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PERTURBATION BOUNDS FOR MARKOV CHAINS
WITH GENERAL STATE SPACE

B. Rabtal! and D. Aissani!

The aim of this paper is to investigate the stability of Markov chains with general state space. We
present new conditions for the strong stability of Markov chains after a small perturbation of their
transition kernels. Also, we obtain perturbation bounds with respect to different quantities.

Introduction

This paper considers the stability problem of Markov chains where the term “stability” is used to
designate robustness, continuity, insensitivity to perturbations, etc. The problem of stability consists
of two essential questions: first, the qualitative question, i.e., whether the system is stable or not,
namely, whether a small perturbation of its parameters (inputs) generates only a small deviation in its
characteristics (outputs). If we can answer positively to the first question, then we consider the second,
quantitative, question, i.e., to provide a bound to the deviation of outputs due to the perturbation in
the inputs. This bound is, in general, an upper bound of the exact deviation, and we refer to it as
perturbation bound, approximation error, or simply, error.

For finite Markov chain, the problem of stability has been considered by many authors since Schwe-
itzer’s paper [22]. Meyer singly and with co-authors used the group inverse notion [4] to derive several
bounds (see, e.g. [17]). The coefficient of ergodicity has been used by Seneta [23,24]. Those authors
used linear algebra and matrix analysis arguments, and their results are given in terms of the norm
Il - |l1. Also, several results have been obtained on the absolute and relative deviation of the individual
stationary probabilities (see for example [5] where several bounds are collected and compared). In [19]
it is shown that a finite irreducible Markov chain is strongly stable (with respect to the norm | - [|)
and that most perturbation bounds are also valid for an infinite irreducible Markov chain whenever it
is strongly stable.

For a general state space, the problem of stability of Markov chains was first studied by Rossberg [21]
and the first stability method was elaborated by Kalashnikov [8]. Kalashnikov’s inspiration for this
method came from Laypunov’s direct method for differential equations and he called it “test functions
method.” Stoyan [25,26] proposed a different approach based on the weak convergence theory and
attempted a comparison with the test functions method. The method elaborated by Zolotarev [27]
uses “probability metrics” arguments (a chapter is devoted to this method in [20]) while the method of
Borovkov [3] uses renewal theory arguments. The strong stability method [1] makes use of the operator
theory and provides results for Markov chains in a general state space with respect to a general class
of norms. Kartashov has given many qualitative and quantitative results in [10,11] based on the latter
method.

In this paper, we study the stability of Markov chains with a general state space and with respect to
a general class of norms. We obtain conditions for the strong stability and derive perturbation bounds.

The paper is organized as follows: in Section 1 we introduce notations. In Section 2 we recall
basic definitions and results concerning the strong stability criteria. The main results of this paper are
presented in Section 3. Conditions for the stability of Markov chains and quantitative estimates are
obtained.
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1. Preliminaries and notations

Let X = (X¢)i>0 be a homogeneous Markov chain with values in a measurable space (E,£), where
the g-algebra £ is countably generated. Assume that the chain X is given by a regular transition kernel
P(z,A), x € E, A € £ and admits a unique stationary measure 7.

Denote by m& (mE™) the space of finite (nonnegative) measures over £, and f€ (fE™1) the space of
bounded (nonnegative) measurable functions over E.

We associate to every transition kernel P(x, A) the linear mappings Lp : m& — m& and L} : f€ —
— f&€ whose values for 4 € m& and f € f&€ are respectively defined as

pP(A) = Lr(u)(A)= [ p(do)Pla,4), VA€,
E
Pf@) = Lplf)e) = [ Pladpf(), Vo€ .
E
and to every function f € f€ we associate the linear mapping f : m& — R such that
pf = /u(dﬂc)f(w),
E

provided that these integrals are well defined. The product of two transition kernels P and @ is the
kernel defined as

PQ(xz,A) = /P(a:,dy)Q(y,A) forzre E, Acé&.
E

For p € m€ and f € f€ the symbol f o u stands for the direct product:

(fo )@, A) = f(x)u(A), = € E, A€ €.

