GALERKIN METHOD FOR SEMILINEAR PARABOLIC EQUATION WITH VARYING TIME DIRECTION

I. E. Egorov∗

M. K. Ammosov North-Eastern Federal University 48, Kulakovskogo St., Yaskutsk 677891, Russia IvanEgorov51@mail.ru

E. S. Efimova

M. K. Ammosov North-Eastern Federal University 48, Kulakovskogo St., Yaskutsk 677891, Russia OslamE@mail.ru UDC 517.95

We establish the unique solvability of the first boundary value problem for a semilinear second order parabolic equation with varying time direction by using a modified Galerkin method and the regularization method. We obtain a priori error estimates for approximate solutions. Bibliography: 2 *titles.*

Let Ω be a bounded domain in R^n with smooth boundary S. We denote $\Omega_t = \Omega \times \{t\}$ for $0 \leq t \leq T$ and $S_T = S \times (0, T)$. In the cylindrical domain $Q = \Omega \times (0, T)$, we consider the semilinear parabolic equation

$$
Lu \equiv k(x,t)u_t - \Delta u + c(x,t)u + |u|^\rho u = f(x,t),\tag{1}
$$

where the coefficients are assumed to be sufficiently smooth in \overline{Q} . We note that the sign of $k(x, t)$ can be arbitrarily changed inside the domain. We introduce the sets

$$
S_0^{\pm} = \{ (x, 0) : k(x, 0) \geq 0, x \in \Omega \},
$$

$$
S_T^{\pm} = \{ (x, T) : k(x, T) \geq 0, x \in \Omega \}
$$

and put $p = \rho + 2, -1 < \rho < 2/(n - 1)$.

Boundary value problem. Find a solution to Equation (1) in Q such that

$$
u|_{S_T} = 0, \quad u|_{\overline{S}_0^+} = 0, \quad u|_{\overline{S}_T^-} = 0.
$$
 (2)

Let $L_p(Q)$, $1 < p < \infty$, be the Banach space of measurable p-integrable functions in Q equipped with the norm

$$
||u||_{L_p(Q)} = \left(\int\limits_Q |u(x,t)|^p dxdt\right)^{1/p}.
$$

[∗] To whom the correspondence should be addressed.

Translated from *Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki* **16**, No. 2, 2016, pp. 6-15.

1072-3374/18/2284-0372 *-***c 2018 Springer Science+Business Media New York**

The space $L_2(Q)$ is a Hilbert space relative to the inner product

$$
(u, v) = \int_{Q} uv dQ = \int_{0}^{T} (u, v)_{0} dt, \quad ||u||^{2} = (u, u).
$$

Denote by $W_2^{m,s}(Q)$ the anisotropic Sobolev space equipped with the norm

$$
||u||_{m,s}^{2} = \int_{Q} \Big[\sum_{|\alpha| \le m} (D^{\alpha} u)^{2} + (D_t^{s} u)^{2} \Big] dQ
$$

and by C_L the class of functions in $W_2^{2,1}(Q)$ satisfying the boundary conditions (2).

Lemma 1 (cf. [1])**.** *Assume that* $c - \frac{1}{2}k_t \geq 0$, $(x, t) \in \overline{Q}$ *. Then for any* $u \in C_L$

$$
\int_{Q} |u|^{p} dQ + ||u||_{1,0}^{2} \le C_{1}(Lu, u), \quad C_{1} > 0.
$$
\n(3)

We consider vector-valued functions $y(t)=(y_1(t),\ldots,y_m(t))^*,$ $f(t)=(f_1(t),\ldots,f_m(t))^*,$ $g(y)=(g_1(y),\ldots,g_m(y))^*$ in R^m and continuous symmetric matrices $K(t)=(k_{ij}(t))_{m\times m}$, $B(t) = (b_{ij}(t))_{m \times m}, 0 \leq t \leq T$, such that the following assumptions hold:

