Journal of Mathematical Sciences, Vol. 229, No. 6, March, 2018 **SMALL DEVIATION PROBABILITIES OF A SUM OF INDEPENDENT POSITIVE RANDOM VARIABLES, THE COMMON DISTRIBUTION OF WHICH DECREASES AT ZERO NOT FASTER THAN EXPONENTIAL FUNCTION** DOI 10.1007/s10958-018-3716-1

L. V. Rozovsky[∗] UDC 519.2

We investigate small deviation probabilities of the cumulative sum of independent positive random variables, the common distribution of which decreases at zero not faster than exponential function. Bibliography: 8 *titles.*

1. Introduction and results. Let X denote a positive random variable with distribution function $V(x)$, and let $\{X_i\}_{i\geq 1}$ be independent copies of X.

The purpose of the present paper is first of all to generalize results from [1], where small deviation probabilities of the sum $X_1 + \cdots + X_n$ as $n \to \infty$ were studied in the case missing in the literature; namely, when the function $V(x)$ is slowly varying at zero. More exactly, it was assumed in [1] that

$$
\nu(y) = \frac{1}{y} \int_{0}^{y} u \, dV(u) \sim l(y), \quad y \to +0,
$$
\n(1.1)

where the function $l(y)$ is slowly varying at zero. This implies that $l(+0) = 0$ and $V(y) \sim$ $\widetilde{l}(y) = \int_{0}^{y}$ $\sqrt{ }$ $\int_{0}^{x} l(u)/u \, du$, $y \to +0$, and also the function $\tilde{l}(y)$ is slowly varying at zero.

In what follows, assumption (1.1) is replaced by the following essentially weaker condition (**R**) introduced in [2]:

there exist constants $b \in (0, 1)$ *, c₁* > *b, c₂* > 1*, and* ε > 0 *such that for every* $r \leq \varepsilon$ *,*

$$
c_1 \nu(br) \le \nu(r) \le c_2 \nu(br). \tag{1.2}
$$

It was also shown in [8] that (**R**) is preferable to the known condition (**L**) from [1]. Namely $(\mathbf{L}) \iff (\mathbf{R})|_{c_1>1}$ and, in addition, (\mathbf{R}) allows the function $V(r)$ to decrease at zero more slowly than any power of r and, in particular, to satisfy (1.1) .

To present the results, we need some additional notation.

Let $\{\lambda_i\}$ be some positive numbers.

Set
$$
S_n = \sum_{j=1}^n \lambda_j X_j
$$
 for $n \ge 1$, $L(h) = \mathbf{E}e^{-hX}$, for $h \ge 0$, and
\n
$$
\Lambda_n(\gamma) = \prod_{j=1}^n L(\gamma \lambda_j), \quad m_n(\gamma) = -(\ln \Lambda_n(\gamma))', \quad \sigma_n^2(\gamma) = (\ln \Lambda_n(\gamma))'',
$$
\n
$$
\widetilde{\nu}(y) = \int_0^y \nu(u) \, du/u, \quad \kappa(y) = \nu(y)/\widetilde{\nu}(y), \quad y > 0.
$$
\n(1.3)

1072-3374/18/2296-0767 ©2018 Springer Science+Business Media, LLC 767

[∗]St.Petersburg State Chemical Pharmaceutical Academy; St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia, e-mail: L Rozovsky@mail.ru.

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 454, 2016, pp. 254–260. Original article submitted September 12, 2016.

Theorem 1. *If the condition* (\mathbf{R}) *is satisfied, then for all positive* r, s, δ , and $\gamma > \delta/$ min $\min_{1\leq j\leq n}\lambda_j,$

$$
\mathbf{P}(r - s < S_n \le r) = e^{-Q_n(\gamma)} \frac{1 - e^{-\gamma s}}{\tau \sqrt{2\pi}} \left(e^{-\beta^2/2} + \theta \left(\tau^{-1} + \left(\frac{\ln\left(1 + \tau\right)}{\tau^2} \right)^{1/\alpha} \left(1 + (\gamma s)^{-1} \right) \right) \right),
$$

where

 $Q_n(\gamma) = -\ln \Lambda_n(\gamma) - \gamma r$, $\beta = (r - m_n(\gamma))/\sigma_n(\gamma)$, $\tau = \gamma \sigma_n(\gamma)$, (1.4) $\alpha = \ln c_2 / |\ln b|$ (*see* (1.2)), and $|\theta|$ *is bounded by a constant depending only on* V and δ .