Consider in mé& the Banach space M = {u € (m€) : ||p]| < oo} with a norm || - || compatible with the
structural order in mé&, i.e.,

lpall < Ml + pall - for  pa, o € M, (1)

it <l — piall for  pus, 2 € M and gy Ly, @)

[l (E) < kllull - for pe M, (3)

where |p| is the variation of the measure u, k is a positive finite constant, and M* = M N (m&T).
The induced norm on the space f& is defined as

I£1l = sup (| f], lull < 1)

The induced norm on the space B of bounded linear operators is

[P = sup ([|uPll, [|ull < 1)

In what follows we assume that the operator P : M — M corresponding to the transition kernel of the
chain X is bounded, i.e.,
MP C M, |[P|| < o0, (4)

where MP = {11 P : u1 € M}. Denote by II = 1 o 7 the stationary projector of the kernel P, where 1
is a function identically equal to 1, and by I the identity operator.
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2. Strong stability

The strong stability method introduced in early 1980s [1] is applicable to all operations research
models governed by Markov chains. It has been applied to queueing systems (see, e.g., [2]) and inventory
systems [18]. For basic definitions and results on this method we refer to [12].

Definition 1. A Markov chain X with transition kernel P and stationary measure 7 is said to
be strongly stable with respect to the norm || - ||, if every stochastic kernel ) in the neighborhood
(|Q — P|| < € for a certain £ > 0) admits a unique stationary measure v and

lv—7|| — 0 as ||Q — P|| — 0.

An interesting result is the fact that strong stability is equivalent to uniform ergodicity.
Theorem 1 [1,12]. A Markov chain X is strongly stable for a norm if and only if it is uniformly
ergodic in this norm.

So it is now possible to use some results concerning uniform ergodicity in the context of the strong
stability.

Theorem 2. A Markov chain X having the transition kernel P and the stationary measure m is
uniformly ergodic in the norm || - ||, if and only if the operator (I — P + II) has a bounded inverse:

I(Z = P =)~ < cc. (5)

Moreover, it follows from (5) that ||II|| < oco.
For the proof of this theorem see [12].

3. Criteria for the strong stability and perturbation bounds
3.1. Fundamental operator

For a Markov chain, the existence and the boundedness of the operator R = (I — P+1II)~! determines
its uniform ergodicity and its strong stability. Moreover, many quantitative estimates are expressed by
means of R. The role that R plays in this context is remarkable. In the case of discrete (finite and
denumerable) Markov chains the quantity (I — P +1I) is called the fundamental matrix (see, [14] for the
finite case and [15] for the denumerable case). Its properties are well known and its role in perturbation
theory is well understood.

In what follows we refer to R = (I — P +1II)~! as the fundamental operator of the chain X. This
operator has the following properties:

e RII=TIIR =TI
e RI-P)=(I-P)R=1—-1L

Furthermore, when the operator Z = ;2 (P — I)? exists, it is equal to R.

The first stability inequalities were derived with respect to the fundamental operator R (see, e.g.,
[9,12]). For instance, it has been shown that for a strongly stable Markov chain X, every stochastic
kernel @ in the neighborhood of P satisfies

v=vAR+m (6)

and
[ —vi < vl RI[AT,

where v is the unique stationary measure corresponding to the kernel ) and A = Q — P.
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From a practical point of view, the last inequality may be useless except for few situations where ||v||
can be estimated (e.g., for the norm || - ||1). In general, v is unknown and we need further development
to obtain a useful bound such as the following (see, e.g., [9,12]):

vl -P+1)=v(Q—-P+1)=v(Q — P)+v(lor) =vA+m,
v=vAR+ 7R =vAR+m,
v—m=vAR,
lm = vl < [lVlIRITA]-

Theorem 3. Suppose that the chain X is strongly stable with respect to the norm || - ||. Then every
stochastic kernel Q in the neighborhood of P satisfying | Al < |R||™! has a unique stationary measure
v . |

v=n(l-AR)"'=7) (AR)
i=0
i N
T
lv ==l < e
1= [[A[[||R]

3.2. Drazin inverse-group inverse

In 1958, Drazin [6] introduced a generalized inverse of an element in a semi-group or an associative
ring. Let S be an algebraic semi-group (or an associative ring). An element a € S admits a Drazin
inverse if there exists z € S such that for some &

"y = af, zax =z, and ax = za. (7)

If the Drazin inverse of a exists, then the smallest nonnegative integer k satisfying (7) is called the index
of a and is denoted ind(a). For all a in S there exists at most one z satisfying (7). If so, we denote this
element by aP”.

