ON SOME PROPERTIES OF ENDOMORPHISM RINGS OF ABELIAN GROUPS

V. M. Misyakov UDC 512.541

ABSTRACT. Some equivalent conditions under which a group can be (fully) transitive, endotransitive, or weakly transitive are presented.

The term "(full) transitivity" was introduced by I. Kaplansky in [24] in studying modules over the complete discrete valuation rings. Fully transitive torsion free Abelian groups were studied first by P. A. Krylov in [25] (he called these groups transitive). The definition of an arbitrary (fully) transitive Abelian group was introduced by Yu. B. Dobrusin in [6]. Describing (fully) transitive groups is still an open problem although studies connected with these objects are steadily being carried out. For example, (fully) transitive torsion groups were considered in [1,4,5,11,15,16,23,31]; torsion free groups, in [3,17,26,27]; mixed groups, in [9,18–20,30]; (fully) transitive modules, in [10,22]; and weakly transitive torsion free groups, in [14,29]. Endotransitive groups introduced in [7] for torsion free groups were also studied in [2,8,21].

This paper demonstrates some connections between these concepts and presents some equivalent conditions for a group to be (fully) transitive, endotransitive, or weakly transitive.

In [4], Corner considers the following concept: let Φ be a subring with unity of the ring E(G), and let H be a Φ -invariant subgroup of a reduced p-group G; then, he says that Φ acts (fully) transitively on H if the existence of an (element $\varphi \in \Phi$) invertible element $\varphi \in \Phi$ such that $\varphi(x) = y$ follows for any $x, y \in H$ such that $(U_G(x) \leq U_G(y))$ $U_G(x) = U_G(y)$. Roughly speaking, we say that the subgroup H is (fully) transitive over Φ . Thus, G is a (fully) transitive group in the sense of Kaplansky if and only if E(G) acts (fully) transitively on G. Theorem 6 describes (fully) transitive action of the ring E(G) on an arbitrary reduced group G.

The following Problem 41.1 was posed in [28]: "Is the class of transitive [strongly homogeneous] torsion free groups with respect to taking direct summands?" We recall that homogeneous transitive torsion free groups are called strongly homogeneous. Theorem 8 yields necessary and sufficient conditions under which a direct summand of an arbitrary transitive group is a transitive group.

In this work, the word "group" means an Abelian group. All standard definitions and designations can be found in [12,13]. If G is a group, then the group (ring) of all its automorphisms (endomorphisms) is denoted as $\operatorname{Aut}(G)$ (E(G)); $H(a)_A$ denotes the height matrix of an element a in a subgroup A of the group G; $H_p(a)_A$ denotes a row of the height matrix $H(a)_A$ corresponding to a prime number p; $T_p(G)$ denotes the p-component of the periodic subgroup T(G) of the group G.

We recall that a group G is called (fully) transitive if the existence of $\varphi \in \operatorname{Aut}(G)$ ($\varphi \in \operatorname{E}(G)$) carrying an element a into element b follows for any pair of elements $a, b \in G$ such that H(a) = H(b) ($H(a) \leq H(b)$).

Let us consider fully invariant subgroups of the group G associated with a nonzero element $a \in G$:

$$bfc(a) = \{b \in G \mid H(a) \le H(b)\},\$$
$$lfc(a) = \{b \in G \mid \exists \varphi \in E(G), \ \varphi(a) = b\}.$$

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 20, No. 5, pp. 131–139, 2015.

We call them the large and small fully invariant subgroups of the group G containing the element a, respectively.

Remark 1. For any nonzero element $a \in G$, there exists an epimorphism $\psi_a \colon E^+(G) \to lfc(a)$ acting by the rule $\psi_a(\varphi) = \varphi(a)$ for any $\varphi \in E^+(G)$.

Further, we consider some equivalent conditions of full transitivity of the group G.

