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We consider a class of quasielliptic operators in Rn and establish the isomorphism prop-

erty in special weighted Sobolev spaces. In more general weighted spaces, we obtain the

unique solvability conditions for quasielliptic equations and prove estimates for solu-

tions. Based on the obtained results, we study the solvability of the initial problem for

equations that are not solvable with respect to the higher order derivative. Bibliography:

22 titles.

In this paper, we consider a class of quasielliptic operators L (Dx) in the space Rn. For such

operators we establish the isomorphism property in special scales of weighted Sobolev spaces

and study the solvability of quasielliptic equations

L (Dx)u = f(x), x ∈ Rn, (1)

in larger spaces. We also obtain estimates for the solutions. The obtained results can be used

to prove the solvability of the initial problem for some classes of equations that are not solvable

with respect to the higher derivative:

L (Dx)D
m
t u+

m−1∑

k=0

Lm−k(Dx)D
k
t u = F (t, x). (2)

Isomorphism theorems for differential operators admit various applications to the theory of

partial differential equations. However, in many cases, the formulations of such theorems are

not obvious. For example, the differential operator

�− εI : W 2
p (R

n) −→ Lp(R
n), 1 < p < ∞,
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for ε > 0 establishes an isomorphism, but for the Laplace operator

� : W 2
p (R

n) −→ Lp(R
n), 1 < p < ∞,

this is not the case. A similar situation holds for the polyharmonic operator (cf., for example,

[1, Chapter 12])

�m : W 2m
p (Rn) −→ Lp(R

n), 1 < p < ∞.

We note that the first isomorphism theorems for the Laplace operator � in Rn were proved

in [2, 3]. The isomorphism theorems for homogeneous elliptic operators appear in the literature

in the 70-80s of the last century (cf., for example, [4]–[9]). The first isomorphism theorem

for homogeneous quasielliptic operators in Rn was proved by the author [10]. Properties of

operators were further studied in [11]. The isomorphism theorems for more general classes of

matrix quasielliptic operators in Rn can be found in [12, 13].

In this paper, we continue the study started in [10, 12, 13].

1 The Main Results

We first recall the definition of a quasielliptic operator L(Dx) with homogeneous symbol

L(iξ) with respect to the vector α = (α1, . . . , αn), 1/αj ∈ N, j = 1, . . . , n, i.e.,

L(cαiξ) = cL(iξ), c > 0.

Definition 1. A differential operator L(Dx) is quasielliptic if the equality

L(iξ) = 0, ξ ∈ Rn,

takes place if and only if ξ = 0.

Quasielliptic operators L(Dx), with homogeneous symbols L(iξ) with respect to some vector

α are called quasielliptic operators without lower terms. Such operators are represented as

L(Dx) =
∑

βα=1

aβD
β
x . (3)

Examples of such operators are presented by homogeneous elliptic operators, 2b-parabolic oper-

ators without lower terms etc.

We note that the symbol of a quasielliptic operator without lower terms satisfies the estimate

c1〈ξ〉 � |L(iξ)| � c2〈ξ〉, 〈ξ〉2 =
n∑

j=1

ξ
2/αj

j , ξ ∈ R
n,

where c1, c2 > 0 are constants.

Now, we consider differential operators L (Dx) of the form

L (Dx) = L(Dx) +
∑

βα<1

aβD
β
x , (4)

where L(Dx) is a quasielliptic operator of the form (3). Operators of the form (4) are referred

to as quasielliptic operators with lower terms.
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The differential operator corresponding to lower order terms is denoted by

L′(Dx) =
∑

βα<1

aβD
β
x .

In what follows, we assume that the symbol of the differential operator (4) satisfies the

inequalities

c3(〈ξ〉+ 〈ξ〉q) � |L(iξ) + L′(iξ)| � c4(〈ξ〉+ 〈ξ〉q), ξ ∈ R
n, (5)

where 0 � q < 1, c3, c4 > 0 are constants.

In [10]–[13], the isomorphism theorems were proved for classes of matrix quasielliptic op-

erators with quasihomogeneous symbols. For this purpose special weighted Sobolev spaces

W l
p,σ(R

n), l = (1/α1, . . . , 1/αn), 1 < p < ∞, σ � 0, introduced in [14] were used. To prove

the isomorphism property of the operators (4), we introduce another class of weighted Sobolev

spaces W l
p,q,σ(R

n), l = (1/α1, . . . , 1/αn), 1 < p < ∞, 0 � q � 1, σ � 0.

