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Anscombe-type theorem and moderate deviations for trajectories
of a compound renewal process
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Abstract. An Anscombe-type theorem for the large deviations principle for trajectories of a random
process is proved. As a consequence, the moderate deviations principle for the compound renewal processes
is obtained.
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1. Introduction

The theorem by F. Anscombe [1] proved in 1952 is a convenient tool for the construction of various
limit theorems (central limit theorem, law of large numbers, law of the iterated logarithm; see [2–7]),
where the index, by which the limiting transition is carried out, is a sequence of random variables.

It is natural to expect that, for the large deviations principle (l.d.p.), the result analogous to the
Anscombe theorem would take place. Such theorem will be proved in Section 2 below. The convenience
of its application will be demonstrated by the example of the proof of the moderate deviations principle
(m.d.p.) for trajectories of a compound renewal process in Section 3.

We denote an arbitrary metric space (m.s.) by Xρ, the Borel σ-algebra of its subsets by BXρ , and
the complement, closure, and interior of the set B by B, [B], and (B), respectively.

Recall the necessary definitions (see, e.g., [8–15]).

Definition 1.1. A family of random processes sT satisfies l.d.p. in m.s. Xρ with a functional of
deviations (f.d.) I = I(f) : X → [0,∞] and the normalizing function (n.f.) ψ(T ) : lim

T→∞
ψ(T ) = ∞,

if, for any c ≥ 0, the set {f ∈ X : I(f) ≤ c} is a compact set in m.s. Xρ, and, for any set B ∈ BXρ ,
the following inequalities hold:

lim sup
T→∞

1

ψ(T )
lnP( sT ∈ B ) ≤ −I([B]),

lim inf
T→∞

1

ψ(T )
lnP( sT ∈ B ) ≥ −I((B)),

where I(B) = inf
y∈B

I(y) for B ∈ BXρ , I(∅) = ∞.

In what follows, the words “the family of random processes sT satisfies (I, ψ(T ),Xρ)-l.d.p.” means
that the family of random processes sT satisfies l.d.p. in m.s. Xρ with f.d. I = I(f) and n.f. ψ = ψ(T ).
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Definition 1.2. A family of random processes sT is called exponentially tight (e.t.) in m.s. Xρ with
n.f. ψ(T ), if, for any N > 0, there exists a compact set KN ⊆ X such that

lim sup
T→∞

1

ψ(T )
lnP( sT ∈ KN ) ≤ −N.

We use the following notations: Cd[0, c], d ∈ N is the space of d-dimensional functions with the
uniform metric ρ(f, g) = sup

t∈[0,c]
∥f(t)−g(t)∥, where ∥ ·∥ is the Euclidean norm, which are continuous on

the segment [0, c]; Dd[0, c] and Dd
S [0, c] are the spaces of d-dimensional functions, which are continuous

on the right and have limits on the left on the segment [0, c], with a uniform metric and the Skorokhod
metric, respectively; ACd

0[0, c] is a set of d-dimensional functions, which are absolutely continuous on
the segment [0, c] and start from zero. A scalar product in the space R2 is denoted by ⟨·, ·⟩.

The present work is written under the impression from the report by A. A. Borovkov “A general-
ization of the Anscombe theorem to random processes. Convergence of compound renewal processes”
(March 30, 2017, Institute of Mathematics of the SD of the RAS). In this report, A. A. Borovkov
proposed a version of the Anscombe theorem for random processes and, as a consequence, obtained
the principle of invariance for the compound random processes (see Remark 3.3 for more details).

The following part of the present work includes three sections. In Section 2, we propose a version
of the Anscombe theorem of large deviations of the trajectories of random processes; in Section 3,
we will establish m.d.p. for the compound renewal processes; Section 4 is devoted to some auxiliary
assertions.

2. Main result

Here, we will prove the Anscombe-type theorem of large deviations, which is the main result of the
present work.

In what follows, we consider that all random elements participating in the statements of propositions
are set on some probabilistic space (Ω,F,P). The expectation and variance relative to the measure P
are denoted by E and D, respectively.

Theorem 2.1. Let, for a fixed c > 0, the following conditions hold:

1) there exists ∆ > 0 such that the family of continuous random processes sT (t), t ≥ 0 is e.t. in
m.s. Cd[0, c+∆], d ≥ 1 with n.f. ψ(T );

2) stochastically continuous random process ηT (t) ∈ D[0, 1] is nonnegative, and, for any δ > 0,

lim sup
T→∞

1

ψ(T )
lnP

(
sup
t∈[0,1]

|ηT (t)− ct| > δ

)
= −∞.