Proposition 1. For a reduced group G, the following conditions are equivalent:

- (1) G is a fully transitive group;
- (2) bfc(a) = lfc(a) for any nonzero element $a \in G$;
- (3) for any nonzero element $a \in G$, there exists an epimorphism $\psi_a \colon E^+(G) \to bfc(a)$ acting by the rule $\psi_a(\varphi) = \varphi(a)$ for any $\varphi \in E^+(G)$.
- *Proof.* (1) \Longrightarrow (2). Let a be an arbitrary element of the group G. Since $lfc(a) \subseteq bfc(a)$, let $c \in bfc(a)$. Then $H(a) \subseteq H(c)$. Since G is a fully transitive group, there exists $\varphi \in E(G)$ such that $\varphi(a) = c$. Therefore, $c \in lfc(a)$ and bfc(a) = lfc(a).
- $(2) \Longrightarrow (1)$. Consider arbitrary elements $a, b \in G$ such that $H(a) \leq H(b)$. Since $b \in bfc(a)$ and bfc(a) = lfc(a), there exists $\varphi \in E(G)$ such that $\varphi(a) = b$.
 - $(2) \Longrightarrow (3)$. Follows from the condition and Remark 1.
- (3) \Longrightarrow (2). Let a be an arbitrary element of the group G. Since $lfc(a) \subseteq bfc(a)$, let c be an arbitrary element of the subgroup bfc(a). Then, for the element c, there exists $\eta \in E^+(G)$ such that $c = \psi_a(\eta) = \eta(a)$. Therefore, $c \in lfc(a)$ and bfc(a) = lfc(a).

By analogy with fully invariant subgroups of the group G that are connected with a nonzero element $a \in G$, we consider invariant subsets of the group G

$$bc(a) = \{b \in G \mid H(b) = H(a)\},\$$

$$lc(a) = \{b \in G \mid \exists \varphi \in Aut(G), \ \varphi(a) = b\},\$$

which we call large and small invariant subsets of the group G containing the element a. Here, by an invariant subset of the group G we mean a subset closed with respect to the action of automorphisms of the group G.

Remark 2. For an arbitrary nonzero element $a \in G$, we have the following connection between fully invariant subgroups and invariant subsets defined above:

$$lc(a) \subseteq lfc(a) \subseteq bfc(a),$$

 $lc(a) \subseteq bc(a) \subseteq bfc(a).$

Below, the term "weakly transitive group" introduced for torsion free groups in [14] is defined for an arbitrary Abelian group.

Definition 1. A group G is called weakly transitive if for arbitrary elements $x, y \in G$ the existence of endomorphisms $\varphi, \psi \in \mathcal{E}(G)$ such that $\varphi(x) = y$, $\psi(y) = x$ implies the existence of $\alpha \in \operatorname{Aut} G$ such that $\alpha(x) = y$.

For a characterization of weakly transitive groups, we need the following set defined for any nonzero element $a \in G$:

$$weak(a) = \{b \in G \mid \exists \varphi, \ \psi \in E(G), \ \varphi(a) = b, \ \psi(b) = a\}.$$

Remark 3. It is easy to verify that $lc(a) \subseteq weak(a) \subseteq bc(a)$ and $lc(a) \subseteq weak(a) \subseteq lfc(a)$ for any nonzero element $a \in G$.

Lemma 2. A group G is weakly transitive if and only if weak(a) = lc(a) for any nonzero element $a \in G$.

Proof. Necessity. Let G be a weakly transitive group. Then, for any nonzero element $a \in G$ and for any $x \in \text{weak}(a)$, there exist $\varphi, \psi \in E(G)$ such that $\varphi(x) = a$ and $\psi(a) = x$. Since G is a weakly transitive group, there exists $\alpha \in \text{Aut}(G)$ such that $\alpha(a) = x$. Therefore, $x \in \text{lc}(a)$. The reverse inclusion follows from Remark 3.

Sufficiency. Consider arbitrary $x, y \in G$ and $\varphi, \psi \in E(G)$ such that $\varphi(x) = y$ and $\psi(y) = x$. Then $y \in \text{weak}(x) = \text{lc}(x)$. Therefore, there exists $\alpha \in \text{Aut}(G)$ such that $\alpha(x) = y$.

Remark 4. For each nonzero element $a \in G$, there exists an epimorphism ψ_a : $\operatorname{Aut}(G) \to \operatorname{lc}(a)$ acting by the rule $\psi_a(\varphi) = \varphi(a)$ for any $\varphi \in \operatorname{Aut}(G)$.

Since any transitive group is weakly transitive, it is interesting to find an additional condition under which a weakly transitive group is transitive. The following statement proposes such a condition.