In particular, when ind(a) = 1, the element z satisfying (7) is called the group inverse of a and is
denoted by a*.

Drazin inverses have many applications. For the theory of generalized inverses of operators and
matrices and their applications to Markov chains, see [4,7].

We call the group inverse of an operator A the unique operator A% (whenever it exists) satisfying

AATA = A, AT AA" = A%, and AA" = A7 A.

In the remaining part of this paper, A designates the operator A = I — P. It is relatively easy to show
that there exists a tight relationship between R and A#. In particular, if the operator R exists and is
bounded, then A% exists and is bounded and vice versa. Moreover,

R=T1I+ A7,

and consequently
IR — [T < [|A%]] < || RI| + [T

The operator A% has also the following properties:
o 1A% = A#I1 = 0,
o AA" = A% A =1 —1I,
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and when the operator W = ¢ (P" — II) exists, it is a unique group inverse of A.

It is now clear that A% can play the same important role that R plays, and this is the context of
the strong stability theory. In particular, conditions for strong stability and perturbation bounds are
derived in the same manner when replacing R by A% and we obtain

Theorem 4. A Markov chain X is strongly stable with respect to the norm || - ||, if and only if the
group inverse A% of the operator A = (I — P) exists and is bounded, i.e.,

I(7 = P)#[| < co.

The group inverse A# of the operator A = (I — P) may be used in the same manner as R. Indeed, in
addition to the necessary and sufficient condition given by the last theorem, we can obtain quantitative
estimates using A%.

Theorem 5. Assume that the chain X is strongly stable with respect to the norm || - ||. Then for
every stochastic kernel Q neighbor of P we have

v—m=vAA*
and
b =7l < [lwll 1A% 1A
Theorem 6. If a chain X is strongly stable with respect to the norm || - ||, then every stochastic

kernel Q in the neighborhood of P satisfying ||All < ||A™| ™! has a unique stationary measure v,

v=m(I—AA¥)" =73 (AAF) (8)
7=0
e Il 1A%] 1A
7l I|A A
v -1l < . (©)
NE

Inequality (9) appears in [11, Theorem 3]. In his paper, Kartashov uses the operator Ry = (I — P +
+1I)~! —1I (i.e., A¥) and refers to it as the generalized potential of the chain X.

3.3. Ergodicity coefficient

For a bounded operator B satisfying B1 = al for some constant a, we define its ergodicity coefficient:

A(B)=  sup  ||aB!.
lall<1, a(E)=0

Observe that this quantity is related to the norm || - ||. The operator B can have different ergodicity
coefficients for different norms. Furthermore, if we consider the subspace

Mo ={p € M, u(E) = 0}

then B! is an operator over M since uB!1 = 0 for u € My. Therefore, A;(B) is an ordinary operator
norm of B in the space M.

Lemma 1. For the bounded linear operator B satisfying B1 = al for some constant a we have

A(B) < ||B],
M(B) < (Mi(B))

A1(BY) = Ay(B).
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Proof. Observe that
{llall <1, p(E) =0} c {|lal <1}
Then
Ay(B) = sup{||zB*|| = |lall < 1, a(E) = 0} <sup{||aB| : ||z <1} =[B'.

Now denote by ji; = ||zB"||~!iB* the measures satisfying ||ji;|| < 1 and fi;(E) = 0. Then

t—1
|aB'| = 2B Bl = |gB  |lge Bl = ... = [ ] Ilm:BIl-
i=0
Thus,
t—1
sup B <[]  swp  |zB,
llzl<1, a(E)=0 =0 lElI<1, a(E)=0
A(B) < (M(B))"
Finally,
M(BY) = sup (B = sup  [aB'|| = A(B).
lal<1, a(E)=0 llzl<1, a(E)=0

Lemma 2. Consider the operator D = ||A||7*A. Then for a bounded operator B we have
IDB'|| < Av(B).

Proof. We see that
|IDB*|| = sup{||uDB"| : |lull < 1}.

The measure i = (uD) satisfies
[l = (D) < [plll[D]] < 1 and a(E) = (pD)(E) = 0.

Thus, we obtain
IDB'|| < sup{[|[aB°|| - [lall <1, a(E) =0} = A(B).

