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NORMAL DETERMINABILITY OF TORSION-FREE ABELIAN GROUPS
BY THEIR HOLOMORPHS

S. Ya. Grinshpon and I. E. Grinshpon UDC 512.541

Abstract. We investigate torsion-free Abelian groups that are decomposable into direct sums or direct
products of homogeneous groups normally defined by their holomorphs. Properties of normal Abelian
subgroups of holomorphs of torsion-free Abelian groups are also studied.

Let G be an Abelian group, and Γ(G) be its holomorph, i.e., a semiprime extension of the group G by
its automorphism group Aut(G). The group operation in the group Aut(G) is written multiplicatively;
group operations in G and Γ(G), additively. The group Γ(G) can be considered as the set of all ordered
pairs (g, ϕ), where g ∈ G and ϕ ∈ Aut(G). The group operation in Γ(G) is defined by the following
rule: (g, ϕ) + (h, ψ) = (g + ϕh, ϕψ) for any (g, ϕ), (h, ψ) ∈ Γ(G). The neutral element in Γ(G) is the
element (0, ε) (ε is the identical automorphism); the element (−ϕ−1g, ϕ−1) is the inverse element for the
element (g, ϕ). Elements (g, ε) form in the holomorph Γ(G) a normal subgroup isomorphic to the group G;
elements (0, ϕ) form a subgroup isomorphic to the group Aut(G). We identify these subgroups with the
groups G and Aut(G), respectively. It is clear that G ∩ Aut(G) = {(0, ε)}. Instead of the notation (g, ε)
and (0, ϕ) for elements of the group Γ(G) we simply write g and ϕ, respectively.

Note that if G is an Abelian group, then it is the maximal Abelian subgroup of its holomorph Γ(G).
Indeed, if we assume the existence of an Abelian subgroup G1 of the holomorph Γ(G) such that G ⊂ G1

and G �= G1, then G1 contains an element (g, σ) not belonging to G, and, therefore, σ �= ε. Then
(−g, ε) + (g, σ) = (0, σ) ∈ G1. By virtue of commutativity of G1, we have (a, ε) + (0, σ) = (0, σ) + (a, ε)
for any element a ∈ G, i.e., σa = a and, therefore, σ = ε. We have obtained a contradiction. Thus, G is
the maximal Abelian group of its holomorph.

Note also that if H is a normal Abelian subgroup of the group Γ(G) and H1 and Φ1 are sets of first
and second components of elements of the group H, respectively, then H1 is a fully invariant subgroup of
the group G [13] and Φ1 is a normal subgroup in Aut(G).

In this paper, we consider questions connected with normal definiteness of torsion-free Abelian groups
by their holomorphs.

Two groups are said to be holomorphically isomorphic if their holomorphs are isomorphic. A group A
is defined by its holomorph in a certain class of groups � if any group B belonging to this class and
holomorphically isomorphic to the group A is isomorphic to the group A. There are known examples
of nonisomorphic finite noncommutative groups with isomorphic holomorphs [11]. In [13], W. Mills
demonstrated that any finitely generated Abelian group is defined by its holomorph in the class of all
finitely generated Abelian groups. Some interesting results about properties of holomorphs of Abelian
groups and about definiteness of Abelian groups by their holomorphs were obtained by I. Kh. Bekker [1–6].

The notion of almost holomorphic isomorphism is a generalization of the notion of holomorphic
isomorphism. Groups A and B are said to be almost holomorphically isomorphic if each of them is
isomorphic to a normal subgroup of the holomorph of the other group. It is clear that if two groups
are holomorphically isomorphic, they are almost holomorphically isomorphic. The converse, generally
speaking, is not true. Almost holomorphically isomorphic finitely generated Abelian groups were studied
by W. Mills in [13]. Almost holomorphically isomorphic Abelian p-groups were studied in [6, 10]. Note
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that if the isomorphism of two groups follows from almost holomorphic isomorphism of the groups in
a certain class �, then any group from the class � is defined by its holomorph in this class.

We say that a group G is normally defined in the class � by its holomorph if for any group H of this
class the isomorphism of the groups G and H follows from almost holomorphic isomorphism of the groups
G and H.

In studying holomorphs of Abelian groups, an important part is played by normal Abelian subgroups
of such holomorphs. the following results are valid.

Lemma 1 ([12]). If S is a normal Abelian group in Γ(G), (a, σ) ∈ S, g ∈ G, then

σa − a ∈ S, (2a, ε) ∈ S, (0, σ2) ∈ S; (1)

σg − g ∈ S; (2)

σ(σg − g) = σg − g; (3)

σng = g + n(σg − g); (4)

n(a, σ) =
(

na +
n(n − 1)

2
(σa − a), σn

)
; (5)

2(σa − a) = 0. (6)

Lemma 2. Let S be a normal Abelian subgroup of the holomorph Γ(G) of a torsion-free Abelian group G
and S1 be the set of first components of elements of the group S.

(1) S is a torsion-free group.
(2) If S �= 0, then S1 �= 0.

Proof. (1) Let (a, σ) ∈ S and n(a, σ) = (0, ε) for some natural number n. We have (formula (5)) that

n(a, σ) =
(

na +
n(n − 1)

2
(σa − a), σn

)
.

Since G is a torsion-free group, it follows from equality (6) that σa − a = 0, and formula (5) takes the
form

n(a, σ) = (na, σn). (7)

Thus, (na, σn) = (0, ε). It follows that na = 0 and σn = ε. Therefore, a = 0 because G is a torsion-free
group. We demonstrate that σ = ε. By formula (4), σng = g + n(σg − g) for any g ∈ G. Taking into
account that σn = ε, we obtain that g = g + n(σg − g), i.e., n(σg − g) = 0. Since G is a torsion-free
group, σg − g = 0 and, therefore, σ = ε.