Proposition 3. For a group G, the following conditions are equivalent:

- (1) G is a transitive group;
- (2) bc(a) = lc(a) for any nonzero element $a \in G$;
- (3) for any nonzero element $a \in G$, there exists an epimorphism ψ_a : Aut $(G) \to bc(a)$ acting by the rule $\psi_a(\varphi) = \varphi(a)$ for any $\varphi \in Aut(G)$;
- (4) G is a weakly transitive group and weak(a) = bc(a) for any nonzero element $a \in G$.
- *Proof.* (1) \Longrightarrow (2). Let a be an arbitrary nonzero element of the group G and $c \in bc(a)$. Then H(c) = H(a). Therefore, there exist $\varphi \in Aut(G)$ such that $\varphi(a) = c$. Then $c \in lc(a)$ and $bc(a) \subseteq lc(a)$. The reverse inclusion follows from Remark 2.
- $(2) \Longrightarrow (1)$. Consider arbitrary nonzero elements $a, b \in G$ such that H(a) = H(b). Then $b \in bc(a)$. Since bc(a) = lc(a), there exists $\varphi \in Aut(G)$ such that $\varphi(a) = b$.
 - $(2) \Longrightarrow (3)$. Follows from the condition and Remark 4.
- $(3) \Longrightarrow (2)$. Let a be an arbitrary nonzero element of the group G. Since $lc(a) \subseteq bc(a)$, let $x \in bc(a)$. Since ψ_a : Aut $(G) \to bc(a)$ is an epimorphism, there exists $\varphi \in Aut(G)$ such that $x = \psi_a(\varphi) = \varphi(a)$. Therefore, $x \in lc(a)$ and bc(a) = lc(a).

The equivalence of conditions (2) and (4) follows from Remark 3 and Lemma 2.

Definition 2. A group G is called endotransitive if the existence of $\varphi \in E(G)$ such that $\varphi(x) = y$ follows for arbitrary elements $x, y \in G$ such that H(x) = H(y).

In [28], Problem 44 was formulated: "Are there weakly transitive torsion free groups (here, by the term "weak transitivity," we mean the term "endotransitivity") that are neither transitive nor fully transitive?" Remark 4 and the following lemma bring hope that such groups can exist.

Lemma 4. A reduced group G is endotransitive if and only if $bc(a) \subseteq lfc(a)$.

Proof. Necessity. Consider arbitrary $0 \neq a \in G$ and $x \in bc(a)$. Then H(a) = H(x). Since G is an endotransitive group, there exists $\varphi \in E(G)$ such that $\varphi(a) = x$. Therefore, $x \in lfc(a)$.

Sufficiency. Consider arbitrary elements $a, b \in G$ such that H(a) = H(b). Then $b \in bc(a) \subseteq lfc(a)$. Therefore, there exists an endomorphism $\varphi \in E(G)$ such that $\varphi(a) = b$. Thus, G is an endotransitive group.

Remark 5. Propositions 1 and 3, Remark 4, and Lemma 4 imply a well-known result that if a group is (fully) transitive, it is endotransitive.

For the sake of completeness, we recall the following lemma proved by Corner in [4].

Lemma 5 ([4]). A reduced p-group G is (fully) transitive if and only if E(G) acts (fully) transitively on $p^{\omega}G$.

Let us extend the concept introduced by Corner for p-groups to arbitrary reduced Abelian groups. Here, in contrast to Corner, we suppose that the height matrix H(a) is taken in a subgroup A of the group G for any $a \in A$. **Definition 3.** Let Φ be a subring with unity of the ring E(G) and A be a Φ -invariant subgroup of a reduced Abelian group G. We say that Φ acts (fully) transitively on A or the subgroup A is (fully) transitive on Φ if the existence of an (element $\varphi \in \Phi$) invertible element $\varphi \in \Phi$ such that $\varphi(x) = y$ follows for any $x, y \in A$.

Theorem 6. A reduced group G is (fully) transitive if and only if E(G) acts (fully) transitively on $p^{\sigma}G$ for any ordinal number σ and arbitrary prime number p.

Proof. We prove the theorem for the case of full transitivity; the transitive case is proved similarly.

Necessity. Let p be an arbitrary prime number; if G is a p-divisible group, then $p^{\sigma}G = G$, i.e., $p^{\sigma}G$ is a fully transitive group over E(G) follows for any ordinal number σ .

Let $pG \neq G$. We prove the theorem by induction on σ . If $\sigma = 0$, then E(G) acts fully transitively on G.