Then, for any ε > 0,

lim sup
T→∞

1

ψ(T )
lnP

(
sup
t∈[0,1]

∥sT (ct)− sT (ηT (t))∥ > ε

)
= −∞.

Proof. By virtue of the fact that the family of processes sT (t) is e.t., for any N > 0, there exists a
compact set KN ⊆ Cd[0, c+∆] such that, for sufficiently large T,

P( sT ∈ KN ) ≤ exp {−Nψ(T )} . (2.1)
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By virtue of the Ascoli–Arzelá theorem, there exists δ ∈ [0,∆] such that, for any function f ∈ KN ,
the inequality

sup
0≤t,s≤1+∆/c

c|t−s|≤δ

∥f(ct)− f(cs)∥ < ε

2
(2.2)

holds. Denoting Aδ = {ω : sup
t∈[0,1]

|ηT (t)− ct| ≤ δ}, we have

P

(
sup
t∈[0,1]

∥sT (ct)− sT (ηT (t))∥ > ε

)
≤ P

(
sup
t∈[0,1]

∥sT (ct)− sT (ηT (t))∥ > ε,Aδ, sT ∈ KN

)
+ P(Aδ) +P( sT ∈ KN ) =: P1 +P2 +P3. (2.3)

Denote

Θ :=

{
θ ∈ D[0, 1] : sup

t∈[0,1]
|θ(t)| ≤ 1

}
.

Inequality (2.2) yields {
ω : sup

t∈[0,1]
∥sT (ct)− sT (ηT (t))∥ > ε,Aδ, sT ∈ KN

}

=

{
ω : sup

t∈[0,1]

∥∥∥∥sT (ct)− sT

(
ct+ δ

(
ηT (t)− ct

δ

))∥∥∥∥ > ε,Aδ, sT ∈ KN

}

⊆

ω : sup
t∈[0,1]
θ∈Θ

∥sT (ct)− sT (ct+ δθ(t))∥ > ε, sT ∈ KN

 = ∅.

Here, we used the fact that the trajectories of the random process ηT (t)−ct
δ on the event Aδ belong to

the set of functions Θ.
Hence, P1 = 0.
Using inequalities (2.1) and (2.3) and condition 2) for any ε > 0, we get

lim sup
T→∞

1

ψ(T )
lnP

(
sup
t∈[0,1]

∥sT (ct)− sT (ηT (t))∥ > ε

)
= lim sup

T→∞

1

ψ(T )
ln(P2 +P3) ≤ lim sup

T→∞

1

ψ(T )
ln(2max{P2,P3}) ≤ −N.

The limiting transition N → ∞ completes the proof of the theorem.

Remark 2.2. Lemma 4.9 in [15] contains a similar result, but it was required there that the families
of processes sT (t) and ηT (t) be independent, the constant c = 1, and the n.f. take the form ψ(T ) = T .

We will be interested in l.d.p. in the space Dd[0, c] with a uniform metric. But, due to the
inseparability, the Borel σ-algebra constructed by sets that are open relative to this metric will contain
sets nonmeasurable for the probabilistic measure P, see [16, §18]. Therefore, in what follows, we will
consider the measure P on sets from the σ-algebra constructed by open cylindrical subsets of the space
Dd[0, c].
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Definition 2.3. The families of random processes vT (t) and sT (t), whose trajectories belong to m.s.

Xρ, are equivalent from the viewpoint of l.d.p. (vT
L.D.∼ sT ), if, for any ε > 0,

lim sup
T→∞

1

ψ(T )
lnP (ρ(vT , sT ) > ε) = −∞.

It is easy to prove that if vT
L.D.∼ sT , m.s. Xρ is complete, and one of the families of processes

satisfies l.d.p., then the second family satisfies the same l.d.p. (see, e.g., [8, Theorem 4.2.13]).

Definition 2.4. The family of stochastically continuous random processes vT (t) satisfies C–
(I, ψ(T ),Dd[0, c])-l.d.p., if there exists a family of continuous random processes sT (t) that is equivalent
to it from the viewpoint of l.d.p. and satisfies (I, ψ(T ),Cd[0, c])-l.d.p.

Remark 2.5. If the family of processes vT (t) satisfies C–(I, ψ(T ),Dd[0, c])-l.d.p. and if, in this case,
P(vT ∈ Cd[0, c]) = 1, then it satisfies (I, ψ(T ),Cd[0, c])-l.d.p.

Corollary 2.6. Let the conditions of Theorem 2.1 be satisfied. Then

sT (ηT (t))
L.D.∼ sT (ct).

Hence, if the family of processes sT (ct) satisfies (I, ψ(T ),Cd[0, 1])-l.d.p., then the family of processes
sT (ηT (t)) will satisfy C–(I, ψ(T ),Dd[0, 1])-l.d.p.