(2) Let (a, σ) ∈ S and (a, σ) �= (0, ε). If σ �= ε, then there exists an element g ∈ G such that
σg − g �= 0. Applying formula (2), we obtain σg − g ∈ S. Therefore, σg − g ∈ S1 and S1 �= 0. If σ = ε,
then a �= 0 and S1 is also different from zero.

Let us consider connections between types of elements of almost holomorphically isomorphic tor-
sion-free Abelian group.

We recall some notations and terms from the theory of torsion-free Abelian groups.
Let A be an Abelian group, a ∈ A. The largest nonnegative number k for which the equation pkx = a

has a solution is called p-height of the element a in the group A (designation: hA
p (a) or hp(a)). If the

equation pkx = a have a solution at any k, then a is called an element of infinite p-height, i.e., hp(a) = ∞.
Let X be the set of all sequences of the form v = (k1, k2, . . . , ki, . . .), where ki is a nonnegative integer

or the symbol ∞ (i ∈ N). Such sequences are called characteristics.
In the set X, a partial order is introduced in a natural way; namely,

(
k
(1)
1 , k

(1)
2 , . . . , k

(1)
n , . . .

) ≤(
k
(2)
1 , k

(2)
2 , . . . , k

(2)
n , . . .

)
if and only if for every i ∈ N the condition k

(1)
i ≤ k

(2)
i is satisfied. With respect

to this partial order, the set X is a full lattice.
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Let P = (p1, p2, . . . , pn, . . .) be the set of all prime numbers enumerated in the ascending order. If A
is a torsion-free Abelian group and a ∈ A, then the characteristic χA(a) (or χ(a)) of the element a in the
group A is a characteristic χ = (k1, k2, . . . , kn, . . .) in which each ki is the pi-height hA

pi(a) of the element a
in the group A [8]. Note that, according to the definition, the characteristic of a nonzero element is the
sequence (∞, . . . ,∞, . . .).

Two characteristics v1 =
(
k
(1)
1 , k

(1)
2 , . . . , k

(1)
n , . . .

)
and v2 =

(
k
(2)
1 , k

(2)
2 , . . . , k

(2)
n , . . .

)
are considered as

equivalent if and only if the set M =
{
n ∈ N | k

(1)
n �= k

(2)
n

}
is finite; here, if k

(1)
n �= k

(2)
n , then k

(1)
n �= ∞

and k
(2)
n �= ∞.

The class of equivalence in the set of characteristics is called the type. If the characteristic of an
element a of a torsion-free Abelian group A belongs to the type t, then the element a is said to have the
type t (which is written as follows: tA(a) = t or t(a) = t if it is clear which of the groups A is meant).

A type t is called pn-divisible (pn ∈ P) if for each characteristic χ = (k1, k2, . . . , kn, . . .) belonging to
the type t we have kn = ∞.

We consider the set of types as a partially ordered set with respect to the natural ordering (i.e.,
t1 ≤ t2 if and only if there exist characteristics v1 and v2 belonging to types t1 and t2, respectively, such
that v1 ≤ v2). The partially ordered set of all types is a full lattice.

A torsion-free Abelian group all nonzero elements of which have the same type t is called homoge-
neous [8]. To emphasize that all nonzero elements of a homogeneous group A have a fixed type t, we
say that A is a homogeneous group of type t and write it as follows: t(A) = t. It is evident that any
torsion-free rank 1 group is homogeneous.

For a torsion-free Abelian group A, T (A) denotes the set of all types of elements of the group A.

Lemma 3. Let S be a normal Abelian subgroup of the holomorph Γ(G) of a torsion-free Abelian group G.
Then, for any type t ∈ T (S), there exists a type t′ ∈ T (G) such that t′ ≥ t.

Proof. Let the type t belong to the type set of the group S. Then there exists a nonzero element
(a, σ) ∈ S such that its characteristic belongs to the type t (χ

(
(a, σ)

) ∈ t). This characteristic has the
form χ

(
(a, σ)

)
= (k1, k2, . . . , kn, . . .).

Let a �= 0. We denote its type as t′. If kn < ∞, then there exists an element (xn, ηn) ∈ S such

that pkn
n (xn, ηn) = (a, σ). Then, taking into account formula (7), we have that (pkn

n xn, ηpknn
n ) = (a, σ).

We obtain that pkn
n xn = a. Therefore, the equation a = pkn

n xn is solvable in the group G. Therefore,
h
(G)
pn (a) ≥ kn. If kn = ∞, then for any natural number m there exists an element (ym, ξm) ∈ S such that

the equation pm
n (ym, ξm) = (a, σ) is solvable in S; therefore, the equation pm

n ym = a is solvable in G. This
means that h

(G)
pn (a) = ∞.

Thus, χ(G)(a) ≥ χ(S)

(
(a, σ)

)
, and, therefore t(a) = t′ ≥ t.

Let a = 0. Then σ �= ε. If kn < ∞, then there exists an element (0, ηn) ∈ S such that pkn
n (0, ηn) =

(0, σ) or ηpknn
n = σ. Since σ �= ε, there exists an element g ∈ G such that σg �= g. According to

formula (4), we have that σg = ηpknn
n g = g + pkn

n (ηng − g). It follows that σg − g = pkn
n (ηng − g). The

equation σg − g = pkn
n x is solvable in G. Therefore, h

(G)
pn (σg − g) ≥ kn.

If kn = ∞, then h
(G)
pn (σg − g) = ∞. Thus, χ(G)(σg − g) ≥ χ(S)

(
(0, σ)

)
. Therefore, t(σg − g) =

t′ ≥ t.

Let S1 be the set of all first components of elements of the subgroup S from Lemma 3. We have
σg − g ∈ S1 for each element g ∈ G if (a, σ) ∈ S. Then, from the proof of Lemma 3, we obtain the
following statement.

