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SMALL DEVIATION PROBABILITIES OF A SUM OF
INDEPENDENT POSITIVE RANDOM VARIABLES,
THE COMMON DISTRIBUTION OF WHICH
DECREASES AT ZERO NOT FASTER THAN
EXPONENTIAL FUNCTION

L. V. Rozovsky* UDC 519.2

We investigate small deviation probabilities of the cumulative sum of independent positive random
variables, the common distribution of which decreases at zero not faster than exponential function.
Bibliography: 8 titles.

1. Introduction and results. Let X denote a positive random variable with distribution
function V' (z), and let {X;};>1 be independent copies of X.

The purpose of the present paper is first of all to generalize results from [1], where small
deviation probabilities of the sum X7 + --- + X, as n — oo were studied in the case missing
in the literature; namely, when the function V' (z) is slowly varying at zero. More exactly, it
was assumed in [1] that

< | =

v(y) = / wdV(u) ~1(y), y— 10, (L1)
0

where the function [(y) is slowly varying at zero. This implies that I(+0) = 0 and V(y) ~

- y
l(y) = [ U(u)/u du, y — 40, and also the function I(y) is slowly varying at zero.
0

In what follows, assumption (1.1) is replaced by the following essentially weaker condition
(R) introduced in [2]:
there exist constants b € (0,1), ¢; > b, ca > 1, and € > 0 such that for every r < e,
avbr)<v(r) <cuv(br). (1.2)
It was also shown in [8] that (R) is preferable to the known condition (L) from [1]. Namely
(L) <= (R) and, in addition, (R) allows the function V(r) to decrease at zero more
c1>1

slowly than any power of r and, in particular, to satisfy (1.1).
To present the results, we need some additional notation.
Let {A;} be some positive numbers.

Set S, = >\ X; forn>1, L(h)=Ee "X for h >0, and

7=1
An(v)zﬂL(M]’), mp(7) = — (In A (7)), 02(7) = (InAn(9))”,

o (1.3)
70) = [ vlw)dufu, wl) = v)/7w). y>0.

0
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Theorem 1. If the condition (R) is satisfied, then for all positive r, s, §, and v > 0/ 11<ni£1 Ajs
<j<n

Pir—s<S,<r)= e~ @n(v) 17__7\/62__7:8(6_ﬁ2/2 + 0 <7'_1 + <ln(i—72+7'))1/a(1 + (’73)_1)))7

where
Qn(7) = —mAn(y) —yr, B=(—ma(y))/on(y), T=70u(y), (1.4)
a=1Incy/|Inbd| (see (1.2)), and |0| is bounded by a constant depending only on V and 0.

Theorem 1 is a generalization of a result from [3, Remark 2] (the condition (L) is replaced
by the condition (R)).

When formulating the subsequent results of this section, we assume that the condition (R)
holds and the weights {A;} satisfy the condition

§<A <18 j>1, (1.5)

for some § > 0, i.e., they are uniformly bounded away from zero and infinity (for example, are
equal to one).

Corollary 1. Let € be an arbitrary positive constant. Then in the notation of Theorem 1,

P(r—s5< S, <r)= e 17_7\/62__: (6—,62/2 L0 (1/ﬁ+ (I AJ/A)Ye (1 + (’ys)_l))) ,

n — 0o
uniformly iny >¢e, r >0, and s > 0, where A =nr(1/7y) (see (1.3)).

Under the condition (L), the parameter \ is of order n uniformly in v > ¢ (see [1] or [3,
(4.4.b)]. Therefore, Corollary 1 is a generalization of the main result in [2] and also implies
statement (1) of Theorem 2 in [7].

Clearly, Corollary 1 is of main interest when the parameter 7 is chosen in such a way that
as n tends to infinity, A and § tend to infinity and zero, respectively. In particular, Corollary 1
implies the following assertion.

Corollary 2. If a sequence h, < oo tends to infinity so that

n 1<inf k(1/vy) — oo, (1.6)
<Y<
then .
(S, < 1) = 2nl)e (1+0(1)), n— oo, (1.7)

TV 2T
uniformly in r € (nk(1/7)/Yn, 41 An), where p < EX is a constant, A, = (A +---+\p)/n,
and the function vy satisfies the equation

my(y) =T (1.8)

Note that if the condition (L) is satisfied, then condition (1.6) is satisfied for v,, = co. There-
fore, formula (1.7) is valid for all 0 < r < pun\,. And if (L) is violated (say, condition (1.1)
holds and hence x(40) = 0), then condition (1.6) becomes nontrivial and asymptotics (1.7) is
no longer valid for r small enough. To confirm what has been said, we give some results.

