ Aut(G) such that α(a) = x. Therefore, x ∈ lc(a). The reverse inclusion follows
from Remark 3.

Sufficiency. Consider arbitrary x, y ∈ G and ϕ, ψ ∈ E(G) such that ϕ(x) = y and ψ(y) = x. Then
y ∈ weak(x) = lc(x). Therefore, there exists α ∈ Aut(G) such that α(x) = y.

Remark 4. For each nonzero element a ∈ G, there exists an epimorphism ψa : Aut(G) → lc(a) acting by
the rule ψa(ϕ) = ϕ(a) for any ϕ ∈ Aut(G).

Since any transitive group is weakly transitive, it is interesting to find an additional condition under
which a weakly transitive group is transitive. The following statement proposes such a condition.

Proposition 3. For a group G, the following conditions are equivalent :
(1) G is a transitive group;
(2) bc(a) = lc(a) for any nonzero element a ∈ G;
(3) for any nonzero element a ∈ G, there exists an epimorphism ψa : Aut(G) → bc(a) acting by the

rule ψa(ϕ) = ϕ(a) for any ϕ ∈ Aut(G);
(4) G is a weakly transitive group and weak(a) = bc(a) for any nonzero element a ∈ G.

Proof. (1) =⇒ (2). Let a be an arbitrary nonzero element of the group G and c ∈ bc(a). Then H(c) =
H(a). Therefore, there exist ϕ ∈ Aut(G) such that ϕ(a) = c. Then c ∈ lc(a) and bc(a) ⊆ lc(a). The
reverse inclusion follows from Remark 2.

(2) =⇒ (1). Consider arbitrary nonzero elements a, b ∈ G such that H(a) = H(b). Then b ∈ bc(a).
Since bc(a) = lc(a), there exists ϕ ∈ Aut(G) such that ϕ(a) = b.

(2) =⇒ (3). Follows from the condition and Remark 4.
(3) =⇒ (2). Let a be an arbitrary nonzero element of the group G. Since lc(a) ⊆ bc(a), let x ∈ bc(a).

Since ψa : Aut(G) → bc(a) is an epimorphism, there exists ϕ ∈ Aut(G) such that x = ψa(ϕ) = ϕ(a).
Therefore, x ∈ lc(a) and bc(a) = lc(a).

The equivalence of conditions (2) and (4) follows from Remark 3 and Lemma 2.

Definition 2. A group G is called endotransitive if the existence of ϕ ∈ E(G) such that ϕ(x) = y follows
for arbitrary elements x, y ∈ G such that H(x) = H(y).

In [28], Problem 44 was formulated: “Are there weakly transitive torsion free groups (here, by the term
“weak transitivity,” we mean the term “endotransitivity”) that are neither transitive nor fully transitive?”
Remark 4 and the following lemma bring hope that such groups can exist.

Lemma 4. A reduced group G is endotransitive if and only if bc(a) ⊆ lfc(a).

Proof. Necessity. Consider arbitrary 0 	= a ∈ G and x ∈ bc(a). Then H(a) = H(x). Since G is an
endotransitive group, there exists ϕ ∈ E(G) such that ϕ(a) = x. Therefore, x ∈ lfc(a).

Sufficiency. Consider arbitrary elements a, b ∈ G such that H(a) = H(b). Then b ∈ bc(a) ⊆ lfc(a).
Therefore, there exists an endomorphism ϕ ∈ E(G) such that ϕ(a) = b. Thus, G is an endotransitive
group.

Remark 5. Propositions 1 and 3, Remark 4, and Lemma 4 imply a well-known result that if a group is
(fully) transitive, it is endotransitive.

For the sake of completeness, we recall the following lemma proved by Corner in [4].

Lemma 5 ([4]). A reduced p-group G is (fully) transitive if and only if E(G) acts (fully) transitively
on pωG.

Let us extend the concept introduced by Corner for p-groups to arbitrary reduced Abelian groups.
Here, in contrast to Corner, we suppose that the height matrix H(a) is taken in a subgroup A of the
group G for any a ∈ A.
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Definition 3. Let Φ be a subring with unity of the ring E(G) and A be a Φ-invariant subgroup of
a reduced Abelian group G. We say that Φ acts (fully) transitively on A or the subgroup A is (fully)
transitive on Φ if the existence of an (element ϕ ∈ Φ) invertible element ϕ ∈ Φ such that ϕ(x) = y follows
for any x, y ∈ A.

Theorem 6. A reduced group G is (fully) transitive if and only if E(G) acts (fully) transitively on pσG
for any ordinal number σ and arbitrary prime number p.

Proof. We prove the theorem for the case of full transitivity; the transitive case is proved similarly.
Necessity. Let p be an arbitrary prime number; if G is a p-divisible group, then pσG = G, i.e., pσG is

a fully transitive group over E(G) follows for any ordinal number σ.
Let pG 	= G. We prove the theorem by induction on σ. If σ = 0, then E(G) acts fully transitively

on G.
Let the statement of the theorem be fulfilled for any δ such that 0 ≤ δ < σ. Let us show that E(G)

acts fully transitively on pσG. Let a, b ∈ pσG and H(a)pσG ≤ H(b)pσG. Then Hp(a)pσG ≤ Hp(b)pσG,
where Hp(a)pσG = (α0, α1, . . . , αk, . . .) and Hp(b)pσG = (β0, β1, . . . , βm, . . .).