Theorem 1 is a generalization of a result from [3, Remark 2] (the condition (**L**) is replaced by the condition (**R**)).

When formulating the subsequent results of this section, we assume that the condition (**R**) holds and the weights $\{\Lambda_i\}$ satisfy the condition

$$
\delta \le \lambda_j \le 1/\delta, \quad j \ge 1,\tag{1.5}
$$

for some $\delta > 0$, i.e., they are uniformly bounded away from zero and infinity (for example, are equal to one).

Corollary 1. Let ε be an arbitrary positive constant. Then in the notation of Theorem 1,

$$
\mathbf{P}(r - s < S_n \le r) = e^{-Q_n(\gamma)} \frac{1 - e^{-\gamma s}}{\tau \sqrt{2\pi}} \left(e^{-\beta^2/2} + O\left(1/\sqrt{\lambda} + (\vert \ln \lambda \vert/\lambda)^{1/\alpha} \left(1 + (\gamma s)^{-1}\right)\right) \right),
$$
\n
$$
n \to \infty
$$

uniformly in $\gamma > \varepsilon$, $r > 0$, and $s > 0$, where $\lambda = n\kappa(1/\gamma)$ (see (1.3)).

Under the condition (L), the parameter λ is of order n uniformly in $\gamma > \varepsilon$ (see [1] or [3, (4.4.b)]. Therefore, Corollary 1 is a generalization of the main result in [2] and also implies statement (1) of Theorem 2 in [7].

Clearly, Corollary 1 is of main interest when the parameter γ is chosen in such a way that as n tends to infinity, λ and β tend to infinity and zero, respectively. In particular, Corollary 1 implies the following assertion.

Corollary 2. *If a sequence* $h_n \leq \infty$ *tends to infinity so that*

$$
n \inf_{1 \le \gamma < \gamma_n} \kappa(1/\gamma) \to \infty,\tag{1.6}
$$

then

$$
\mathbf{P}(S_n < r) = \frac{\Lambda_n(\gamma) \, e^{\gamma \, r}}{\tau \sqrt{2\pi}} \, \left(1 + o \left(1 \right) \right), \quad n \to \infty,\tag{1.7}
$$

uniformly in $r \in (n \kappa(1/\gamma_n)/\gamma_n, \mu \in \bar{\lambda}_n)$, where $\mu < E X$ *is a constant,* $\bar{\lambda}_n = (\lambda_1 + \cdots + \lambda_n)/n$, *and the function* γ *satisfies the equation*

$$
m_n(\gamma) = r.\tag{1.8}
$$

Note that if the condition (**L**) is satisfied, then condition (1.6) is satisfied for $\gamma_n = \infty$. Therefore, formula (1.7) is valid for all $0 < r \leq \mu n \overline{\lambda}_n$. And if (L) is violated (say, condition (1.1) holds and hence $\kappa(+0) = 0$, then condition (1.6) becomes nontrivial and asymptotics (1.7) is no longer valid for r small enough. To confirm what has been said, we give some results.

Theorem 2. *Let* $\gamma \geq 1 \geq \gamma r > 0$ *. Then*

$$
\mathbf{P}(S_n < r) = \Lambda_n(\gamma) \left(1 + \theta \left(\gamma r + \lambda / (\gamma r)^{1 - \varepsilon} \right) \right), \quad |\theta| \le A,\tag{1.9}
$$

where $\varepsilon \in (0,1)$ *and* A *are some constants not depending of* n, γ *, and* r.

768

Theorem 2 is a generalization and a refinement of statement (3) of Theorem 2 in [7]. Note that equality (1.9) is nontrivial only if $\lambda (= n\kappa(1/\gamma)) \to 0$.