Proposition 4. Let S be a normal Abelian subgroup of the holomorph Γ(G) of a torsion-free Abelian
group G and S1 be the set of first components of elements of the group S. Then, for any type t ∈ T (S),
there exists a type t′ ∈ T (S1) such that t′ ≥ t.
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Theorem 5. Let G and H be almost holomorphically isomorphic torsion-free Abelian groups, G be a ho-
mogeneous group, and the group H have the following property : for any elements b1, b2 ∈ H such that t(b1)
is comparable with t(b2), we have that t(b1) = t(b2). Then H is a homogeneous group and t(G) = t(H).

Proof. Let the type of the homogeneous group G be equal to t, and let t1 ∈ T (H). The groups G and H are
almost holomorphically isomorphic; therefore, H ∼= G′, where G′ is a normal subgroup of the holomorph
Γ(G) and G ∼= H ′, where H ′ is a normal subgroup of the holomorph Γ(H). It follows from the almost
holomorphic isomorphism of the groups G and H that t1 ∈ T (G′). Then, from Lemma 3, we obtain that
the type t satisfies the condition t ≥ t1. Since G ∼= H ′, we have that t ∈ T (H ′). According to Lemma 2,
for the t, there exists a type t2 ∈ T (H) such that t2 ≥ t. We obtain that t2 ≥ t ≥ t1. Since t1, t2 ∈ T (H),
there exist elements b1, b2 ∈ H such that t(b1) = t1 and t(b2) = t2. We have that t(b2) ≥ t(b1), i.e., the
types of the elements b1 and b2 are comparable. Taking into account the condition of theorem on types
of elements of the group H, we obtain that t(b1) = t(b2), i.e., t1 = t2 and, therefore, t1 = t. By virtue
of the arbitrariness of the choice of the type t1, we obtain that H is a homogeneous group and its type
is t.

Corollary 6. If G and H are homogeneous almost holomorphically isomorphic groups, then t(G) = t(H).

Theorem 7. Let G =
⊕
t∈T1

Gt and H =
⊕
t̄∈T2

Ht̄, where Gt and Ht̄ are homogeneous groups of types

t and t̄, respectively, and T1 and T2 are sets consisting of pairwise independent types. If G and H are
almost holomorphically isomorphic groups, then T1 = T2.

Proof. Groups G and H are almost holomorphically isomorphic, i.e., G ∼= H ′ and H ∼= G′, where G′ and H ′
are normal Abelian subgroups of the holomorphs Γ(G) and Γ(H), respectively.

Let t0 ∈ T1. It follows from the almost holomorphic isomorphism of the groups G and H that
t0 ∈ T (H ′). By Lemma 3, there exists a type t̄0 ∈ T (H) such that t̄0 ≥ t0.

Since types in T2 are pairwise incomparable, t̄0 ≤ t̄i for all i = 1, k.
We have that t̄1 > t̄0 ≥ t0. It follows from the almost holomorphic isomorphism of the groups

G and H that t̄1 ∈ T (G′). By Lemma 3, there exists a type t1 ∈ T (G) such that t1 ≥ t̄1.
Two cases are possible.
(1) Let t1 ∈ T1. Then t1 ≥ t̄1 > t̄0 ≥ t0. Hence t1 > t0. We obtain that the types t0 and t1 are

comparable. This contradicts the condition of the theorem.
(2) Let t1 ∈ T (G) \ T1. Then t1 = inf{t2, t3, . . . , tm}, where tj ∈ T1, j = 2, m. By analogy to what

was proved earlier, we obtain that tj > t1 for all j = 2, m. We have that t2 > t1 ≥ t̄1 > t̄0 ≥ t0. The
types t0 and t2 belong to T1 and are comparable with each other, a contradiction. Therefore, t̄0 ∈ T2 and
t̄0 ≥ t0.

One can similarly prove that, for the type t̄0 ∈ T2, there exists a type t′ ∈ T1 such that t′ ≥ t̄0.
Thus, t′ ≥ t̄0 ≥ t0. Since the types in T1 are not pairwise comparable, t′ = t0. This means that

t̄0 = t0 and the inclusion T1 ⊂ T2 is valid.
The inverse inclusion T2 ⊂ T1 can be proved similarly. Therefore, T1 = T2.

Note that a statement similar to Theorem 7 holds for direct products of homogeneous groups; namely,
the following result is valid.

Theorem 7′. Let G =
∏

t∈T1

Gt, H =
∏

t̄∈T2

Ht̄, where Gt and Ht̄ are homogeneous groups of types t and t̄,

respectively, and T1 and T2 are sets consisting of pairwise incomparable types. If G and H are almost
holomorphically isomorphic groups, then T1 = T2.

Now let us consider divisible subgroups of almost holomorphically isomorphic torsion-free Abelian
groups.

Theorem 8. If two Abelian groups are almost holomorphically isomorphic and one of them is torsion
free, then the divisible subgroups of these groups are isomorphic.
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Proof. Let G be a torsion-free Abelian group and H be an Abelian group almost holomorphically isomor-
phic to it. Then G ∼= H ′ and H ∼= G′, where G′ and H ′ are normal subgroups of the groups Γ(G) and
Γ(H), respectively. By Lemma 2, the group H is also torsion free. We show that if one of the groups G
or H is a nonreduced group, the other group is also nonreduced.

Let D(G), D(H), D(G′), and D(H ′) denote the divisible subgroups of the groups G, H, G′, and H ′,
respectively; let Ḡ1, Φ̄, H̄1, and Ψ̄ be the sets of all first and second components of the groups D(G′) and
D(H ′), respectively.

