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SMALL DEVIATION PROBABILITIES OF A SUM OF
INDEPENDENT POSITIVE RANDOM VARIABLES,
THE COMMON DISTRIBUTION OF WHICH
DECREASES AT ZERO NOT FASTER THAN
EXPONENTIAL FUNCTION

L. V. Rozovsky∗ UDC 519.2

We investigate small deviation probabilities of the cumulative sum of independent positive random
variables, the common distribution of which decreases at zero not faster than exponential function.
Bibliography: 8 titles.

1. Introduction and results. Let X denote a positive random variable with distribution
function V (x), and let {Xi}i≥1 be independent copies of X.

The purpose of the present paper is first of all to generalize results from [1], where small
deviation probabilities of the sum X1 + · · · + Xn as n → ∞ were studied in the case missing
in the literature; namely, when the function V (x) is slowly varying at zero. More exactly, it
was assumed in [1] that

ν(y) =
1
y

y∫

0

u dV (u) ∼ l(y), y → +0, (1.1)

where the function l(y) is slowly varying at zero. This implies that l(+0) = 0 and V (y) ∼
l̃(y) =

y∫
0

l(u)/u du, y → +0, and also the function l̃(y) is slowly varying at zero.

In what follows, assumption (1.1) is replaced by the following essentially weaker condition
(R) introduced in [2]:

there exist constants b ∈ (0, 1), c1 > b, c2 > 1, and ε > 0 such that for every r ≤ ε,

c1 ν(b r) ≤ ν(r) ≤ c2 ν(b r). (1.2)

It was also shown in [8] that (R) is preferable to the known condition (L) from [1]. Namely
(L) ⇐⇒ (R)

∣∣∣
c1>1

and, in addition, (R) allows the function V (r) to decrease at zero more

slowly than any power of r and, in particular, to satisfy (1.1).
To present the results, we need some additional notation.
Let {λj} be some positive numbers.

Set Sn =
n∑

j=1
λj Xj for n ≥ 1, L(h) = Ee−h X , for h ≥ 0, and

Λn(γ) =
n∏

j=1

L(γ λj), mn(γ) = − (ln Λn(γ))′ , σ2
n(γ) = (ln Λn(γ))′′ ,

ν̃(y) =

y∫

0

ν(u) du/u, κ(y) = ν(y)/ν̃(y), y > 0.

(1.3)
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Theorem 1. If the condition (R) is satisfied, then for all positive r, s, δ, and γ > δ/ min
1≤j≤n

λj ,

P(r − s < Sn ≤ r) = e−Qn(γ) 1 − e−γ s

τ
√

2π

(
e−β2/2 + θ

(
τ−1 +

( ln (1 + τ)
τ2

)1/α
(1 + (γs)−1)

))
,

where
Qn(γ) = − ln Λn(γ) − γ r, β = (r − mn(γ))/σn(γ), τ = γ σn(γ), (1.4)

α = ln c2/| ln b| (see (1.2)), and |θ| is bounded by a constant depending only on V and δ.

Theorem 1 is a generalization of a result from [3, Remark 2] (the condition (L) is replaced
by the condition (R)).

When formulating the subsequent results of this section, we assume that the condition (R)
holds and the weights {Λj} satisfy the condition

δ ≤ λj ≤ 1/δ, j ≥ 1, (1.5)

for some δ > 0, i.e., they are uniformly bounded away from zero and infinity (for example, are
equal to one).

Corollary 1. Let ε be an arbitrary positive constant. Then in the notation of Theorem 1,

P(r − s < Sn ≤ r) = e−Qn(γ) 1 − e−γ s

τ
√

2π

(
e−β2/2 + O

(
1/
√

λ + (| ln λ|/λ)1/α
(
1 + (γs)−1

)))
,

n → ∞
uniformly in γ > ε, r > 0, and s > 0, where λ = nκ(1/γ) (see (1.3)).

Under the condition (L), the parameter λ is of order n uniformly in γ > ε (see [1] or [3,
(4.4.b)]. Therefore, Corollary 1 is a generalization of the main result in [2] and also implies
statement (1) of Theorem 2 in [7].

Clearly, Corollary 1 is of main interest when the parameter γ is chosen in such a way that
as n tends to infinity, λ and β tend to infinity and zero, respectively. In particular, Corollary 1
implies the following assertion.

Corollary 2. If a sequence hn ≤ ∞ tends to infinity so that

n inf
1≤γ<γn

κ(1/γ) → ∞, (1.6)

then

P(Sn < r) =
Λn(γ) eγ r

τ
√

2π

(
1 + o (1)

)
, n → ∞, (1.7)

uniformly in r ∈ (n κ(1/γn)/γn, μ n λ̄n), where μ < EX is a constant, λ̄n = (λ1 + · · ·+ λn)/n,
and the function γ satisfies the equation

mn(γ) = r. (1.8)

Note that if the condition (L) is satisfied, then condition (1.6) is satisfied for γn = ∞. There-
fore, formula (1.7) is valid for all 0 < r ≤ μ n λ̄n. And if (L) is violated (say, condition (1.1)
holds and hence κ(+0) = 0), then condition (1.6) becomes nontrivial and asymptotics (1.7) is
no longer valid for r small enough. To confirm what has been said, we give some results.