Theorem 2. Let v>1>~vyr > 0. Then
P(S, < ) = Au(7) (140 (3r + M (11)179)),  16] < 4, (1.9)
where € € (0,1) and A are some constants not depending of n, v, and r.
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Theorem 2 is a generalization and a refinement of statement (3) of Theorem 2 in [7].

Note that equality (1.9) is nontrivial only if A(=nx(1/7)) — 0.

Corollary 3. If k(+0) =0 (see (1.3)), then
P(S, <r)=MA,(7)(1+0(1)), n— oo, (1.10)

uniformly in r — +0 such that A (or yr ) — 0 as n — oo, where 7 satisfies equation (1.8) or,
more generally, \ =< ~yr.

We note that under conditions of Corollary 3, the denominator on the right-hand side of (1.6)
tends to infinity (see (2.4)), that is, for A — oo and for A — 0, the probability P(S,, < r) has
different asymptotic representations.

In conclusion, we give one more result which is valid under the condition (R) (and (3.5))
and can be useful if the condition A — 0/c0 is violated.

Theorem 3. Let r € (0,un\,), where u < EX is a constant. Then
—InP(S, <7)=Qn(y)+05In(1+~vyr)+6, [0 <A, (1.11)
where v satisfies equation (1.8), Qn(y) and N, are defined in (1.4) and Corollary 2, respectively,
and the parameter A does not depend on n and r.
We note (see (1.3)) that

n|Inv(1/u)]

and c is independent of n and wu.

0<e< <1l/e<oo, u>wuy>0, (1.12)

Corollary 4. Let p < EX be a constant. Then
e_Q’ﬂ(u)
VItur’

uniformly in r € (0,udn) (see (1.5)), where u = u,(r) is a positive number satisfying the
conditions

P(S, <r)x n — 0o, (1.13)

u (mn (u) —

Jar T):O(l), n — oo. (1.14)

Note that if ur is large enough, then the first condition in (1.14) follows from the second
one.

mp(u) <,

2. Proofs.

Theorem 1 is verified in the same way as Theorem 2 in [8] (with notable simplifications).
In this case, formula (4.15) from [2] is involved.

Let us prove Theorem 2. Set

L(h) =Ee "X m(h) = —(log L(h))', &*(h) = (log L(h))", h>o0.

For h, u > 0, we have
mw _ /
m(h)
h

% 2
log L(u) — log L(h) = — / m(t)dt, log ;((f)) dt. (3.1)
h
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From [8, Lemma 2], it follows that under the condition (R),
c16(1/h) < hm(h), h?c?(h) < cyr(1/h) (3.2)

for all h > hg > 0, where hg is an arbitrary fixed number and the parameters c1,co > 0 do not
depend on h. For ¢ = ¢1/co and u, h > hg, this and (3.1) imply that

ZE% _ (%)_9, ¢<0=0(uhV)<1/e (3.3)
By [4, Theorem 2 and (1.8)] for r, v, u > 0,
Ap(v) 7" > P(S, < r) > Ap(u) (1 —my(u)/r). (3.4)

Let K > 1 be a parameter to be chosen later, and u = K . Taking into account (3.1) and the
fact that the function m(h) decreases, we have

log ﬁiii =3 (log L(Aju) —log L(\;7)) = — D Ay —7) m(A;7),
n j=1

j=1
Using (3.1)-(3.3) and (1.5), under the assumption 6y > hy we obtain

wm 1/c
5m((i;) m(y) é% <%> ym(y) < eg K6~ k(1 /7).

Aj(u —y)m(Aj7) <

Therefore for A = nk(1/7),
Ap(u) > Ap(y) e AEA A = ¢y (F10), (3.5)

Similarly,
A m(dv)
&y m(v)

mp(u) =3 Ajm(Au) < e < Ak )\/n. (3.6)
j=1

From (3.4)-(3.6), it follows that if v > hg, then
An(7) €7 = P(Sy < 1) = A(7) e A (1= ARTEN/ (7))
>An() (1= A(X+E N (y7)).

Estimate (1.9) follows from (3.7) with ho = 6, k = (yr)~/(1%¢) "and € = ¢/(1+¢). Theorem 2
is proved.

(3.7)

The proofs of Theorem 3 and Corollary 4 are quite similar to the proofs of Theorem 3 and
Remark 3 in [5] (see also [6]).

The work is supported by the RFBR grant No. 16-01-00367.
Translated by the author.
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