Let G be a nonreduced group; then H ′ is also nonreduced and D(H ′) �= 0. Then there exist (h, ψ) ∈
D(H ′), (h, ψ) �= (0, ε). It follows from divisibility of the group D(H ′) that, for any natural number n,
there exists an element (an, θn) ∈ D(H ′) such that n(an, θn) = (h, ψ). Since H is a torsion-free group, we
have by formula (7) that n(an, θn) = (nan, θn

n), i.e., h = nan and ψ = θn
n.

If h �= 0, then the group H is nonreduced.
Let h = 0. Then ψ �= ε and θn

n = ψ �= ε. BY Lemma 1, for any element a ∈ H, we have that
ψa − a ∈ H ′ and there exists an element h1 ∈ H such that ψh1 − h1 �= 0. From formula (4) we obtain
that θn

nh1 = h1 + n(θnh1 − h1) or ψh1 − h1 = n(θnh1 − h1). For a nonzero element ψh1 − h1 of the
torsion-free group H, we obtained that the equation ψh1 − h1 = nx is solvable in this group for any
natural number n. This means that the group H is nonreduced. Let (g, σ) ∈ D(G′) and (g, σ) �= (0, ε).
Then, for any natural number n, there exists an element (bn, ωn) ∈ D(G′) such that n(bn, ωn) = (g, σ),
and it follows that nbn = g and ωn

n = σ. Therefore, g ∈ D(G) and Ḡ1 is a divisible subgroup of the group
D(G).

Similarly, one can prove that H̄1 is a divisible subgroup of the group D(H).
Let us show that D(G′) is decomposable. Let us consider an automorphism η of the group G,

acting as follows: ηg = 2g if g ∈ D(G) and ηg = g if g ∈ R(G) (G = D(G) ⊕ R(G)). We have
−(0, η)+(2g, ε)+(0, η) = (g, ε); however, (2g, ε) ∈ D(G′). Therefore, (g, ε) ∈ D(G′). Then (0, σ) ∈ D(G′).
We obtain that D(G′) = Ḡ1 ⊕ Φ̄.

Similarly, D(H ′) = H̄1 ⊕ Ψ̄.
D(G′) and D(H ′) are nonzero normal Abelian subgroups of the groups Γ(G) and Γ(H), respectively.

Then Ḡ1 �= 0 and H̄1 �= 0 (Lemma 2). Since Ḡ1 and H̄1 are invariant subgroups of the groups G and H,
Ḡ1 = D(G) and H̄1 = D(H).

Taking into account the almost holomorphic isomorphism of the groups G and H, we have that
D(G) ∼= D(H ′) = H̄1 ⊕ Ψ̄ = D(H) ⊕ Ψ̄, and, therefore, r

(
D(G)

) ≥ r
(
D(H)

)
. At the same time,

D(H) ∼= D(G′) = Ḡ1 ⊕ Φ̄ = D(G)⊕ Φ̄, and hence r
(
D(H)

) ≥ r
(
D(G)

)
. Thus, r

(
D(G)

)
= r

(
D(H)

)
and,

therefore, D(G) ∼= D(H).

Theorem 9. The holomorph of a divisible torsion-free Abelian group G has no nonzero normal Abelian
subgroups different from G.

Proof. Let G′ be a nonzero normal Abelian subgroup of the holomorph Γ(G) of a divisible torsion-free
group G. By D(G′), we denote the divisible subgroup of the group G′. Let (a, σ) ∈ G′ and (a, σ) �= (0, ε).

If σ �= ε, then there exists an element g ∈ G such that σg − g �= 0. For any natural number n, one
can find an element gn such that ngn = g and therefore, n(σgn − gn) = σg − g. Since σgn − gn ∈ G′ and
σg − g ∈ G′, we have that σg − g ∈ D(G′).

If σ = ε, then for each n ∈ N we consider such an automorphism ηn of the group G that

ηnh =
h

n

for any element h ∈ G. Then −(0, ηn)+(a, ε)+(0, ηn) = (an, ε), where an is determined from the equality
nan = a. We have that (an, ε) ∈ G′; therefore, a ∈ D(G′).

We have obtained that the subgroup D(G′) �= 0.
It was established in the proof of Theorem 8 that D(G′) = D(G) ⊕ Φ̄.
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Since G is a divisible group, D(G) = G and, therefore, D(G′) = G ⊕ Φ̄. This means that G ⊂ G′.
Taking into account that G is the maximal Abelian normal subgroup of its holomorph, we obtain that
G = G′.

The following result follows from Theorem 9.

Theorem 10. Any divisible torsion free Abelian group is normally determined by its holomorph in the
class of all Abelian groups.

Hereinafter, taking into account the obtained results, we consider only reduced groups when studying
normal determinability of torsion-free Abelian groups.

Note that the statement similar to Theorem 9 for Abelian p-groups is not valid. The holomorph
of a divisible p-group G can contain nonzero normal Abelian subgroups different from G. For example,
subgroups of the form G[pk], where k is an arbitrary natural number refer to such subgroups.

We turn to considering almost holomorphically isomorphic completely decomposable torsion-free
Abelian groups.

Let G =
⊕
i∈I

Gi be a completely decomposable torsion-free Abelian group (r(Gi) = 1 for any i ∈ I),

G =
⊕
t∈T

Gt be the canonical decomposition of the group G, where Gt =
⊕

i∈I(t)

Gi, I(t) = {i ∈ I |
t(Gi) = t}.
Lemma 11. If S is an invariant subgroup of the group G and S∩Gt′ �= 0 for some t′ ∈ T , then S∩Gj �= 0
for each j ∈ I(t′).

Proof. Let S ∩ Gt′ = A and a be a nonzero element of the group A. We have G = 〈a〉∗ ⊕ G′ [8, p. 137],
G = Gj ⊕ G′′, j ∈ I(t′). It follows from the theorem about the isomorphism of direct decompositions of
completely decomposable groups [8, Proposition 86.1] that G′ ∼= G′′. Let ω be an automorphism of the
group G mapping 〈a〉∗ on Gj and G′ on G′′. We obtain ω(a) ∈ Gj . Therefore, S ∩ Gj �= 0.