Definition 2. We say that a locally integrable function u belongs to the weighted Sobolev

space W l
p,q,σ(R

n) if u has the generalized derivatives Dν
xu, να � 1, in Rn; moreover, Dν

xu ∈
Lp(R

n) if q � να � 1 and

‖(1 + 〈x〉)−σ(q−να)Dν
xu(x), Lp(R

n)‖ < ∞, 〈x〉2 =
n∑

j=1

x
2/αj

j if 0 � να < q.

The W l
p,q,σ(R

n)-norm is defined by

∥∥u,W l
p,q,σ(R

n)
∥∥ =

∑

q�να�1

‖Dν
xu(x), Lp(R

n)‖

+
∑

0�να<q

∥∥(1 + 〈x〉)−σ(q−να)Dν
xu(x), Lp(R

n)
∥∥. (6)

As in [14], it is possible to show that the set of functions in C∞
0 (Rn) is everywhere dense in

W l
p,q,σ(R

n) for σ � 1. In what follows, we assume that 0 � σ � 1.

For some parameters l, q, σ the above-introduced spaces coincide with the well known ones.

We give some examples.

By definition, for σ = 0 the power weight in the norm (6) vanishes and, consequently, the

above-introduced space coincides with the Sobolev space W l
p(R

n). For q = 0 this space also

coincides with W l
p(R

n). In the case q = 1 the above space coincides with W l
p,σ(R

n) since

‖u,W l
p,σ(R

n)‖ =
∑

0�να�1

‖(1 + 〈x〉)−σ(1−να)Dν
xu(x), Lp(R

n)‖

by definition [14]. In the isotropic case, where 1/α1 = . . . = 1/αn = l, for q = σ = 1 the norm

(6) is equivalent to the following:

∑

0�|β|�l

‖(1 + |x|)−(l−|β|)Dβ
xu(x), Lp(R

n)‖.
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Therefore, for p > n the space W l
p,1,1(R

n) coincides with the Kudryavtsev space [15]: W l
p,�(R

n),

� = {x ∈ Rn : |xj | < 1, j = 1, . . . , n}, equipped with the norm

‖u,W l
p,�(R

n)‖ =

∫

�

|u(x)|dx+
∑

|β|=l

‖Dβ
xu(x), Lp(R

n)‖.

In the isotropic case (1/α1 = . . . = 1/αn = l), for q = σ = 1 and any p > 1 the above-introduced

space coincides with the Nirenberg–Walker–Cantor space Mp

l,m
(Rn) with the norm (cf. [16, 17])

‖u,Mp

l,m
(Rn)‖ =

∑

0�|β|�l

‖(1 + |x|)m+|β|Dβ
xu(x), Lp(R

n)‖

provided that m = −l.

We denote by Lp,γ(R
n) the space of integrable functions equipped with the norm

‖u, Lp,γ(R
n)‖ = ‖(1 + 〈x〉)−γu(x), Lp(R

n)‖.

To prove the isomorphism theorem for the quasielliptic operator L (Dx), we need to establish

the unique solvability of the quasielliptic equation (1) in the weighted Sobolev spaces W l
p,q,σ(R

n).

We set |α| =
n∑

j=1
αj .

Theorem 1. Assume that |α| > q and |α|/p > σq > |α|/p − (|α| − q). Then for any

f ∈ Lp,(σ−1)q(R
n) there exists a unique solution u ∈ W l

p,q,σ(R
n) to Equation (1) and

‖u,W l
p,q,σ(R

n)‖ � c‖f, Lp,(σ−1)q(R
n)‖, (7)

where c > 0 is a constant independent of f .

We formulate the isomorphism theorem.

Theorem 2. Let |α|/p > q. Then the quasielliptic operator L (Dx) : W l
p,q,σ(R

n) −→
Lp(R

n), 1 < p < ∞, σ = 1, generates an isomorphism.

Remark 1. Theorems 1 and 2 are counterparts of the corresponding results of [10, 12, 13]

in the case of quasielliptic operators without lower terms.

For an example we consider the differential operator

L (Dx) = �m + ε(−1)m−k�k, m � k, ε > 0. (8)

In our notation,

L(Dx) = �m, L′(Dx) = ε(−1)m−k�k, α1 = . . . = αn = 1/(2m).

Therefore, the condition (5) is satisfied for q = k/m. By Theorem 2, the operator

L (Dx) : W l
p,q,1(R

n) −→ Lp(R
n), l = (2m, . . . , 2m), n > 2k, (9)

generates an isomorphism for p ∈ (1, n
2k ).