Remark 2.7. It is obvious that C–(I, ψ(T ),Dd[0, c])-l.d.p. yields (I, ψ(T ),Dd
S [0, c])-l.d.p.

We now give a simple example of applications of Theorem 2.1.
Let a Wiener process w(t) and a Poisson process ν(t) with parameter Eν(t) = ct be given on the

probabilistic space. Consider the family of random processes

wT (t) =
1

x(T )
w(tT ),

where the function x(T ) satisfies the conditions

lim
T→∞

x(T )√
T

= ∞, lim
T→∞

x(T )

T
= 0.

We are interested in m.d.p. for the family of processes

wT,ν(t) :=
1

x(T )
w(ν(tT )).

Theorem 5.3.2 [18] and Lemma 4.1 (i) (see Section 4) imply that, for any fixed c > 0 and ∆ ≥ 0,

the family of random processes wT (t) satisfies
(
I, x

2(T )
T ,C[0, c+∆]

)
-l.d.p., where

I(f) =

{
1
2

∫ c+∆
0 (f ′(t))2dt, if f ∈ AC0[0, c+∆],

∞, otherwise.

Therefore, the Pukhalskii theorem [19] implies that the family of processes wT (t) is e.t. in m.s.
C[0, c+∆]. Hence, condition 1) of Theorem 2.1 is satisfied.

Let us verify condition 2) of Theorem 2.1. Consider the random process ηT (t) = ν(tT )
T . Denote

ν̃(t) = ν(t)− ct.
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Using the Doob inequality (see, e.g., [17, Chapt. 2, Theorem 1.7]), for any r > 0, we have

P

(
sup
t∈[0,1]

|ηT (tT )− ct| > δ

)
≤ P

(
sup
t∈[0,1]

rν̃(tT ) > rδT

)

+P

(
sup
t∈[0,1]

−rν̃(tT ) > rδT

)
≤ Eerν̃(tT )

erδT
+

Ee−rν̃(tT )

erδT

= exp{(er − 1− r)cT − rδT}+ exp{(e−r − 1 + r)cT − rδT}.

Let us estimate each term on the right-hand side. We note that,for r > 0,

er − 1− r ≤ r2er.

Therefore, by choosing r = x(T )
T , we have

(er − 1− r)cT − rδT ≤ x(T )

[
cx(T )

T
e

x(T )
T − δ

]
.

For sufficiently large T, the first term in square brackets is less than δ
2 . Therefore, for sufficiently large

T, we get

exp{(er − 1− r)cT − rδT} ≤ exp

{
−δx(T )

2

}
.

The analogous upper bound is true also for the term exp{(e−r−1+r)cT −rδT}. Hence, for sufficiently
large T, we have

P

(
sup
t∈[0,1]

|ηT (tT )− ct| > δ

)
≤ 2 exp

{
−δx(T )

2

}
.

This yields

lim sup
T→∞

T

x2(T )
lnP

(
sup
t∈[0,1]

|ηT (t)− ct| > δ

)
= −∞.

Hence, condition 2) of Theorem 2.1 is satisfied.
Thus, all conditions of Theorem 2.1 are satisfied. Therefore,

wT (ηT (t)) = wT,ν(t)
L.D.∼ wT (ct)

in m.s. D[0, 1].
Since the family of random processes wT (t) satisfies

(
I, x

2(T )
T ,C[0, c]

)
-l.d.p., Lemma 4.1 (ii) (see

Section 4) implies that the family of processes wT (ct) satisfies
(
Ĩ , x

2(T )
T ,C[0, 1]

)
-l.d.p., where

Ĩ(f) =

{
1
2

∫ 1
0 (f

′(t))2dt, if f ∈ AC0[0, 1],
∞, otherwise.

Thus, Corollary 2.6 implies that the family of processes wT,ν(t) satisfies C–
(
Ĩ , x

2(T )
T ,D[0, 1]

)
-l.d.p.

We note that the independence of the processes w(t) and ν(t) was required nowhere.
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3. The moderate deviations principle for trajectories of compound
renewal processes

Let a sequence of independent identically distributed random vectors ξ = (τ, ζ), ξ2 = (τ2, ζ2), ξ3 =
(τ3, ζ3), . . . , where τ > 0, and a random vector ξ1 = (τ1, ζ1), τ1 ≥ 0, which is independent of this
sequence and has, generally speaking, a distribution different from that for ξ = (τ, ζ), be given.

We set T0 = Z0 = 0 and denote

Tn :=

n∑
j=1

τj , Zn :=

n∑
j=1

ζj , Sn :=

n∑
j=1

ξj = (Tn, Zn) for n ≥ 1.