Corollary 3. *If* $\kappa(+0) = 0$ (*see* (1.3))*, then*

$$
\mathbf{P}(S_n < r) = \Lambda_n(\gamma) \left(1 + o(1) \right), \quad n \to \infty,\tag{1.10}
$$

uniformly in $r \to +0$ *such that* λ (*or* γr) $\to 0$ *as* $n \to \infty$ *, where* γ *satisfies equation* (1.8) *or, more generally,* $\lambda \approx \gamma r$.

We note that under conditions of Corollary 3, the denominator on the right-hand side of (1.6) tends to infinity (see (2.4)), that is, for $\lambda \to \infty$ and for $\lambda \to 0$, the probability $P(S_n < r)$ has *different* asymptotic representations.

In conclusion, we give one more result which is valid under the condition (**R**) (and (3.5)) and can be useful if the condition $\lambda \to 0/\infty$ is violated.

Theorem 3. Let $r \in (0, \mu n \bar{\lambda}_n)$, where $\mu < E X$ is a constant. Then

$$
-\ln \mathbf{P}(S_n < r) = Q_n(\gamma) + 0.5 \ln (1 + \gamma r) + \theta, \quad |\theta| \le A,\tag{1.11}
$$

where γ *satisfies equation* (1.8), $Q_n(\gamma)$ *and* $\bar{\lambda}_n$ *are defined in* (1.4) *and Corollary* 2*, respectively, and the parameter* A *does not depend on* n *and* r*.*

We note (see (1.3)) that

$$
0 < c < \frac{Q_n(u)}{n \left| \ln \widetilde{\nu}(1/u) \right|} < 1/c < \infty, \quad u > u_0 > 0,\tag{1.12}
$$

and c is independent of n and u .

Corollary 4. Let $\mu < E$ X be a constant. Then

$$
\mathbf{P}(S_n < r) \asymp \frac{e^{-Q_n(u)}}{\sqrt{1+u\,r}}, \quad n \to \infty,\tag{1.13}
$$

uniformly in $r \in (0, \mu \delta n)$ (*see* (1.5)), where $u = u_n(r)$ *is a positive number satisfying the conditions*

$$
m_n(u) \asymp r, \quad \frac{u(m_n(u) - r)}{\sqrt{u r}} = O(1), \quad n \to \infty.
$$
 (1.14)

Note that if ur is large enough, then the first condition in (1.14) follows from the second one.

2. Proofs.

Theorem 1 is verified in the same way as Theorem 2 in [8] (with notable simplifications). In this case, formula (4.15) from [2] is involved.

Let us prove Theorem 2. Set

$$
L(h) = \mathbf{E}e^{-hX}
$$
, $m(h) = -(\log L(h))'$, $\sigma^2(h) = (\log L(h))''$, $h \ge 0$.

For $h, u > 0$, we have

$$
\log L(u) - \log L(h) = -\int_{h}^{u} m(t) dt, \quad \log \frac{m(u)}{m(h)} = -\int_{h}^{u} \frac{\sigma^2(t)}{m(t)} dt.
$$
 (3.1)

769

From [8, Lemma 2], it follows that under the condition (**R**),

$$
c_1 \kappa(1/h) \le h \, m(h), \quad h^2 \, \sigma^2(h) \le c_2 \, \kappa(1/h) \tag{3.2}
$$

for all $h \geq h_0 > 0$, where h_0 is an arbitrary fixed number and the parameters $c_1, c_2 > 0$ do not depend on h. For $c = c_1/c_2$ and $u, h \ge h_0$, this and (3.1) imply that

$$
\frac{m(u)}{m(h)} = \left(\frac{u}{h}\right)^{-\theta}, \qquad c \le \theta = \theta(u, h, V) \le 1/c.
$$
\n(3.3)

By [4, Theorem 2 and (1.8)] for $r, \gamma, u > 0$,

$$
\Lambda_n(\gamma) e^{\gamma r} \ge \mathbf{P}(S_n < r) \ge \Lambda_n(u) \left(1 - m_n(u)/r\right). \tag{3.4}
$$