The following remark about normal subgroups of holomorphs of torsion-free Abelian groups is used
below.

Remark. If S is a normal Abelian subgroup of the holomorph Γ(G) of a torsion-free group G, and
S1 and Φ1 are the sets of first and second components of elements of the group S, respectively, then
〈2S1, Φ2

1〉 ⊂ S (Lemma 1). Since S1 and Φ1 are torsion-free Abelian groups, 2S1
∼= S and Φ2

1
∼= Φ1. Thus,

〈2S1, Φ2
1〉 = 2S1⊕Φ2

1
∼= S1⊕Φ1, i.e., the group S1⊕Φ1 can be isomorphically embedded into the group S.

Theorem 12. A completely decomposable homogeneous group is normally determined by its holomorph
in the class of completely decomposable homogeneous groups.

Proof. Let G =
⊕
i∈i

Gi be a completely decomposable homogeneous group and H be a completely decom-

posable homogeneous group almost holomorphically isomorphic to G. We show that G ∼= H. We have
G ∼= H ′, H ∼= G′, where G′ and H ′ are normal Abelian subgroups of holomorphs Γ(G) and Γ(H), respec-
tively. By Corollary 6, T (G) = T (H). Let G1, H1, Φ1, and Ψ1 be sets of first and second components of
the groups G′ and H ′, respectively. By Lemma 11, r(G1) = r(G) and r(H1) = r(H). Since G1 ⊕ Φ1 can
be isomorphically embedded into the group G′ and G′ ∼= H,

r(H) = r(G′) = r(G1) + r(Φ1) ≥ r(G1) = r(G).

Similarly, we obtain that

r(G) = r(H ′) = r(H1) + r(Ψ1) ≥ r(H1) = r(H).

This means that r(G) = r(H) and, therefore, G ∼= H. Thus, the group G is normally determined by its
holomorph in the class of completely decomposable homogeneous groups.
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Lemma 13. Let G =
⊕
t∈T

Gt, where Gt is a homogeneous Abelian group of type t, and T be a set of

pairwise incomparable types. Then, t(g) ≯ t for any nonzero element g ∈ G and any type t ∈ T .

Proof. Suppose the contrary. Let 0 �= g0 ∈ G, t(g0) > t0 for some t0 ∈ T . Let us write g0 in the form
g0 = gt1+gt2+· · ·+gtn , where gti �= 0 are elements from different components Gti , and let χ(gti) = χi ∈ ti,
i = ¯1, n, ti ∈ T . Then χi(g0) = inf

X
{χ1, χ2, . . . , χn} and, therefore, t0 < t(g0) < t1. Thus, we obtain

t1 > t0, where t0, t1 ∈ T , which is impossible.

A statement similar to Lemma 13 is also valid for the direct summand of homogeneous groups with
pairwise incomparable types; namely, the following result takes place.

Lemma 13′. Let G =
∏
t∈T

Gt, where Gt is a homogeneous Abelian group of type t and T is a set of

pairwise incomparable types. Then, t(g) ≯ t for any nonzero element g ∈ G and any type t ∈ T .

Let M denote the class of completely decomposable torsion-free Abelian groups with pairwise types
of direct summands of their canonical decompositions.

Theorem 14. Any group from the class M is normally determined in this class by its holomorph.

Proof. Let G =
⊕
t∈T

Gt be a group from the class M and H =
⊕

t′∈T ′
Ht′ be an arbitrary group belonging to

this class and almost holomorphically isomorphic to G. Let Gt and Ht′ denote homogeneous completely
decomposable direct summands of types t and t′ of the groups G and H, respectively. T and T ′ are some
sets consisting of pairwise incomparable types. According to Theorem 7, T = T ′.

Let t0 ∈ T . We have G ∼= H ′ and H ∼= G′, where G′ and H ′ are normal Abelian subgroups of
the holomorphs Γ(G) and Γ(H), respectively. Let H1 and Ψ1 denote the sets of the first and second
components of elements of the group H ′. In the group H1, one can find an element h1 �= 0 such that
tH1(h1) ≥ t0 (Proposition 4). If tH1(h1) > t0, then tH(h1) > t0, which is impossible by Lemma 13.
Therefore, tH1(h1) = t0, i.e., t ∈ T (H1).

Let us show that if h ∈ H1 and tH1(h) = t0, then h ∈ Ht0 . Indeed, let h ∈ H1 and tH1(h) = t0. Then
tH(h) = t0 by Lemma 13. If h /∈ Ht0 , then there exists a type t1 ∈ T , t1 �= t0, such that

h = ht1 + h′,

where
0 �= ht1 ∈ Ht1 , h′ ∈

⊕
t′∈T,
t′ �=t1

Ht′ .

Therefore, t0 = tH(h) < tH(ht1) = t1, which is impossible because t1, t0 ∈ T .
Thus, it has been established that the group H1 contains an element h1 such that tH1(h1) = t0 and

h1 ∈ Ht0 . Let h′
1 ∈ H1 ∩ Ht0 , h′

1 �= 0. We have Ht0 = 〈h1〉∗ ⊕ C, Ht0 = 〈h′
1〉∗ ⊕ C1. There exists an

automorphism η of the group H which maps 〈h1〉∗ on 〈h′
1〉∗. Since H1 is an invariant subgroup of the

group H, tH1(h1) = tH1(ηh1). However, s(ηh1) = mh′
1 for some integers s and m; therefore, tH1(h

′
1) =

tH1(ηh1) = tH1(h1) = t0. This means that H1 ∩ Ht0 is a homogeneous group and t(H1 ∩ Ht0) = t0. By
virtue of Lemma 11, r(H1 ∩ Ht0) = r(Ht0).