Let, for t > 0,

η(t) := min{k ≥ 0 : Tk ≥ t}, ν(t) := max{k ≥ 0 : Tk < t}. (3.1)

It is clear that
ν(t) = η(t)− 1. (3.2)

Compound renewal process (c.r.p.) Z(t); t ≥ 0, is defined by the equalities

Z(t) := Zν(t) for t > 0, Z(0) = 0. (3.3)

In addition to c.r.p. Z(t), we consider also the process

Y (t) := Zη(t) = Z(t) + ζη(t) for t > 0, Y (0) = 0, Y (+0) = ζ1.

We call it also c.r.p.
Agreement 1. Everywhere, unless otherwise stipulated, we assume that the Cramer condition

holds in the form
[C0]. Eev|ξ| <∞, Eev|ξ1| <∞ for some v > 0.
In addition, we assume that a random vector ξ = (τ, ζ) is nondegenerate, i.e., for any λ ∈ R2,

|λ| ̸= 0, and c ∈ R, the inequality P(⟨λ, ξ⟩ = c) < 1 holds. In order to avoid repetitions, these two
conditions will not be present in the statements of the main assertions.

If the distribution of a random vector ξ1 coincides with the distribution of ξ, we call this case
homogeneous. If the vectors ξ1 and ξ have different distributions, we call this case inhomogeneous.

The standard commonly accepted model of c.r.p. assumes that the time of the appearance of the
first jump τ1 and its magnitude ζ1 have a common distribution which is different, generally speaking,
from the common distribution of (τ, ζ) (see, e.g., [18]). This case is realized, for example, for c.r.p.
with stationary increments.

For t ≥ 0, we denote
Z1(t) := Z(t)− at, Y1(t) := Y (t)− at,

Z2(t) := Z(t)− aζν(t), Y2(t) := Y (t)− aζη(t),

Z3(t) := aζ

(
ν(t)− 1

aτ
t

)
, Y3(t) := aζ

(
η(t)− 1

aτ
t

)
,

where a :=
aζ
aτ
, aζ := Eζ, aτ := Eτ .

It is easy to see that

Z2(t) = Z1(t)− Z3(t), Y2(t) = Y1(t)− Y3(t), t ≥ 0. (3.4)
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Fix a function x = x(T ) such that

lim
T→∞

x(T )√
T

= ∞, lim
T→∞

x(T )

T
= 0. (3.5)

In what follows, we will drop the argument T of the function x(T ), if this is no hamper the statement.
The main object under study is two processes

zT = zT (t) = (z1,T (t), z3,T (t)) :=

(
1

x
Z1(tT ),

1

x
Z3(tT )

)
, 0 ≤ t ≤ 1;

yT = yT (t) = (y1,T (t), y3,T (t)) :=

(
1

x
Y1(tT ),

1

x
Y3(tT )

)
, 0 ≤ t ≤ 1.

These processes lie in the space D2[0, 1], where we will use the uniform metric ρ = ρ(f, g).
For α = (α1, α2) ∈ R2, we consider the function of deviations

Λ(α) :=
1

2
αAαT =

1

2

2∑
i,j=1

Aijαiαj , (3.6)

where A = ∥Aij∥ is the matrix reciprocal to the covariance matrix B = ∥Eθiθj∥ of the random vector
θ = (θ1, θ2) := (ζ − aτ, aζ − aτ).

For any function f ∈ D2[0, 1], we set

I(f) =

{
aτ
∫ 1
0 Λ(f ′(t))dt, if f ∈ AC2

0[0, 1],
∞, otherwise.

Theorem 3.1. (P.m.d. for c.r.p.) Each of the processes

zT = zT (t) = (z1,T (t), z3,T (t)), yT = yT (t) = (y1,T (t), y3,T (t))

satisfies C–(I, x2

T ,D
2[0, 1])-l.d.p.

Denote

z2,T (t) :=
1

x
Z2(tT ), y2,T (t) :=

1

x
Y2(tT ).

We now define three functionals of deviations I1(f), I2(f), and I3(f), f ∈ D[0, 1], by setting

Ii(f) :=
aτ
2σ2i

I0(f), I0(f) :=

{ ∫ 1
0 (f

′(t))2dt, if f ∈ AC0[0, 1],
∞, otherwise,

where σ21 = D(ζ − aτ), σ22 = Dζ, and σ23 = a2Dτ .
Since zi,T (t) = β

(i)
1 z1,T (t)+ β

(i)
2 z3,T (t), where β

(1)
1 = 1, β(1)2 = 0; β(2)1 = 1, β(2)2 = −1; β(3)1 = 0, and

β
(3)
2 = 1, we use Lemma 4.2 (see Section 4) and Theorem 3.1 and obtain the following proposition.