- 1) $g_k(y)$ is continuous with respect to y and $f_k \in L_2(0,T)$ for $k = \overline{1,m}$,
- 2) $\sum_{n=1}^{\infty}$ $k=1$ $g_k(y)y_k \geq 0$ for continuous vector-valued functions $y, t \in [0, T]$,
- 3) $B(t) \frac{1}{2}K_t \ge \delta E, \delta > 0, t \in [0, T].$

We look for a solution to the nonlinear system of second order ordinary differential equations

$$
Ly = -\varepsilon y'' + K(t)y' + B(t)y + g(y) = f(t), \quad \varepsilon > 0, \quad 0 < t < T,
$$
\n(4)

$$
y(0) = 0, \quad y(T) = 0 \tag{5}
$$

with the boundary conditions

$$
y(0) = 0, \quad y'(T) = 0,
$$
 $K(T) \ge 0,$ (5')

$$
y'(0) = 0, \quad y(T) = 0, \qquad K(0) \leq 0, \tag{5''}
$$

$$
y'(0) = 0, \quad y'(T) = 0, \qquad K(0) \leq 0, \ K(T) \geq 0. \tag{5''}
$$

We denote by $\widetilde{W}_2^1(0,T)$ the closure of the set of smooth functions $u(t)$ satisfying (5) in the $W_2^1(0,T)$ -norm.

Definition 1. A vector-valued function $y(t)$, $(y_k \in W_2^1(0,T))$ is a *weak solution* to the boundary value problem (4), (5) if

$$
a_i(y,\eta) = \int_0^T \left[\varepsilon y'\eta' + \sum_{j=1}^m k_{ij}y'_j \eta + \sum_{j=1}^m b_{ij}y_j \eta + g_i(y)\eta \right] dt = \int_0^T f_i \eta dt \tag{6}
$$

for all $\eta \in \widetilde{W}_2^1(0,T)$, $i = \overline{1,m}$.

Let functions $\psi_k(t)$, $k = 1, \ldots$, be orthonormal in $L_2(0, T)$ and satisfy the equation

$$
-u'' = \gamma u, \quad 0 < t < T,
$$

and the boundary conditions (5).

We look for approximate solutions $y^N = (y_1^N, \ldots, y_m^N)^*$ to the problem (4), (5) in the form

$$
y_k^N(t) = \sum_{k=1}^N c_{kl}^N \psi_l(t), \quad k = \overline{1, m},
$$

where the constants c_{kl}^N are determined by the system of nonlinear algebraic equations

$$
a_i(y^N, \psi_l) = \int_0^T f_i(t)\psi_l dt, \quad i = \overline{1, m}, \ l = \overline{1, N}.
$$
 (7)

Lemma 2. *Let Assumptions* 1)*–*3) *hold. Then the system of algebraic equations* (7) *has at least one solution.*

Proof. We set

$$
A_{il}(c) \equiv a_i(y^N, \psi_l), \quad h_{il} = \int_0^T f_i \psi_l dt.
$$

Then the system (7) takes the form

$$
A_{il}(c) \equiv h_{il}, \quad i = \overline{1, m}, \ l = \overline{1, N}.
$$
\n
$$
(8)
$$

 \Box

By the properties of ψ_k and Assumptions 1)–3),

$$
\sum_{i=1}^{m} \sum_{l=1}^{N} A_{il}(c)c_{il}^{N} \geq \delta |c|^{2} + \frac{1}{2} \sum_{i,j=1}^{m} k_{ij}(t)y_{i}^{N}y_{j}^{N} \Big|_{t=0}^{t=T} + \int_{0}^{T} \sum_{k=1}^{m} g_{k}(y^{N})y_{k}^{N} dt \geq \delta |c|^{2},
$$

where

$$
|c|^2 = \sum_{i=1}^m \sum_{l=1}^N (c_{kl}^N)^2.
$$

Then the solvability of the system (8) follows according to [2].

Theorem 1. *Let Assumptions* 1)*–*3) *hold. Then the boundary value problem* (4)*,* (5) *has a unique weak solution* $y(t)$, $y_k(t) \in \widetilde{W}_2^1(0,T)$, $k = \overline{1,m}$.