We consider the extreme cases in (8): k = 0 and k = m.
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For k = 0, since �0 = I, q = 0, and W l
p,0,1(R

n) = W l
p(R

n), we can write (9) as

�m + ε(−1)mI : W l
p(R

n) −→ Lp(R
n).

In this case, the isomorphism theorem is a classical results.

For k = m, since q = 1 and W l
p,1,1(R

n) = W l
p,1(R

n), we can write (9) as

(1 + ε)�m : W l
p,1(R

n) −→ Lp(R
n), n > 2m.

In this case, the isomorphism theorem follows from [6].

We show how to use the isomorphism theorems for the initial problem for a class of equations

that are not solvable with respect to higher time-derivative (2):

L (Dx)D
m
t u+

m−1∑

k=0

Lm−k(Dx)D
k
t u = F (t, x), t > 0,

Dk
t u|t=0 = ϕk+1(x), k = 0, . . . ,m− 1.

(10)

Equations of the form (2) are often referred to as Sobolev type equations since the systematical

study of such equations was started by Sobolev (cf. [18]).

Assume that the differential operators Lk(Dx), k = 1, . . . ,m, have constants coefficients and

take the form:

Lk(Dx) =
∑

q�βα�1

akβD
β
x . (11)

We formulate the result about unconditional solvability of the initial problem (10). For the

sake of simplicity, we assume that the initial data are zero.

Theorem 3. Assume that |α|/p > q, ϕk(x) ≡ 0, k = 1, . . . ,m. Then for any F (t, x) ∈
C([0, T ];Lp(R

n)) the problem (10) has a unique solution u(t, x) ∈ Cm([0, T ]; W l
p,q,1(R

n)) and

‖u(t, x), Cm([0, T ];W l
p,q,1(R

n))‖ � c(T )‖F (t, x), C([0, T ];Lp(R
n))‖, (12)

where c(T ) is a constant independent of F (t, x).

2 Approximate Solutions to Quasielliptic Equation

To prove Theorem 1, we apply the method for constructing approximate solutions, described

in [19] in detail. The method is based on the integral representation due to Uspenskii [20] for

integrable functions (cf. also [19, Chapter 1])

ϕ(x) = lim
h→0

(2π)−n

h−1∫

h

v−|α|−1

∫

Rn

∫

Rn

exp
(
i
x− y

vα
ξ
)
G(ξ)ϕ(y)dξdydv, (13)

where

G(ξ) = 2m〈ξ〉2m exp(−〈ξ〉2m), 〈ξ〉2 =
n∑

i=1

ξ
2/αi

i , m, 1/αi ∈ N. (14)
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We first assume that the function f ∈ Lp(R
n) on the right-hand side of (7) is compactly

supported. We consider the family of integral operators Ph, 0 < h < 1, defined by

Phf(x) = (2π)−n

h−1∫

h

v−1

∫

Rn

∫

Rn

exp (i(x− y)ξ)G(ξvα) (L (iξ))−1 f(y)dξdydv. (15)

By the definition (15), the functions Phf are infinitely differentiable and

L (Dx)Phf(x) = fh(x),

where

fh(x) = (2π)−n

h−1∫

h

v−|α|−1

∫

Rn

∫

Rn

exp

(
i
x− y

vα
ξ

)
G(ξ)f(y)dξdydv.

By the representation (13), we have

‖fh − f, Lp(R
n)‖ → 0, h → 0.

Consequently, the function uh = Phf can be regarded as an approximate solution to the quasiel-

liptic equation (1).

It is obvious that there is a natural number m1 such that for m � m1 in (14) the functions

Phf are integrable with any power p � 1 (cf. [12]). We will assume that m � m1 in (14).

The following three lemmas yield estimates for the functions uh = Phf in the W l
p,q,σ(R

n)-

norm, which implies the convergence of the sequence {uh} as h → 0 in the space W l
p,q,σ(R

n).

We begin with estimates for the norms of the higher order derivatives of the function (15).