Let the statement of the theorem be fulfilled for any δ such that $0 \leq \delta < \sigma$. Let us show that E(G) acts fully transitively on $p^{\sigma}G$. Let $a, b \in p^{\sigma}G$ and $H(a)_{p^{\sigma}G} \leq H(b)_{p^{\sigma}G}$. Then $H_p(a)_{p^{\sigma}G} \leq H_p(b)_{p^{\sigma}G}$, where $H_p(a)_{p^{\sigma}G} = (\alpha_0, \alpha_1, \ldots, \alpha_k, \ldots)$ and $H_p(b)_{p^{\sigma}G} = (\beta_0, \beta_1, \ldots, \beta_m, \ldots)$.

Let σ be an isolated ordinal number. Then $p^{\sigma}G = p(p^{\sigma-1}G)$ and, therefore, there exist elements $c_1, c_2 \in p^{\sigma-1}G$ such that $a = pc_1, b = pc_2$. Then $H_p(c_1)_{p^{\sigma-1}G} = (\mu, \alpha_0, \alpha_1, \dots, \alpha_k, \dots)$ and $H_p(c_2)_{p^{\sigma-1}G} = (\nu, \beta_0, \beta_1, \dots, \beta_m, \dots)$; here, $H_q(c_1)_{p^{\sigma-1}G} = H_q(a)_{p^{\sigma}G}$ and $H_q(c_2)_{p^{\sigma-1}G} = H_q(b)_{p^{\sigma}G}$ for any prime number q, where $q \neq p$. If $\mu \leq \nu$, then $H(c_1)_{p^{\sigma-1}G} \leq H(c_2)_{p^{\sigma-1}G}$. Since, by the induction hypothesis, the subgroup $p^{\sigma-1}G$ is fully transitive over E(G), there exists $\varphi \in E(G)$ such that $\varphi(c_1) = c_2$. Then $p\varphi(c_1) = pc_2$ and $\varphi(a) = b$.

Let $\nu < \mu$. Suppose that there is a jump between ν and β_0 (otherwise, $\mu \leq \nu$). Then the ν th Ulm–Kaplansky invariant of the group $T_p(p^{\sigma-1}G)$ is different from zero, i.e., there exists $d \in p^{\sigma-1}G$ such that o(d) = p and $H_p(d)_{p^{\sigma-1}G} = (\nu, \infty, \ldots)$. Consider an element $c_1 + d \in p^{\sigma-1}G$. Since $H_p(c_1 + d)_{p^{\sigma-1}G} = (\nu, \alpha_0, \alpha_1, \ldots, \alpha_k, \ldots) \leq H_p(c_2)_{p^{\sigma-1}G}$ and $H_q(c_1 + d)_{p^{\sigma-1}G} = H_q(c_1)_{p^{\sigma-1}G}$ for any prime $q, q \neq p$, we have $H(c_1 + d)_{p^{\sigma-1}G} \leq H(c_2)_{p^{\sigma-1}G}$. Since, by the induction hypothesis, the subgroup $p^{\sigma-1}G$ is fully transitive over E(G), there exists $\varphi \in E(G)$ such that $\varphi(c_1 + d) = c_2$. Then $p\varphi(c_1 + d) = pc_2$ and $\varphi(a) = b$.

Let σ be the limit ordinal number, i.e., $p^{\sigma}G = \bigcap_{\delta < \sigma} p^{\delta}G$. Therefore, $a, b \in p^{\delta}G$ for any $\delta < \sigma$. Then,

be definition of the generalized height, $h_p^*(a)_{p^\delta G} = h_p^*(a)_{p^\sigma G}$ for any $\delta < \sigma$ and, therefore, $h_p^*(p^k a)_{p^\delta G} = h_p^*(p^k a)_{p^\sigma G}$ for any $\delta < \sigma$ and natural k, i.e., $H_p(a)_{p^\delta G} = H_p(a)_{p^\sigma G}$ for any $\delta < \sigma$. Since $H_q(a)_{p^\delta G} = H_q(a)_{p^\sigma G}$ for any $\delta < \sigma$ and prime q, where $q \neq p$, we have $H(a)_{p^\delta G} = H(a)_{p^\sigma G}$ for any $\delta < \sigma$. Similar reasonings show that $H(b)_{p^\delta G} = H(b)_{p^\sigma G}$ for any $\delta < \sigma$. Then $H(a)_{p^\delta G} \leq H(b)_{p^\delta G}$. By the induction hypothesis, the subgroup $p^\delta G$ is fully transitive over E(G) for any $\delta < \sigma$, i.e., there exists $\varphi \in E(G)$ such that $\varphi(a) = b$.