Corollary 3.2. Each of the processes zi,T (t), yi,T (t) satisfies C–(Ii, x
2

T ,D[0, 1])-l.d.p., i = 1, 2, 3.
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Remark 3.3. As was mentioned in Introduction, the starting point of the present work was the report
by A. A. Borovkov, where he established, in particular, the principle of invariance for the processes
Z1(t) and Y1(t) under the minimum condition E|ξ|2 < ∞. In other words, the weak convergence of
the processes

Z1(tT )

σ1
√
T
,

Y1(tT )

σ1
√
T
; t ∈ [0, 1]

to a Wiener process was proved. Under the condition [C0], Corollary 3.2 extends, thus, the principle
of invariance (in the logarithmic form) to the domain of moderate deviations defined by a function
x(T ) of the form (3.5).

The proof of Theorem 3.1. Will be made for the first process

zT = zT (t) = (z1,T (t), z3,T (t)), 0 ≤ t ≤ 1.

For the second process

yT = yT (t) = (y1,T (t), y3,T (t)), 0 ≤ t ≤ 1,

the proof is analogous.

We need the following notations. By Z̃(t), we denote a continuous random broken line (c.r.b.l.)
constructed by the nodal points

(Tk, (Zk − aTk, aζk − aTk)), k = 0, 1, 2, · · · .

By S̃(t), we denote c.r.b.l. constructed by the nodal points

(k, (Zk − aTk, aζk − aTk)), k = 0, 1, 2, · · · .

By ν̃(t), we denote c.r.b.l. constructed by the nodal points

(Tk, k), k = 0, 1, 2, · · · .

Then it is easy to see that the following formula is valid:

Z̃(t) = S̃(ν̃(t)), t ≥ 0. (3.7)

Denote

z̃T (t) :=
1

x
Z̃(tT ), 0 ≤ t ≤ 1;

s̃T (t) :=
1

x
S̃(tT ), 0 ≤ t <∞;

ν̃T (t) :=
1

T
ν̃(tT ), 0 ≤ t <∞.

Then, by virtue of (3.7), we have

z̃T (t) = s̃T (ν̃T (t)), 0 ≤ t ≤ 1. (3.8)

In order to apply Theorem 2.1, we verify whether the conditions of this theorem are satisfied.
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Lemma 3.4.
(i) For any c > 0, the family of random processes s̃T = s̃T (t); 0 ≤ t ≤ c, satisfies (Ic,

x2

T ,C
2[0, c])-l.d.p.,

where Ic is defined as

Ic :=

{ ∫ c
0 Λ(f ′(t))dt, if f ∈ AC2

0[0, c],
∞, otherwise.

(ii) For any c > 0, the family of random processes s̃T = s̃T (t); 0 ≤ t ≤ c is e.t. in m.s. C2[0, c] with

n.f. x2

T .
(iii) In the space C[0, 1], the relation

ν̃T
L.D.∼ 1

aτ
h,

where the function h(t) = t, is valid.
(iv) In the space D2[0, 1], the relation

z̃T
L.D.∼ zT

holds.

Lemma 3.4 will be prove below. Now, we return to the proof of Theorem 3.1. By virtue of assertions
(i)− (iii) of Lemma 3.4, all conditions of Theorem 2.1 are satisfied. Therefore, this theorem, Lemma

4.1 (see Section 4), and Corollary 2.6 yield: the family of processes z̃T satisfies
(
I, x

2

T ,C
2[0, 1]

)
-l.d.p.

Applying assertion (iv) of Lemma 3.4 and using Definition 2.4, we get the assertion of Theorem 3.1.

It remains to carry out

Proof of Lemma 3.1. (i) − (ii). Consider firstly the case of homogeneity where the distributions of
random vectors ξ1 and ξ coincide. Assertions (i)− (ii) of Lemma 3.1 follow from Theorems 5.2.1 and
5.2.2 [18], and Lemmas 4.1 and 4.3 (see Section 4).

Let the distributions of random vectors ξ1 and ξ are different. Then we may consider that the
independent random vectors

ξ∗1 = (τ∗1 , ζ
∗
1 ), ξ1 = (τ1, ζ1), ξ2 = (τ2, ζ2), · · · ,

are defined on the probabilistic space. In this case, let the vectors ξ1, ξ2, · · · have the common distri-
bution different from the distribution of the vector ξ∗1 . Then the sequence

ξ1 = (τ1, ζ1), ξ2 = (τ2, ζ2), · · ·

corresponds to the homogeneous case. By this sequence, we construct c.r.b.l.

s̃T = s̃T (t); 0 ≤ t ≤ c;

the sequence
ξ∗1 = (τ∗1 , ζ

∗
1 ), ξ2 = (τ2, ζ2), · · ·

corresponds to the inhomogeneous case. By this sequence, we construct c.r.b.l.

s̃
∗
T = s̃

∗
T (t); 0 ≤ t ≤ c.