Lemma 1. Let β = (β1, . . . , βn), q � βα � 1. Then

‖Dβ
xuh, Lp(R

n)‖ � cβ‖f, Lp(R
n)‖, (16)

where cβ > 0 is a constant independent of f and h; moreover,

‖Dβ
xuh1 −Dβ

xuh2 , Lp(R
n)‖ → 0, h1, h2 → 0. (17)

Proof. It suffices to obtain the estimate (16) for f ∈ C∞
0 (Rn). By the definition (15),

Dβ
xuh(x) = (2π)−n

h−1∫

h

v−1

∫

Rn

∫

Rn

exp(i(x− y)ξ)G(ξvα)(iξ)β (L (iξ))−1 f(y)dξdydv. (18)

Using properties of the Fourier transform, we can write this formula in the form

Dβ
xuh(x) = (2π)−n

h−1∫

h

v−1

∫

Rn

(∫

Rn

exp(i(x− y)s)G(svα)ds
)
Fβ(y)dydv, (19)

where

Fβ(y) = (2π)−n/2

∫

Rn

exp(iyξ)(iξ)β (L (iξ))−1 f̂(ξ)dξ.
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The multiindex β such that q � βα � 1. By (5), the function

μβ(ξ) = (iξ)β (L (iξ))−1

satisfies the assumptions of the multiplier theorem [21] which implies the inequality

‖Fβ, Lp(R
n)‖ � cβ‖f, Lp(R

n)‖,
where cβ is a constant independent of f . Consequently, using properties of the integral repre-

sentation (13) (cf. [19, Chapter 1]), from (19) we obtain the estimate (16). The proof of (17) is

similar. The lemma is proved.

To estimate the derivatives Dβ
xuh for 0 � βα < q, we need to estimate the following integrals:

Kβ,h(x) = (2π)−n

h−1∫

h

v−1

∫

Rn

exp(ixξ)G(ξvα)
(iξ)β

L (iξ)
dξdv, 0 < h < 1. (20)

Lemma 2. Let |α|+ βα > q > βα. Then there exists m2 � m1 such that if m � m2 in the

definition (14) of G(ξ), then the following estimate holds::

〈x〉|α|+βα−q|Kβ,h(x)| � c, x ∈ Rn, (21)

where c > 0 is a constant independent of h.

Proof. We consider the inner integral in (20)

kβ,v(x) =

∫

Rn

exp(ixξ)G(ξvα)
(iξ)β

L (iξ)
dξ

and write it in the form

kβ,v(x) = v−|α|−βα

∫

Rn

exp
(
i
xs

vα

)
G(s)

(is)β

L (i s
vα )

ds.

Taking into account the definition of G(ξ) and condition (5), it is easy to show that there exists

m2 ∈ N such that if m � m2 in (14), then

|kβ,v(x)| � cv−|α|−βα+q
(
1 + 〈 x

vα
〉
)−|α|

, x ∈ Rn.

Using this inequality, from (20) we find

〈x〉|α|+βα−q|Kβ,h(x)| � c〈x〉|α|+βα−q

h−1∫

h

v−|α|−βα+q−1
(
1 +

〈x〉
v

)−|α|
dv.

Making the change of variables v = 〈x〉ω, we get

〈x〉|α|+βα−q|Kβ,h(x)| � c

h−1〈x〉−1∫

h〈x〉−1

ω−|α|−βα+q−1
(
1 +

1

ω

)−|α|
dω �

� c

∞∫

0

ω−|α|−βα+q−1
(
1 +

1

ω

)−|α|
dω � c

1∫

0

ω−βα+q−1dω + c

∞∫

1

ω−|α|−βα+q−1dω.

It is obvious that the inequality (21) holds. The lemma is proved.
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We will assume that m � max{m1,m2} in (14).

Let us estimate the norms of the derivatives Dβ
xuh for 0 � βα < q.

Lemma 3. Assume that β = (β1, . . . , βn), q > βα � 0, and

|α|
p

> σ(q − βα) > q − βα− |α|
p′

,
1

p
+

1

p′
= 1. (22)

Then

‖〈x〉−σ(q−βα)Dβ
xuh(x), Lp(R

n)‖ � c‖〈x〉(1−σ)(q−βα)f(x), Lp(R
n)‖, (23)

where c > 0 is a constant independent of f and h; moreover,

∥∥〈x〉−σ(q−βα)
(
Dβ

xuh1(x)−Dβ
xuh2(x)

)
, Lp(R

n)
∥∥ → 0, h1, h2 → 0. (24)

Proof. It is obvious that it suffices to obtain the estimate (23) for f ∈ C∞
0 (Rn). Taking

into account (18) and (20), we write the derivative Dβ
xuh in the form

Dβ
xuh(x) =

∫

Rn

Kβ,h(x− y)f(y)dy.

By Lemma 2,

∥∥〈x〉−σ(q−βα)Dβ
xuh(x), Lp(R

n)
∥∥ � c‖〈x〉−σ(q−βα)

∫

Rn

〈x− y〉−(|α|+βα−q)|f(y)|dy, Lp(R
n)‖.