Theorem 2. Let γ ≥ 1 ≥ γr > 0. Then

P(Sn < r) = Λn(γ)
(
1 + θ (γr + λ/(γr)1−ε)

)
, |θ| ≤ A, (1.9)

where ε ∈ (0, 1) and A are some constants not depending of n, γ, and r.
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Theorem 2 is a generalization and a refinement of statement (3) of Theorem 2 in [7].

Note that equality (1.9) is nontrivial only if λ(= nκ(1/γ)) → 0.

Corollary 3. If κ(+0) = 0 (see (1.3)), then

P(Sn < r) = Λn(γ)
(
1 + o (1)

)
, n → ∞, (1.10)

uniformly in r → +0 such that λ (or γr ) → 0 as n → ∞, where γ satisfies equation (1.8) or,
more generally, λ � γr.

We note that under conditions of Corollary 3, the denominator on the right-hand side of (1.6)
tends to infinity (see (2.4)), that is, for λ → ∞ and for λ → 0, the probability P(Sn < r) has
different asymptotic representations.

In conclusion, we give one more result which is valid under the condition (R) (and (3.5))
and can be useful if the condition λ → 0/∞ is violated.

Theorem 3. Let r ∈ (0, μ n λ̄n), where μ < EX is a constant. Then

− lnP(Sn < r) = Qn(γ) + 0.5 ln (1 + γ r) + θ, |θ| ≤ A, (1.11)

where γ satisfies equation (1.8), Qn(γ) and λ̄n are defined in (1.4) and Corollary 2, respectively,
and the parameter A does not depend on n and r.

We note (see (1.3)) that

0 < c <
Qn(u)

n | ln ν̃(1/u)| < 1/c < ∞, u > u0 > 0, (1.12)

and c is independent of n and u.

Corollary 4. Let μ < EX be a constant. Then

P(Sn < r) � e−Qn(u)

√
1 + u r

, n → ∞, (1.13)

uniformly in r ∈ (0, μ δ n) (see (1.5)), where u = un(r) is a positive number satisfying the
conditions

mn(u) � r,
u (mn(u) − r)√

u r
= O (1), n → ∞. (1.14)

Note that if u r is large enough, then the first condition in (1.14) follows from the second
one.

2. Proofs.

Theorem 1 is verified in the same way as Theorem 2 in [8] (with notable simplifications).
In this case, formula (4.15) from [2] is involved.

Let us prove Theorem 2. Set

L(h) = Ee−hX , m(h) = −(
log L(h)

)′
, σ2(h) =

(
log L(h)

)′′
, h ≥ 0.

For h, u > 0, we have

log L(u) − log L(h) = −
u∫

h

m(t) dt, log
m(u)
m(h)

= −
u∫

h

σ2(t)
m(t)

dt. (3.1)
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From [8, Lemma 2], it follows that under the condition (R),

c1 κ(1/h) ≤ hm(h), h2 σ2(h) ≤ c2 κ(1/h) (3.2)

for all h ≥ h0 > 0, where h0 is an arbitrary fixed number and the parameters c1, c2 > 0 do not
depend on h. For c = c1/c2 and u, h ≥ h0, this and (3.1) imply that

m(u)
m(h)

=
(u

h

)−θ
, c ≤ θ = θ(u, h, V ) ≤ 1/c. (3.3)

By [4, Theorem 2 and (1.8)] for r, γ, u > 0,

Λn(γ) eγ r ≥ P(Sn < r) ≥ Λn(u) (1 − mn(u)/r). (3.4)

Let K ≥ 1 be a parameter to be chosen later, and u = K γ. Taking into account (3.1) and the
fact that the function m(h) decreases, we have

log
Λn(u)
Λn(γ)

=
n∑

j=1

(log L(λju) − log L(λjγ)) ≥ −
n∑

j=1

λj(u − γ)m(λjγ).

Using (3.1)–(3.3) and (1.5), under the assumption δγ ≥ h0 we obtain

λj(u − γ)m(λjγ) <
um(δγ)
δm(γ)

m(γ) ≤ K

δ

(
1
δ

)1/c

γ m(γ) ≤ c2 K δ−(1+1/c) κ(1/γ).

Therefore for λ = nκ(1/γ),

Λn(u) ≥ Λn(γ) e−A k λ, A = c2 δ−(1+1/c). (3.5)

Similarly,

mn(u) =
n∑

j=1

λj m(λju) ≤ c2
λ

δγ

m(δγ)
m(γ)

≤ Ak−c λ/γ. (3.6)

From (3.4)–(3.6), it follows that if δγ ≥ h0, then

Λn(γ) eγ r ≥ P(Sn < r) ≥ Λn(γ) e−A k λ (1 − Ak−c λ/(γ r))

≥ Λn(γ)
(
1 − A (k λ + k−c λ/(γ r)

)
.

(3.7)

Estimate (1.9) follows from (3.7) with h0 = δ, k = (γ r)−1/(1+c), and ε = c/(1+ c). Theorem 2
is proved.

The proofs of Theorem 3 and Corollary 4 are quite similar to the proofs of Theorem 3 and
Remark 3 in [5] (see also [6]).

The work is supported by the RFBR grant No. 16-01-00367.

Translated by the author.
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