By Lemma 13, since G ∼= H ′, the group H ′ has no elements whose types are larger than t0. The
group H1 ⊕ Ψ1 can be isomorphically embedded into H ′. In this embedding, the image of any element
from H1 ∩ Ht0 has the type t0 in the group H ′. Thus, r(Gt0) ≥ r(H1 ∩ Ht0) = r(Ht0). Similarly, we
obtain r(Ht0) ≥ r(Gt0). By virtue of the arbitrariness of the type t0 from T , we have G ∼= H.

Theorem 14 involved completely decomposable groups from the class M. The result of this theorem
cannot be extended to arbitrary completely decomposable groups.
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Lemma 15. Let G = A ⊕ B, where A is an invariant subgroup of the group G,

S(A) =
{
(a, σ) ∈ Γ(G) | a ∈ A, (∀ ā ∈ A) σā = ā,

(∃ η ∈ Hom(B, A)
)

(∀ b ∈ B) σb = b + ηb
}
.

Then S(A) is a normal Abelian subgroup of the holomorph of the group G and S = A ⊕ C, where
C ∼= Hom(B, A).

Proof. Let us show that S(A) is a subgroup of the holomorph of the group Γ(G). Let (a, σ), (a1, σ1) ∈ A.
Then

(a, σ) − (a1, σ1) = (a − σσ−1
1 a1, σσ−1

1 ) = (a − a1, σσ−1
1 ).

For any element g ∈ A, we have that σσ−1
1 g = g. Let b ∈ B and σb = b + ηb, σ1b = b + η1b, where

η, η1 ∈ Hom(B, A). We have that

σ−1
1 b = b − σ−1

1 η1b = b − η1b.

Thus,
σσ−1

1 b = σ(b − η1b) = b + ηb − η1b = b + (η − η1)b.
This means that (a, σ) − (a1, σ1) ∈ S(A) and S(A) is a subgroup of the group Γ(G).

If (a1, σ1) and (a2, σ2) are elements of the group S(A), then σ1σ2 = σ2σ1. We have that (a1, σ1) +
(a2, σ2) = (a1 + a2, σ1σ2) and (a2, σ2) + (a1, σ1) = (a2 + a1, σ2σ1). This means that S(A) is an Abelian
subgroup of the group Γ(G).

Let us show that S(A) is a normal subgroup of the group Γ(G). Let (g, ϕ) be an arbitrary element
from Γ(G). Consider the sum

−(g, ϕ) + (a, σ) + (g, ϕ) = (−ϕ−1g + ϕ−1a + ϕ−1σg, ϕ−1σϕ) = (ā, σ̄).

The element g, as an element of the direct sum, can be written in the form a0 + b0, where a0 ∈ A, b0 ∈ B.
We obtain that

ϕ−1σg = ϕ−1a0 + ϕ−1b0 + ϕ−1ηb0,

where σb0 = b0 + ηb0, η ∈ Hom(B, A). Since A is invariant in G, we have that ϕ−1ηb0 ∈ A and ϕ−1a ∈ A.
Thus,

−ϕ−1g + ϕ−1a + ϕ−1σg = −ϕ−1a0 − ϕ−1b0 + ϕ−1a + ϕ−1a0 + ϕ−1b0 + ϕ−1ηb0 = ϕ−1(a + ηb0) = ā ∈ A.

Let ϕb = b′+a′, b′ ∈ B, a′ ∈ A. Then σϕb = σb′+σa′ = b′+λb′+a′, where σb′ = b′+λb′, λ ∈ Hom(B, A).
We have that

ϕ−1σϕb = ϕ−1b′ + ϕ−1λb′ + ϕ−1a′;
however, ϕ−1b′ = b − ϕ−1a′, hence

ϕ−1σϕb = b + ϕ−1λb′ = b + ϕ−1λπϕ|Bb,

where π is a projection of G on B and ϕ|B is a restriction of the automorphism ϕ on B. It is evident
that ϕ−1λπϕ|B ∈ Hom(B, A). Since σa = a for all a ∈ A, we have that ϕ−1σϕ acts identically on
elements of A. Therefore, it has all the properties of the second components of elements from S(A).
Thus, S(A) is a normal Abelian subgroup of the holomorph Γ(G). Let any element (a, σ) ∈ S(A) be in
correspondence with a pair (a, η), where η is a homomorphism of the group B into the group A induced by
the automorphism σ. The obtained correspondence is just the isomorphism S(A) ∼= A ⊕ Hom(B, A).

Theorem 16. There exists a completely decomposable torsion-free Abelian group that is not normally
determined by its holomorph in the class of all completely decomposable torsion-free groups.

Proof. Let π be a set of prime numbers. We say that the type t is π-divisible if it is p-divisible if and
only if the prime number p belongs to π.

For any two types t1 and t2, where t1 ≥ t2, we define their difference t1 − t2 as a type containing
the characteristic χ1 − χ2 (χ1 ∈ t1, χ2 ∈ t2, χ1 ≥ χ2). The difference of characteristics is defined
componentwise, where, obviously, ∞ minus anything is ∞.
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Let G =
n⊕

i=1
Gti , where Gti is a homogeneous completely decomposable finite rank group of the

type ti, all ti are π-divisible types (π is a set of prime numbers), t1 > t2 > · · · > tn, r(Gt1) = 1, and, for
some k ∈ {2, . . . , n}, t1 − tk �= ti for any i ∈ {2, . . . , n}.