It is easy to see that, in this case,

ρ(s̃T , s̃
∗
T ) = sup

0≤t≤c
|̃sT (t)− s̃

∗
T (t)| ≤

1

x
(|ζ1 − ζ∗1 |+ |a|(|τ1 − τ∗1 |)) ≤

1

x
(|ζ1|+ |ζ∗1 |+ |a|(τ1 + τ∗1 )).
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From whence, by virtue of condition [C0], we obtain easily the relation s̃T
L.D.∼ s̃

∗
T . Thus, we have

proved assertions (i) and (ii) in the general case.
(iii). We now prove assertion (iii) firstly in the homogeneous case. It is easy to see that {ν(T ) <

N} = {TN ≥ T}. Therefore, {ν(T ) ≥ N} = {TN < T}. For N = [cT ] and aτN > T by virtue of the
Chebyshev exponential inequality, we have

P(ν(T ) ≥ [cT ]) = P(TN < T ) ≤ e−NΛτ (
T
N
) = e−T N

T
Λτ (

T
N
), (3.9)

where
Λτ (α) := sup

λ
{λα− lnEeλτ}

is a function of deviations of the random variable τ . Since the function of deviations Λτ (α) decreases
on the interval (0, aτ ), we have, for T

N ≤ aτ
2 ,

Λτ

(
T

N

)
≥ Λτ

(aτ
2

)
=: δ,

N

T
Λτ

(
T

N

)
≥ 2

aτ
Λτ

(
T

N

)
≥ 2

aτ
δ =: γ1 > 0.

Hence, for c = 3
aτ

for all sufficiently large T by virtue of (3.9), we have

P(ν(T ) ≥ [cT ]) ≤ e−Tγ1 . (3.10)

On the event {ν(T ) ≤ [cT ]}, we now estimate the quantity ρ
(
ν̃T ,

1
aτ
h
)
.

Since ν(Tk + 0) = k, we have ν̃(Tk) = k and, hence,

ρ

(
ν̃T ,

1

aτ
h

)
= max

0≤t≤1

∣∣∣∣ 1T ν̃(tT )− 1

aτ
t

∣∣∣∣ = 1

T
max

0≤u≤T

∣∣∣∣ν̃(u)− 1

aτ
u

∣∣∣∣ ≤ 1

T
max

1≤k≤[cT ]+1

∣∣∣∣k − 1

aτ
Tk

∣∣∣∣ .
Therefore,

P

(
ρ

(
ν̃T ,

1

aτ
h

)
≥ δ, ν(T ) ≤ [cT ]

)
≤ ([cT ] + 1) max

1≤k≤[cT ]+1
P

(∣∣∣∣k − 1

aτ
Tk

∣∣∣∣ ≥ Tδ

)
.

For 1 ≤ k ≤ [cT ] + 1 with the help of the Chebyshev exponential inequality, we now estimate the
probability

Pk := P

(∣∣∣∣k − 1

aτ
Tk

∣∣∣∣ ≥ Tδ

)
= P(Tk ≥ kaτ + Tδaτ ) +P(Tk ≤ kaτ − Tδaτ ).

We have
Pk ≤ e−kΛτ (aτ+

1
k
Tδaτ ) + e−kΛτ (aτ− 1

k
Tδaτ ).

We note that, for |α| ≥ δaτ
c+1 by virtue of condition [C0] for some r = rδ > 0, the relation Λτ (aτ +α) ≥

r|α| holds. Therefore,

kΛτ

(
aτ ±

1

k
Tδaτ

)
≥ kr

1

k
Tδaτ = Trδaτ .

We have got the estimate
Pk ≤ 2e−Tγ2 , γ2 := rδaτ ,
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which is uniform in k in the limits 1 ≤ k ≤ [cT ] + 1. From whence, we get

P

(
ρ

(
ν̃T ,

1

aτ
h

)
≥ δ, ν(T ) ≤ [cT ]

)
≤ 2(cT + 1)e−Tγ2 . (3.11)

Estimates (3.10) and (3.11) yield assertion (iii).
The proof of (iii) in the inhomogeneous case is easily reduced to the proof in the homogeneous

case. For this purpose, formula (3.9) should be replaced by

P(ν(T ) ≥ [cT ] + 1) = P(TN+1 < T ) ≤ P(τ2 + . . . τn+1+ < T ) ≤ e−NΛτ (
T
N
) = e−T N

T
Λτ (

T
N
),

and then we should repeat the above proof. In this case, we get inequality (3.10) in the inhomogeneous
case as well.