Lemma 3. For a Markov chain X the folowing relation holds:
Ai(R) = Ay (AT).
Proof. For a measure [ satisfying ||| < 1, p(E) =0,
7R = |+ A% = [la(A™).
since pll = p(Lom) = (pl)m = 0.
Lemma 4. The folowing relation holds:
IAP] < [[All(A(P))".
Proof. Consider the family of operators
D; = ||AP!|'AP.

We aim at showing by recurrence that

n—1
laP"|| = Al T I1D:P. (10)
=0
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For n =1 we have
IAP| = IA[I(IA[I*A)P| = Al Do P

Assume that
n—2

APt = Al [T ID:P].-
i=0
So, we show that

n—2
|AP™|| = AP HI(JAP™ [ TrAPY Y P = (HAH 11 HDiPH> |1 Dy—1 P,
=0

which gives us
n—1

IAP™| = |A[ TT I1D:P]-
i=0
Now we show that
IDP| < A(P) V.
We have
| D¢ P|| = sup{||uD¢ P|| = ||u]| < 1}.

But the measure i = (uDy) satisfies
1l = (D)l < el D] < 1 and f(E) = (uDy)(E) = 0.

Thus, we get
[DeP|| < sup{[|aP] = [|all <1, a(E) =0, i € MP} = Ay(P).

Substituting this in (10), we obtain the desired result.
Now we obtain the following bound with respect to the ergodicity coefficient.

Theorem 7. Let a chain X be strongly stable with respect to the norm ||-||. Then for every stochastic
kernel Q) in the neighborhood of P we have
[v ==l < [vIAlAL(R) = [[v[[[|A] AL (AT). (11)

Proof. According to Theorem 5 we have
v—m=vAAT = v 7| = V|| AAT|| = [lv — 7|l = [l [ Al DAF].

Then Lemma 2 gives the result.
From this theorem we can get the following condition of strong stability.

Theorem 8. A Markov chain X with transition kernel P and stationary measure 7 is strongly stable
with respect to the norm || - ||, if and only if R exists (A" exists) and the coefficient of ergodicity Ai(R)
(A1(A%)) of the fundamental operator R (the group inverse A* of A = I — P) in this norm is finite,
i.e.,

A1(R) = Ay (A7) < .

Proof. First we prove that the condition is necessary. The strong stability of the chain X implies
that R (and A%) exists and is bounded. Then by Lemmas 1 and 3 we have

A1(A%) = Ay (B) < ||R]| < oo,
To prove the sufficiency, consider inequality (11). Setting C = ||v||A1(R) = ||v||A1(A¥) < oo, we obtain
v —7ll < CJIA].
Then ||[v — «|| — 0 as ||A]| — 0, which implies the strong stability of the chain X.
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Theorem 9. Let a chain X be strongly stable with respect to the norm || -||. Then every stochastic
kernel Q in the neighborhood of P satisfying ||All < (A1(A#))™! has a unique stationary measure v and

1= [|A[JAL(A#)

Proof. Suppose that |A|| < (A1(A#))~!. Then
IAAZ(| < [JAJ[IAF] < [ AlIAL (A7) < 1

Therefore the operator (I — AA#) is invertible (then, it is bijective) and
v=m(I - AA*) =7 (AA#)]
=0

which implies the uniqueness of v. Furthermore,

v—m= Wi(AA#)i,

i=1

o
b — | < llell D 1A A,
i=1

o =7l < limll Y (1AlAL(AT)),
i=1
if [|A]l < (A1(4%))~" then
L= [|A[JAL(A7)’

completing the proof.

Theorem 10. Let X be a Markov chain with transition kernel P and stationary distribution .
Suppose that there exists n > 0 such that Ap(P) < 1. Then the following statements are true:

(a) The fundamental operator R exists and is bounded. Moreover,

R=Y(P-T) =T+ (P' -
i=0 i=0
(b) The group inverse A% of A =1 — P exists and is bounded. Moreover,