Let $K \geq 1$ be a parameter to be chosen later, and $u = K \gamma$. Taking into account (3.1) and the fact that the function $m(h)$ decreases, we have

$$
\log \frac{\Lambda_n(u)}{\Lambda_n(\gamma)} = \sum_{j=1}^n (\log L(\lambda_j u) - \log L(\lambda_j \gamma)) \ge -\sum_{j=1}^n \lambda_j (u - \gamma) m(\lambda_j \gamma).
$$

Using (3.1)–(3.3) and (1.5), under the assumption $\delta \gamma \ge h_0$ we obtain

$$
\lambda_j(u-\gamma) m(\lambda_j \gamma) < \frac{u m(\delta \gamma)}{\delta m(\gamma)} m(\gamma) \le \frac{K}{\delta} \left(\frac{1}{\delta}\right)^{1/c} \gamma m(\gamma) \le c_2 K \delta^{-(1+1/c)} \kappa(1/\gamma).
$$

Therefore for $\lambda = n\kappa(1/\gamma)$,

$$
\Lambda_n(u) \ge \Lambda_n(\gamma) e^{-Ak\lambda}, \quad A = c_2 \delta^{-(1+1/c)}.
$$
\n(3.5)

Similarly,

$$
m_n(u) = \sum_{j=1}^n \lambda_j m(\lambda_j u) \le c_2 \frac{\lambda}{\delta \gamma} \frac{m(\delta \gamma)}{m(\gamma)} \le A k^{-c} \lambda / \gamma.
$$
 (3.6)

From (3.4)–(3.6), it follows that if $\delta \gamma \ge h_0$, then

$$
\Lambda_n(\gamma) e^{\gamma r} \ge \mathbf{P}(S_n < r) \ge \Lambda_n(\gamma) e^{-A k \lambda} \left(1 - A k^{-c} \lambda/(\gamma r)\right) \\
\ge \Lambda_n(\gamma) \left(1 - A \left(k \lambda + k^{-c} \lambda/(\gamma r)\right)\right). \tag{3.7}
$$

Estimate (1.9) follows from (3.7) with $h_0 = \delta$, $k = (\gamma r)^{-1/(1+c)}$, and $\varepsilon = c/(1+c)$. Theorem 2 is proved.

The proofs of Theorem 3 and Corollary 4 are quite similar to the proofs of Theorem 3 and Remark 3 in $[5]$ (see also $[6]$).

The work is supported by the RFBR grant No. 16-01-00367.

Translated by the author.

REFERENCES

- 1. M. A. Lifshits, "On the lower tail probabilities of some random series," *Ann. Probab.*, **25**, 424–442 (1997).
- 2. L. V. Rozovsky, "On small deviation probabilities for positive random variables," *J. Math. Sci.*, **137**, No. 1, 4561–4566 (2006).
- 3. L. V. Rozovsky, "On small deviation probabilities for sums of independent positive random variables," *J. Math. Sci.*, **147**, No. 4, 6935–6945 (2007).
- 4. L. V. Rozovsky, "Remarks on a link between Laplace transform and distribution function of a nonnegative random variable," *Statist. Probab. Lett.*, **79**, 1501–1508 (2009).
- 5. L. V. Rozovsky, "Probabilities of small deviations of weighed s um of independent random variables with a common distribution that decreases at zero not faster than a power," *Zap. Nauch. Semin. POMI*, **431**, 178–185 (2014).
- 6. L. V. Rozovsky, "Small deviation probabilities of weighted sums under minimal moment assumptions," *Statist. Probab. Lett.*, **86**, 1–6 (2014).
- 7. L. V. Rozovsky, "Small deviation probabilities for sums of independent positive random variables with a distribution that slowly varies at zero," *J. Math. Sci.*, **204**, No. 1, 155–164 (2015).
- 8. L. V. Rozovsky, "Small deviation probabilities of weighted sums of independent positive random variables with a common distribution that deacreases at zero not faster then a power," *Teor. Veroyatn. Primen.*, **60**, 178–186 (2015).