We now prove (iv) at once in the general (inhomogeneous) case. We have

ρT := ρ(z̃T , zT ) = sup
0≤t≤1

|z̃T (t)− zT (t)| =
1

x
sup

0≤u≤T

∣∣∣Z̃(u)− Z(u)
∣∣∣ .

Since the processes Z̃(u) and Z(u) coincide for u = Tk, k = 0, 1, · · · , we have, on the event {ν(T ) ≤
[cT ]},

ρT ≤ 1

x
max

1≤k≤[cT ]+1
Xk,

where Xk :=
√

(ζk − aτk)2 + (aζ − aτk)2. Therefore,

P (ρT > δ, ν(T ) ≤ [cT ]) ≤ ([cT ] + 1)max{P(X1 ≥ xδ),P(X2 ≥ xδ)}.

The random variables X1 and X2 satisfy condition [C0]. Therefore, for some M <∞ and r2 > 0,
the functions of deviations that correspond to X1 and X2 satisfy, for all α > 0, the inequalities

ΛX1(α) ≥ −M + r2α, ΛX2(α) ≥ −M + r2α.

Taking into account that, for all sufficiently large T, the relation x ≥
√
T is satisfied, we get

(cT + 1)e−xγ3 = o(1) and

P (ρT > δ, ν(T ) ≤ [cT ]) ≤ eM−xγ3 , γ3 :=
1

2
r2δ. (3.12)

Estimates (3.10) and (3.12) yield assertion (iv) of the lemma.

4. Auxiliary results

We now prove several auxiliary lemmas.

Lemma 4.1. (i) Let, for any function x satisfying condition (3.5), the family of continuous pro-

cesses sT (t) := 1
xS(tT ) satisfy

(
I, x

2

T ,C
d[0, 1]

)
-l.d.p. Then, for any c > 0, the family satisfies also(

Ĩ , x
2

T ,C
d[0, c]

)
-l.d.p., where Ĩ(f) = I(g) for g(t) = 1√

c
f(tc).

(ii) Let, for any function x satisfying condition (3.5), the family of continuous random pro-

cesses sT (t) := 1
xS(tT ) satisfy

(
I, x

2

T ,C
d[0, c]

)
-l.d.p. Then the family of processes sT (ct) satisfies(

Ĩ , x
2

T ,C
d[0, 1]

)
-l.d.p., where Ĩ(f) = I(g) for g(t) = f(t/c).
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Proof. We now prove assertion (i). Relation (3.5) implies that the family scr(t) := 1√
cx(r/c)

S(tr)

satisfies
(
I, x

2(r/c)
r/c ,Cd[0, 1]

)
-l.d.p. Then, changing the variable T = r

c , we get that the family of

random processes scTc(t) :=
1√

cx(T )
S(tT c) satisfies

(
I, x

2(T )
T ,Cd[0, 1]

)
-l.d.p.

Consider the continuous operator F that acts from Cd[0, 1] into Cd[0, c] and maps a function f(t)
into

√
cf(t/c). It is obvious that FscTc(·) = sT (·). Therefore (see, e.g., Theorem 3.1 in [14]), we get

that the family of processes sT (t) satisfies
(
Ĩ , x

2(T )
T ,Cd[0, c]

)
-l.d.p., where Ĩ(f) = I(g), g(t) = 1√

c
f(tc).

Assertion (ii) is proved analogously.

Lemma 4.2. The family of processes β1z1,T (t) + β2z3,T (t), where |β1| + |β2| > 0, satisfies C–(
Î , x

2

T ,D[0, 1]
)
-l.d.p., where

Î(f) :=

{
aτ

2D(β1θ1+β2θ2)

∫ 1
0 (f

′(t))2dt, if f ∈ AC0[0, 1],

∞, otherwise.

Proof. For the vector-function g = (g1, g2), the operator F(g) := β1g1 + β2g2 acting from D2[0, 1] into
D[0, 1] is continuous. Therefore, using the “contraction principle” (see, e.g., Theorem 3.1 in [14]), we
get that the family of processes β1z1,T (t) + β2z3,T (t) satisfies l.d.p. with the functional of deviations

Î(f) = inf
g: β1g1+β2g2=f

I(g).

We now show that the functional Î(f) has the form claimed above.
If f ̸∈ AC0[0, 1], then its preimage contains no functions from the set AC2

0[0, 1]. Hence,
inf

g: β1g1+β2g2=f
I(g) = ∞.