Consider the group H =
n⊕

i=1
Hτi , where Hτi is a homogeneous completely decomposable of the type τi,

where τi = t1 − ti for all i = 1, 2, . . . , n, τ1 = t1, and r(Gti) = r(Hτi) (i = 1, 2, . . . , n). Gt1 is an invariant
subgroup of the group G. We use this subgroup to construct a normal Abelian subgroup S(Gt1) of the
holomorph Γ(G) as was shown in Lemma 15. We have that

S(Gt1) ∼= Gt1 ⊕
( n⊕

i=2

Hom Gti , Gt1

)
.

It is well known that if C1 and C2 are torsion-free rank 1 groups, then Hom(C1, C2) �= 0 if and only
if t(C1) ≤ t(C2) and, in this case, Hom(C1, C2) is a torsion-free rank 1 group and t

(
Hom(C1, C2)

)
=

t(C2) − t(C1). Therefore,

S(Gt1) ∼= Gt1 ⊕
n⊕

i=2

Hτi
∼=

n⊕
i=1

Hτi
∼= H.

Similarly, consider a normal Abelian subgroup S(Hτ1) in the holomorph Γ(H). We have that

S(Hτ1) ∼= Hτ1 ⊕ Hom
( n⊕

i=2

Hτi , Hτ1

)
∼= Hτ1 ⊕

n⊕
i=2

Gti
∼=

n⊕
i=1

Gti
∼= G.

Thus, the groups G and H are almost holomorphically isomorphic but G � H because τk �= ti for any
i ∈ {2, . . . , n}.

Therefore, a group G cannot be normally determined by its holomorph in the class of completely
decomposable groups.

Let us now consider direct products of homogeneous groups.
When considering direct products A =

∏
t∈T

At, we identify the group At with the isomorphic subgroup

ρtπtA of the group A. Any element a ∈ At is identified with the element ρtπta, where πt is a projection
of the group A onto the group At, and ρt is a coordinate embedding of the group A into the group At.

Proposition 17. Let G =
∏
t∈T

Gt, where Gt is a homogeneous group of the type t and T be a set of pairwise

incomparable types. If for some torsion-free Abelian group H there exists an isomorphic mapping μ of
the group G on a normal subgroup H ′ of the holomorph Γ(H), then μGt is a normal subgroup of the
holomorph Γ(H) for any type t ∈ T .

Proof. Let t0 be an arbitrary type from T and S = μGt0 . It is evident that S is a subgroup of the
group H ′ and consists exactly of all elements of the group H ′ having the type t0. We prove that S is
a normal subgroup of the holomorph Γ(H).

Let (s, ω) ∈ S, (b, σ) ∈ Γ(H) and χ
(
(s, ω)

)
= (k1, k2, . . . , kn, . . .), where χ

(
(s, ω)

) ∈ t0. For any
natural number n for which kn < ∞, there exists an element (sn, ωn) ∈ H ′ such that pkn

n (sn, ωn) = (s, ω).
Then

pkn
n

(−(b, σ) + (sn, ωn) + (b, σ)
)

= −(b, σ) + pkn
n (sn, ωn) + (b, σ) = −(b, σ) + (s, ω) + (b, σ) ∈ H ′.

Therefore, the pn-height of the element −(b, σ)+(s, ω)+(b, σ) in the group H ′ is not less than kn. It is
clear that if km = ∞ for some natural number m, then the pm-height of the element −(b, σ)+(s, ω)+(b, σ)
in the group H ′ is also equal to ∞. This means that t

(−(b, σ)+ (s, ω)+ (b, σ)
) ≥ t0. Applying Lemma 2,

we obtain that t
(−(b, σ) + (s, ω) + (b, σ)

)
= t0. Therefore, −(b, σ) + (s, ω) + (b, σ) ∈ S and S is a normal

subgroup Γ(H).
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We recall that a torsion-free Abelian group G is called transitive if for any two elements a, b ∈ G such
that χ(a) = χ(b) there exists an automorphism ϕ ∈ Aut(G) such that b = ϕa.

Theorem 18. Let G =
∏

t∈T1

Gt, H =
∏

t∈T2

Ht, where Gt (t ∈ T1) and Ht (t ∈ T2) are transitive homoge-

neous groups and the sets T1 and T2 consist of pairwise incomparable types. If the groups G and H are
almost holomorphically isomorphic, then T1 = T2 and the rank r(Gt) of the group Gt is equal to the rank
r(Ht) of the group Ht for any type t ∈ T1.

Proof. Since the groups G and H are almost holomorphically isomorphic, G ∼= H ′, H ∼= G′, where
G′ and H ′ are normal Abelian subgroups of the holomorphs Γ(G) and Γ(H), respectively. Let μ denote
the isomorphic mapping of the group G on the group H ′.

Since the sets T1 and T2 consist of pairwise incomparable types, we obtain, according to Theorem 2,
that the sets T1 and T2 coincide. Thus, one can write G =

∏
t∈T

Gt, H =
∏
t∈T

Ht, where T1 = T2 = T .

Let t0 ∈ T and let μGt0 = S. By H1 and Ψ, we denote the sets of first and second components
of the group H ′, respectively; S1 and Φ denote the sets of first and second components of the group S,
respectively. It is evident that S is a subgroup of the group H ′. Applying Proposition 17, we obtain that
S is a normal Abelian subgroup of the holomorph Γ(H). This means that S1 �= 0 (Lemma 2).

Let us show that the type of any element s ∈ S1 in the group H equals t0. Since s ∈ S1, there exists an
element (s, ω) ∈ S. The type of an element is preserved under isomorphisms; therefore, tH′

(
(s, ω)

)
= t0.

Let χ
(
(s, ω)

)
= (k1, k2, . . . , kn, . . .).

Let kn < ∞. Then there exists an element (x, δ) ∈ H ′ such that pkn
n (x, δ) = (s, ω). By formula (7),

we have that (s, ω) = (pkn
n x, δpknn ). Then s = pkn

n x. It follows that the pn-height of the element s in the
group H is not less than kn. If kn = ∞, then we obtain that the pn-height of the element s in the group H
is ∞.