A# =3 (P' = 10) and || A*[| < nrpa(1 — An(P)) 7,
=0

where T = max ||P?|| and p, = max ||P* —1I]|.
0<i<n i<n

(¢) The chain X is strongly stable in the norm || - ||.
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Proof. Let us prove (a) and (b) simultaneously. Since P'II = II, V¢ > 0, it is easy to prove that

i(P —I)' =1+ i(Pi —1II)
=0 =0

and

1@ = I < U+ || ) (P~ 1D
1=0 =0

It suffices to prove that the series W = >°°° (P — II) converges in B. Assume that there exists n > 0
such that A, (P) < 1. Then

e ) oo oo n—1
SP - < 3P - < 33 P <
t=0 t=0 s=0 r=0
oo n—1 o'} n—1

<Y IPTIPT -1 < <HPS” -1y \\PT\\> <
s=0 r=0 s=0 r=0

[ee] [ee]
<nr) [P =TI =nr)_ (I - )P =
s=0 s=0

o0
—nr > sup u(I — P,
s—0 llull<1

where the measure i = (I — IT)||1 — II|| ! satisfies the condition

Al = Nu( = I =171 < ulll (2= I -1~ <1

and
A(E) = (u(I —=ID|IT =10~ (E) = (u(I —ID))(E)|I =11||~" = 0.
Then
sup [|u(I —IDP"[ < sup |1 = H|||pP™| <
llnll<1 l2lI<1,a(E)=0
<= sup  |p(P)?]| < ([ = H[JA(P") < I =TI (A (P))?
l2lI<1,a(E)=0

by Lemma 1. Finally,

I3 =0l <7 3 1T = T A(P) < 07—

So, the operator W = >"2° (P' —1II) exists (the series is absolutely convergent) and is bounded. This
also implies the existence of the operator Y .o (P — II).
We obtain the strong stability of the chain X from (b) (or (c¢) and Theorem 4).
To avoid difficulties in computing certain constants, we may use some simplifications like
= o | P~ T < gwax [P = T1)]| < max |PY)7 =11 = 717 = 11|
Also,
I =T < ]+ < 1 [
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Theorem 11. Under the condition of Theorem 10, for every stochastic kernel Q in the neighborhood
of P we have

[ AN [
_ < , 12
I - < T (12)
lv ==l < [l Allnr(1 - An(P))~". (13)
If, in addition, ||A| < np,7(1 — A, (P))™L, then the stationary measure v of Q is unique and
7]l [|A[|rpnT
[l ==l < (14)

1= Ap(P) = npptl|A]°

Proof. Inequality (12) (resp. inequality (14)) follows from Theorem 5 (resp. from Theorem 6) by
replacing || A% || by its upper bound given in Theorem 10. Let us prove inequality (13). For the chain X

we have -
A7 = Z(P’ —I)and v —m = vAAT .
i=0
Thus,

[ee] o0
V—ﬂ:VAZ(Pi—H)éy—ﬂ':VZAPi,
1=0 1=0

since AIl = 0. Furthermore,

oo n—1
V—T(':VZZAPS”-H,
s=0 r=0
oo n—1 o9 n—1
U—ﬁ:UZZAPSHPT :I/Z <AP8”ZP’"> ,
s=0 r=0 s=0 r=0

00 n—1
U—ﬁ:UZAPanPT,
s=0 r=0

lv ==l = llv > AP™|
s=0

So,

e ) n—1
v ==l < v <IIAP8”II > IIPT||> :
s=0 r=0
e ) n—1
lv ==l < vl (HAHHDSP"H > HPTH> ;
s=0 r=0
n—1 o]
[v ==l < [lv Il A (Z HP’”H) > ID.P".
r=0 s=0

Using Lemma 2 we obtain

lv ==l < [l Allnm > (An(P))?,
s=0

where A, (P) < 1. Then
I =l < [l Allnr (1 = An(P) 7
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Remark 1. From inequality (13) we observe that the condition A, (P) < 1 for some n is sufficient
for the strong stability of the chain X. Kartashov [10] proved that a Harris recurrent aperiodic Markov
chain is uniformly ergodic (and strongly stable) if and only if A¢(P) < 1 for some t > 1.

Lemma 5. If the Markov chain X satisfies the conditions of Theorem 10, then
AL (A7) = A1(R) < n7(1 — Ay (P))~ L
Proof. Assume that the chain X satisfies the required condition. Then we have

AL(R) = A (A7) = sup{[|pA™| : |la]l <1, a(E) =0, p € MB},

where A# = 3" (P! —1I) and @Il = 0. Then

t=0
e ) e ) oo n—1 oo n—1
RAF| =g > P <Y IaPtl =Y > 1aP™ | < > a1 <
t=0 t=0 s=0 r=0 s=0 r=0

<nT Y AP <nr Y (An(P)) < nr(1— An(P) 7"
s=0 s=0
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