From the assumptions of the lemma it follows that |α|+ βα− q > 0, q − βα > 0. Therefore,

‖〈x〉−σ(q−βα)Dβ
xuh(x), Lp(R

n)‖ �

� c1‖
∫

Rn

n∏

i=1

|xi|−σ(q−βα)/|α||xi − yi|(q−βα)/|α|−1|yi|−(1−σ)(q−βα)/|α|×

× 〈y〉(1−σ)(q−βα)|f(y)|dy, Lp(R
n)‖.

Taking into account the condition (22) and applying the Hardy–Littlewood inequality [22], we

obtain the estimate (23). The convergence (24) is obtained in a similar way. The lemma is

proved.

3 Proof of Theorems

Proof of Theorem 1. Under the assumptions of the theorem, from Lemmas 1 and 3 we

obtain the following estimate for uh = Phf :

‖uh,W l
p,q,σ(R

n)‖ � c‖f, Lp,(σ−1)q(R
n)‖, 0 < h < 1, (25)

where c > 0 is a constant independent of h and f . We recall that the integral operators Ph in

(15) were defined on compactly supported functions f ∈ Lp(R
n). These lemmas also imply the

convergence

‖Ph1f(x)− Ph2f(x),W
l
p,q,σ(R

n)‖ → 0, h1, h2 → 0.
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Since the space W l
p,q,σ(R

n) is complete, there exists a linear continuous operator

P : Lp,(σ−1)q(R
n) −→ W l

p,q,σ(R
n)

defined on compactly supported functions f by

Pf = lim
h→0

Phf.

Since the set of compactly supported infinitely differentiable functions is dense in Lp,(σ−1)q(R
n),

the operator P can be uniquely extended to the space Lp,(σ−1)q(R
n) with the same norm. We

use the same notation P for the extended operator.

By (25), the linear operator

Ph : Lp,(σ−1)q(R
n) −→ W l

p,q,σ(R
n)

is continuous and the set of norms {‖Ph‖} is bounded: ‖Ph‖ � c. Consequently, by the Banach–

Steinhaus theorem,

‖Phf − Pf,W l
p,q,σ(R

n)‖ → 0, h → 0,

for any f ∈ Lp,(σ−1)q(R
n).

The above arguments imply that for any f ∈ Lp,(σ−1)q(R
n) Equation (1) has a solution

u ∈ W l
p,q,σ(R

n) and the estimate (7) holds.

Since C∞
0 (Rn) is dense in W l

p,q,σ(R
n) for 0 � σ � 1, the uniqueness of a solution to Equation

(1) is proved in the same way as in [10]. Theorem 1 is proved.

Proof of Theorem 2. For |α|/p > q, σ = 1 the assumptions of Theorem 1 are satisfied.

Consequently, for any f ∈ Lp(R
n) Equation (1) has a unique solution u = Pf ∈ W l

p,q,σ(R
n);

moreover,

‖u,W l
p,q,1(R

n)‖ � c‖f, Lp(R
n)‖.

From the form (4) of the operator L (Dx) and the conditions (5) it follows that the operator

L (Dx) : W l
p,q,1(R

n) −→ Lp(R
n) (26)

is linear and continuous. By the aforesaid, the range of this operator coincides with the entire

space Lp(R
n); moreover,

‖u,W l
p,q,1(R

n)‖ � c‖L (Dx)u, Lp(R
n)‖.

Consequently, the inverse operator (L (Dx))
−1 : Lp(R

n) −→ W l
p,q,1(R

n) exists, is linear and

continuous. Therefore, the quasielliptic operator (26) establishes an isomorphism. Theorem 2

is proved.

Proof of Theorem 3. By the isomorphism theorem and the conditions (11), the linear

operators

(L (Dx))
−1Lm−k(Dx) : W l

p,q,1(R
n) −→ W l

p,q,1(R
n), k = 0, . . . ,m− 1,
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with |α|/p > q are continuous. Consequently, for the zero initial data the problem (10) is

equivalent to the Cauchy problem for differential equation with bounded operator coefficients

Dm
t u+

m−1∑

k=0

(L (Dx))
−1Lm−k(Dx)D

k
t u = (L (Dx))

−1F (t, x),

Dk
t u|t=0 = 0, k = 0, . . . ,m− 1.

Since (L (Dx))
−1F (t, x) ∈ C([0, T ];W l

p,q,1(R
n)), from the general theory of the Cauchy prob-

lem it follows that there exists a unique solution u(t, x) ∈ Cm([0, T ];W l
p,q,1(R

n)) to the initial

problem and the estimate (12) holds. Theorem 3 is proved.
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