Let σ be an isolated ordinal number. Then pσG = p(pσ−1G) and, therefore, there exist elements
c1, c2 ∈ pσ−1G such that a = pc1, b = pc2. Then Hp(c1)pσ−1G = (μ, α0, α1, . . . , αk, . . .) and Hp(c2)pσ−1G =
(ν, β0, β1, . . . , βm, . . .); here, Hq(c1)pσ−1G = Hq(a)pσG and Hq(c2)pσ−1G = Hq(b)pσG for any prime num-
ber q, where q 	= p. If μ ≤ ν, then H(c1)pσ−1G ≤ H(c2)pσ−1G. Since, by the induction hypothesis,
the subgroup pσ−1G is fully transitive over E(G), there exists ϕ ∈ E(G) such that ϕ(c1) = c2. Then
pϕ(c1) = pc2 and ϕ(a) = b.

Let ν < μ. Suppose that there is a jump between ν and β0 (otherwise, μ ≤ ν). Then the νth
Ulm–Kaplansky invariant of the group Tp(pσ−1G) is different from zero, i.e., there exists d ∈ pσ−1G such
that o(d) = p and Hp(d)pσ−1G = (ν,∞, . . .). Consider an element c1+d ∈ pσ−1G. Since Hp(c1+d)pσ−1G =
(ν, α0, α1, . . . , αk, . . .) ≤ Hp(c2)pσ−1G and Hq(c1 + d)pσ−1G = Hq(c1)pσ−1G for any prime q, q 	= p, we have
H(c1 + d)pσ−1G ≤ H(c2)pσ−1G. Since, by the induction hypothesis, the subgroup pσ−1G is fully transitive
over E(G), there exists ϕ ∈ E(G) such that ϕ(c1 + d) = c2. Then pϕ(c1 + d) = pc2 and ϕ(a) = b.

Let σ be the limit ordinal number, i.e., pσG =
⋂

δ<σ

pδG. Therefore, a, b ∈ pδG for any δ < σ. Then,

be definition of the generalized height, h∗
p(a)pδG = h∗

p(a)pσG for any δ < σ and, therefore, h∗
p(p

ka)pδG =
h∗

p(p
ka)pσG for any δ < σ and natural k, i.e., Hp(a)pδG = Hp(a)pσG for any δ < σ. Since Hq(a)pδG =

Hq(a)pσG for any δ < σ and prime q, where q 	= p, we have H(a)pδG = H(a)pσG for any δ < σ. Similar
reasonings show that H(b)pδG = H(b)pσG for any δ < σ. Then H(a)pδG ≤ H(b)pδG. By the induction
hypothesis, the subgroup pδG is fully transitive over E(G) for any δ < σ, i.e., there exists ϕ ∈ E(G) such
that ϕ(a) = b.

Sufficiency. Let E(G) acts fully transitively on the subgroup pσG for any ordinal number σ and for
any prime number p. Then, in particular, E(G) acts fully transitively on p0G = G, i.e., G is a fully
transitive group.

Corollary 7. For a reduced p-group G, the following conditions are equivalent :
(1) G is a (fully) transitive group;
(2) E(G) acts (fully) transitively on pωG (in the sense of Corner);
(3) E(G) acts (fully) transitively on pσG for any ordinal number σ (in the sense of Definition 3).

Proof. Equivalences of conditions (1) and (2), (1) and (3) are obtained from Lemma 5 and Theorem 6,
respectively.

Let us introduce the following concept.

Definition 4. Let G = A⊕B. We say that automorphisms of the group A are induced by automorphisms
of the group G if, for any a ∈ A and for any x ∈ bc(a), the existence of ϕ ∈ Aut G such that ϕρ(a) = ρ(x)
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implies the existence of ψ ∈ Aut A such that πϕρ(a) = ψ(a), where ρ : A → G and π : G → A are the
canonical embedding and projection, respectively.

Theorem 8. A direct summand A of a transitive group G is a transitive group if and only if automor-
phisms of the group A are induced by automorphisms of the group G.

Proof. Necessity. Let G = A⊕B, where G and A are transitive groups. Let ρ : A → G and π : G → A be
the canonical embedding and projection, respectively. Then, for any nonzero element a ∈ A and for any
x ∈ bc(a), the transitivity of the group A implies the existence of ψ ∈ Aut A such that ψ(a) = x.

Consider an element ρx. Since H(ρx) = H(ρa), the transitivity of the group G implies the existence
of ϕ ∈ Aut G such that ϕρa = ρx. Therefore, πϕρa = x = ψ(a).

Sufficiency. For the transitivity of the group A, according to Proposition 3, it is sufficient to show
that bc(a) = lc(a) follows for any nonzero element a ∈ A. For an arbitrary element x ∈ bc(a), we have
H(x) = H(a). Since H(ρx) = H(ρa), the existence of ϕ ∈ Aut G such that ϕρ(a) = ρ(x) follows from the
transitivity of the group G. Since automorphisms of the group G induce automorphisms of the group A,
there exists ψ ∈ Aut A such that x = πϕρ(a) = ψ(a). Therefore, bc(a) = lc(a).
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