Thus, χ(s) ≥ χ(s, ω) and, therefore, t(s) ≥ t0. Since, according to Lemma 2, t(s) ≯ t0, we obtain
that t(s) = t0.

We prove that S1 is a subgroup of the group Ht0 . Suppose the contrary. Let there be an element
s ∈ S1 such that s /∈ Ht0 , i.e., πtjs �= 0 for some type tj �= t0 (tj ∈ T ), where πtj is a projection of the
group H on the group Htj . We have t(s) ≤ tj . Since t(s) = t0, we obtain that t0 ≤ tj . We have obtained
a contradiction with the incomparability of types in T . Therefore, S1 is a subgroup of the group Ht0 .

Since S is a normal Abelian subgroup of the holomorph Γ(H), we can apply formula (1) 2S1 ⊂ S.
Therefore,

r(S1) = r(2S1) ≤ r(S). (8)
Let us prove that the subgroup 2S1 is mapped into the subgroup S1 under any automorphism λ ∈
Aut(Ht0). For the automorphism λ ∈ Aut(Ht0) we construct an automorphism λ′ ∈ Aut(H) in the
following way: for any element b ∈ H, we put πt0λ

′b = λπt0b; πtjλ
′b = πtjb if tj �= t0.

Consider an element (s, ω) ∈ S. Let λ′(2s) = u. Then t(u) = t(2s) = t(s) = t0. Taking into account
that S1 is a subgroup of the group Ht0 , we obtain λ′(2s) = λ(2s) and, therefore, u = λ(2s).

Since H1 is an invariant subgroup of the group H and 2s ∈ H1, u ∈ H1.
H ′ is a normal Abelian subgroup of the holomorph Γ(H) and, therefore, 2s ∈ H ′. We have that

(0, λ′) + (2s, ε) + (0, λ′)−1 = (λ′(2s), ε) = (u, ε).

It follows that u ∈ H ′.
Since H ′ = μG, there exists an element g ∈ G such that μg = u. Since isomorphisms preserve types,

t(g) = t0.
We have g ∈ Gt0 . This means that u ∈ S; therefore, u ∈ S1. This proves that λ(2s) ∈ S1 for any

element s ∈ S1 and any automorphism λ ∈ Aut(Ht0).
Let {ai}i∈I be a maximal linearly independent system of elements in Ht0 . Since 2S1 �= 0, there exists

an element x ∈ 2S1, x �= 0. The group Ht0 is homogeneous; therefore, for any i ∈ I we have t(ai) = t0.
Since t(x) = t0, there exist numbers mi, ni ∈ Z such that χ(miai) = χ(nix).
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The group Ht0 is transitive; therefore, there exists an automorphism ϕ ∈ Aut(Ht0) such that ϕ(nix) =
miai. Since ϕ(2S1) ⊂ S1 by virtue of what was proved above, we obtain that miai ∈ S1 for any i ∈ I .

The system {miai}i∈I is a linearly independent system of elements in the group S1. Therefore,
r(S1) ≥ r(Ht0). But S1 is a subgroup of the group Ht0 , this means that r(S1) ≤ r(Ht0). It follows from
these inequalities that r(S1) = r(Ht0).

Since S = μGt0 , we have that r(Gt0) = r(S). Applying inequality (8), we obtain that r(Gt0) =
r(S) ≥ r(S1) = r(Ht0). This means that r(Gt0) ≥ r(Ht0).

Similarly, one can prove that
r(Ht0) ≥ r(Gt0). (9)

Comparing inequalities (8) and (9), we obtain that r(Gt0) = r(Ht0).

Let A denote a group class consisting of all direct products of the form G =
∏
t∈T

Gt, where Gt are

homogeneous completely decomposable groups and the set T consists of pairwise incomparable types.

Theorem 19. Any group form the class A is normally determined by its holomorph in this class.

Proof. Let A be an arbitrary homogeneous completely decomposable group, a1 and a2 be nonzero elements
of the group A, and χ(a1) = χ(a2). Let 〈a1〉∗ and 〈a2〉∗ denote pure subgroups generated by elements
a1 and a2, respectively. The subgroups 〈a1〉∗ and 〈a2〉∗ are of rank 1 and the same type. This means that
〈a1〉∗ ∼= 〈a2〉∗. Since A is a homogeneous separable group, we have that each of the groups 〈a1〉∗ and 〈a2〉∗
are direct summands in it [8, Proposition 87.2], i.e., A = 〈a1〉∗ ⊕ A1 and A = 〈a2〉∗ ⊕ A2. The groups A1

and A2 are completely decomposable groups [8, Theorem 86.7]; at the same time, they are homogeneous
groups of the same type and of the same rank. Therefore, A1

∼= A2.
It is clear that there exists an automorphism ϕ of the group A such that ϕ(a1) = a2.
Let G ∈ A. Let us demonstrate that any group H ∈ A almost holomorphically isomorphic to the

group G is isomorphic to G.
Let G =

∏
t∈T1

Gt and H =
∏

t∈T2

Ht, where Gt (t ∈ T1) and Ht (t ∈ T2) are homogeneous completely

decomposable groups and the sets T1 and T2 consist of pairwise incomparable types. Since any group Gt

(t ∈ T1) and any group Ht (t ∈ T2) are homogeneous completely decomposable groups, these groups are
transitive. Therefore, by Theorem 18, T1 = T2 and r(Gt) = r(Ht) for any type t ∈ T1. Since Gt and Ht

are homogeneous completely decomposable groups of the same rank, we have that Gt
∼= Ht for any type

t ∈ T1. This means that G ∼= H.

This study was supported by the Ministry of Education and Science of the Russian Federation,
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