Sufficiency. Let E(G) acts fully transitively on the subgroup $p^{\sigma}G$ for any ordinal number σ and for any prime number p. Then, in particular, E(G) acts fully transitively on $p^0G = G$, i.e., G is a fully transitive group.

Corollary 7. For a reduced p-group G, the following conditions are equivalent:

- (1) G is a (fully) transitive group;
- (2) E(G) acts (fully) transitively on $p^{\omega}G$ (in the sense of Corner);
- (3) E(G) acts (fully) transitively on $p^{\sigma}G$ for any ordinal number σ (in the sense of Definition 3).

Proof. Equivalences of conditions (1) and (2), (1) and (3) are obtained from Lemma 5 and Theorem 6, respectively. \Box

Let us introduce the following concept.

Definition 4. Let $G = A \oplus B$. We say that automorphisms of the group A are induced by automorphisms of the group G if, for any $a \in A$ and for any $x \in bc(a)$, the existence of $\varphi \in Aut G$ such that $\varphi \rho(a) = \rho(x)$

implies the existence of $\psi \in \text{Aut } A$ such that $\pi \varphi \rho(a) = \psi(a)$, where $\rho \colon A \to G$ and $\pi \colon G \to A$ are the canonical embedding and projection, respectively.

Theorem 8. A direct summand A of a transitive group G is a transitive group if and only if automorphisms of the group A are induced by automorphisms of the group G.

Proof. Necessity. Let $G = A \oplus B$, where G and A are transitive groups. Let $\rho: A \to G$ and $\pi: G \to A$ be the canonical embedding and projection, respectively. Then, for any nonzero element $a \in A$ and for any $x \in bc(a)$, the transitivity of the group A implies the existence of $\psi \in Aut A$ such that $\psi(a) = x$.

Consider an element ρx . Since $H(\rho x) = H(\rho a)$, the transitivity of the group G implies the existence of $\varphi \in \operatorname{Aut} G$ such that $\varphi \rho a = \rho x$. Therefore, $\pi \varphi \rho a = x = \psi(a)$.

Sufficiency. For the transitivity of the group A, according to Proposition 3, it is sufficient to show that bc(a) = lc(a) follows for any nonzero element $a \in A$. For an arbitrary element $x \in bc(a)$, we have H(x) = H(a). Since $H(\rho x) = H(\rho a)$, the existence of $\varphi \in Aut G$ such that $\varphi \rho(a) = \rho(x)$ follows from the transitivity of the group G. Since automorphisms of the group G induce automorphisms of the group G, there exists $\psi \in Aut A$ such that $x = \pi \varphi \rho(a) = \psi(a)$. Therefore, bc(a) = lc(a).