Let f ∈ AC0[0, 1] and β1 ̸= 0 (case β2 ̸= 0 is considered quite analogously). Then

inf
g: β1g1+β2g2=f

I(g) = inf
g: β1g1+β2g2=f

aτ
2∆B

∫ 1

0
(B22(g

′
1(t))

2 − 2B12g
′
1(t)g

′
2(t) +B11(g

′
2(t))

2)dt

= inf
g2

aτ
2∆B

∫ 1

0

(
B22

β21
(f ′(t)− β2g

′
2(t))

2

− 2B12

β1
(f ′(t)− β2g

′
2(t))g

′
2(t) +B11(g

′
2(t))

2

)
dt

= : inf
g2

aτ
2∆B

∫ 1

0
u(f ′(t), g′2(t))dt.

where ∆B is the determinant of the covariance matrix B = ∥Eθiθj∥, B11 = Dθ1, B12 = Eθ1θ2,
B22 = Dθ2.

Separating the full square, we obtain

u(f ′(t), g′2(t)) =
D(β1θ1 + β2θ2)

β21

(
g′2(t)− f ′(t)

B12β1 +B22β2
D(β1θ1 + β2θ2)

)2

+ (f ′(t))2
∆B

D(β1θ1 + β2θ2)
.

Hence, the infimum is attained on the function

g2(t) = f(t)
B12β1 +B22β2
D(β1θ1 + β2θ2)

.
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Hence,

inf
g2

aτ
2∆B

∫ 1

0
u(f ′(t), g′2(t))dt =

aτ
2D(β1θ1 + β2θ2)

∫ 1

0
(f ′(t))2dt.

In what follows, [T ] stands for the integer part of a number T .

Lemma 4.3. Let, for any function x satisfying condition (3.5), the sequence of continuous ran-

dom processes s[T ](t) :=
1

x([T ])S(t[T ]) satisfy
(
I, x

2([T ])
[T ] ,Cd[0, 1]

)
-l.d.p. Then the family sT (t) satisfies(

I, x
2(T )
T ,Cd[0, 1]

)
-l.d.p.

Proof. Lemma 4.1, (i), and the Pukhalskii theorem [19] imply that the sequence s[T ](t) is exponentially

tight in m.s. Cd[0, 1 + ∆] with the normalizing function x2([T ])
[T ] . Therefore, choosing

ηT (t) :=
tT

[T ]
, 0 ≤ t ≤ 1,

we fall into the conditions of Theorem 2.1. Hence, by virtue of the equality lim
T→∞

T
[T ] = 1, Corollary 2.6,

and Remark 2.5, we get: the family

1

x([T ])
S(tT ), 0 ≤ t ≤ 1,

satisfies
(
I, x

2([T ])
T ,Cd[0, 1]

)
-l.d.p.

The subsequent proof will be performed by contradiction. Let the family sT does not satisfy(
I, x

2(T )
T ,Cd[0, 1]

)
-l.d.p. Then there exist δ > 0, N < ∞, a set B ∈ BCd[0,1], and a subsequence Rk,

lim
k→∞

Rk = ∞ such that, for all k, at least one of three following conditions is satisfied:

lim sup
k→∞

Rk

x2(Rk)
lnP( sRk

∈ B ) ≥ −I([B]) + δ, I([B]) <∞;

lim sup
k→∞

Rk

x2(Rk)
lnP( sRk

∈ B ) ≥ −N, I([B]) = ∞;

lim inf
k→∞

Rk

x2(Rk)
lnP( sRk

∈ B ) ≤ −I((B))− δ.

For definiteness, let the first condition be satisfied (for the rest conditions, the proof is quite analogous).
Obviously, we may consider that Rk −Rk−1 > 1.
Define x̃(T ) as follows:

x̃(T ) =

{
x(Rk), if T ∈ [[Rk], [Rk] + 1),
akT + bk, if T ∈ [[Rk] + 1, [Rk+1]),

where ak and bk are selected so that

ak([Rk] + 1) + bk = x(Rk), ak[Rk+1] + bk = x(Rk+1).

It is obvious that the function x̃(T ) satisfies condition (3.5).
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Then, by virtue of the fact that the family of random processes sT,x̃ := 1
x̃([T ])S(tT ) satisfies(

I, x̃
2([T ])
T ,Cd[0, 1]

)
-l.d.p., we have

−I([B]) ≥ lim sup
k→∞

Rk

x̃2([Rk])
lnP( sRk,x̃ ∈ B ) = lim sup

k→∞

Rk

x2(Rk)
lnP( sRk

∈ B ) ≥ −I([B]) + δ.

The obtained contradiction completes the proof.
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