REFERENCES

- 1. D. Carroll and B. Goldsmith, "On transitive and fully transitive Abelian *p*-groups," *Proc. Royal Irish Acad.*, **96A**, No. 1, 33–41 (1996).
- 2. A. R. Chekhlov, "On a class of endotransitive groups," Mat. Zametki, 69, No. 6, 944–949 (2001).
- 3. A. R. Chekhlov, "Totally transitive torsion-free groups of finite p-rank," Algebra Logika, 40, No. 6, 698–715 (2001).
- 4. A. L. S. Corner, "The independence of Kaplansly's notions of transitivity and full transitivity," *Quart. J. Math. Oxford*, **27**, No. 105, 15–20 (1976).
- 5. P. V. Danchev and B. Goldsmith, "On socle-regularity and some notions of transitivity for Abelian p-groups," J. Commut. Algebra, 3, No. 3, 301–319 (2011).
- 6. Yu. B. Dobrusin, "On extensions of partial endomorphisms of torsion-free Abelian groups. II," in: *Abelian Groups and Modules*, Izd. Tomsk. Univ., Tomsk (1985), pp. 31–41.
- 7. Yu. B. Dobrusin, "On extensions of partial endomorphisms of torsion-free Abelian groups," *Abelian Groups Modules*, 36–53 (1986).
- 8. M. Dugas and S. Shelah, "E-transitive groups in L," in: Abelian Group Theory (Perth, 1987), Contemp. Math., Vol. 87, Amer. Math. Soc., Providence (1989), pp. 191–199.
- 9. S. Files, "On transitive mixed Abelian groups," in: *Abelian Group Theory: Proc. of the Int. Conf. at Colorado Springs*, Lect. Notes Pure Appl. Math., Vol. 182, Marcel Dekker, New York (1996), pp. 243–251.
- 10. S. Files, "Transitivity and full transitivity for nontorsion modules," J. Algebra, 197, 468–478 (1997).
- 11. S. Files and B. Goldsmith, "Transitive and fully transitive groups," *Proc. Am. Math. Soc.*, **126**, No. 6, 1605–1610 (1998).
- 12. L. Fuchs, *Infinite Abelian Groups*, Vol. 1, Pure Appl. Math., Vol. 36, Academic Press, New York (1970).
- 13. L. Fuchs, *Infinite Abelian Groups*, Vol. 2, Pure Appl. Math., Vol. 36, Academic Press, New York (1973).
- 14. B. Goldsmith and L. Strungmann, "Torsion-free weakly transitive Abelian groups," *Commun. Algebra*, **33**, 1177–1191 (2005).
- 15. B. Goldsmith and L. Strungmann, "Some transitivity results for torsion Abelian groups," *Houston J. Math.*, **33**, No. 4, 941–957 (2007).
- 16. P. Griffith, "Transitive and fully transitive primary Abelian groups," *Pacific J. Math.*, **25**, No. 2, 249–254 (1968).
- 17. S. Ya. Grinshpon, "On the structure of fully invariant subgroups of Abelian torsion-free groups," in: *Abelian Groups and Modules*, Izd. Tomsk. Univ., Tomsk (1982), pp. 56–92.

- 18. S. Ya. Grinshpon, "Fully invariant subgroups of Abelian groups and full transitivity," Fundam. Prikl. Mat., 8, No. 2, 407–472 (2002).
- 19. S. Ya. Grinshpon and V. M. Misyakov, "Fully transitive Abelian groups," in: *Abelian Groups Modules*, 12–27 (1986).
- 20. S. Ya. Grinshpon and V. M. Misyakov, "Full transitivity of direct products of Abelian groups," *Abelian Groups Modules*, 23–30 (1991).
- 21. J. Hausen, "E-transitive torsion-free Abelian groups," J. Algebra, 107, 17–27 (1987).
- 22. G. Hennecke and L. Strüngmann, "Transitivity and full transitivity for p-local modules," Arch. Math., 74, 321–329 (2000).
- 23. P. Hill, "On transitive and fully transitive primary groups," *Proc. Am. Math. Soc.*, **22**, No. 2, 414–417 (1969).
- 24. I. Kaplansky, *Infinite Abelian Groups*, Univ. of Michigan Press, Ann Arbor (1954).
- 25. P. A. Krylov, "On fully invariant subgroups of Abelian torsion-free groups," in: Collected Works of Postgraduates on Mathematics, Izd. Tomsk. Univ., Tomsk (1973), pp. 15–20.
- 26. P. A. Krylov, "Some examples of quasi-pure injective and transitive Abelian groups without torsion," in: *Abelian Groups and Modules*, Izd. Tomsk. Univ., Tomsk (1988), pp. 81–99.
- 27. P. A. Krylov, "Fully transitive torsion-free Abelian groups," *Algebra Logika*, **29**, No. 5, 549–560 (1990).
- 28. P. A. Krylov, A. V. Mikhalev, and A. A. Tuganbaev, *Endomorphism Rings of Abelian Groups*, Kluwer Academic, Dordrecht (2003).
- 29. C. Meehan and L. Strungmann, "Rational rings related to weakly transitive torsion-free groups," J. Algebra Its Appl., 8, No. 5, 723–732 (2009).
- 30. V. M. Misyakov, "On complete transitivity of reduced Abelian groups," *Abelian Groups Modules*, 134–156 (1994).
- 31. A. Paras and L. Strungmann, "Fully transitive p-groups with finite first Ulm subgroup," Proc. Am. Math. Soc., 131, 371–377 (2003).

V. M. Misyakov

Tomsk State University, Tomsk, Russia

E-mail: mvm@mail.tsu.ru