Proof. By Lemma 2, the boundary value problem (4) , (5) has at least one approximate solution y^N . By (7), we obtain the a priori estimate

$$
\int_{0}^{T} \sum_{i=1}^{m} \left[\varepsilon \left(\frac{dy_i^N}{dt} \right)^2 + (y_i^N)^2 \right] dt \leq C_2 \sum_{i=1}^{m} ||f_i||_{L_2(0,T)}^2, \quad C_2 > 0,
$$
\n(9)

which implies the existence of a function $y_i \in \widetilde{W}_2^1(0,T)$, $i = \overline{1,m}$, such that $y_i^{N_k} \to y_i$ weakly in $W_2^1(0,T)$. Since $W_2^1(0,T)$ is compactly embedded itno $C[0,T]$, we have $y_i^{N_k} \to y_i$ strongly in

 $C[0, T]$ for $i = \overline{1, m}$. Then the sequence $g_i(y^{N_k})$ strongly converges to $g_i(y)$ in $C[0, T]$ for $y =$ (y_1, \ldots, y_m) . Passing to the limit in (7) as $N = N_k \to \infty$, we obtain (6) for any $\eta(t) \in W_2^1(0, T)$, i.e., $y(t)$ is a weak solution to the boundary value problem (4) , (5) .

It is easy to show that any weak solution $y(t)$ to the boundary value problem (4), (5) satisfies the estimate (9) which implies the uniqueness of the weak solution. \Box

Remark 1. According to the theory of ordinary differential equations, from Assumption 1) it follows that $\frac{d^2y}{dt^2} \in L_2(0,T)$, $k = \overline{1,m}$, where $y = (y_1,\ldots,y_m)$ is a weak solution to the boundary value problem (4), (5).

For $\varepsilon > 0$ we set $L_{\varepsilon}u \equiv -\varepsilon u_{tt} + Lu$. For basis functions we take the solutions $\varphi_k(x)$ to the problem

$$
-\Delta \varphi = \lambda \varphi, \quad \varphi|_S = 0.
$$

Moreover, $\varphi_k(x)$ form an orthonormal basis for the space $L_2(\Omega)$ and the corresponding eigenvalues λ_k are such that $0 < \lambda_1 \leq \lambda_2 \leq \cdots$ and $\lambda_k \to +\infty$ as $k \to \infty$.

We look for approximate solutions to the boundary value problem (1) , (2) in the form

$$
u^{N,\varepsilon}(x,t) = \sum_{k=1}^{N} c_k^{N,\varepsilon}(t)\varphi_k(x).
$$

We consider the boundary value problem for the system of nonlinear second order ordinary differential equations

$$
(L_{\varepsilon}u^{N,\varepsilon},\varphi_l)_0 = (f,\varphi_l)_0 \tag{10}
$$

with the boundary conditions

$$
c_l^{N,\varepsilon}|_{t=0} = 0, \quad c_l^{N,\varepsilon}|_{t=T} = 0, \quad l = \overline{1,N}.
$$
 (11)

or

$$
c_l^{N,\varepsilon}(0) = 0, \quad D_t c_l^{N,\varepsilon}|_{t=T} = 0, \quad l = \overline{1, N}, \qquad k(x, T) \ge 0,
$$
\n(11')

$$
D_t c_l^{N,\varepsilon}|_{t=0} = 0, \quad c_l^{N,\varepsilon}(0) = 0, \quad l = \overline{1,N}, \quad k(x,0) \le 0,
$$
\n(11")

$$
D_t c_l^{N,\varepsilon}|_{t=0} = 0, \quad D_t c_l^{N,\varepsilon}|_{t=T} = 0, \quad l = \overline{1,N}, \quad k(x,0) \le 0, \ k(x,T) \ge 0. \tag{11''}
$$

Lemma 3. *Assume that* $c - \frac{1}{2}k_t \ge \delta > 0$, $f \in L_2(Q)$, $-1 < \rho \le 2/(n-1)$ *. Then there exists a* unique solution $c_k^{N,\varepsilon}$ in $W_2^2(0,T)$ to the boundary value problem (10), (11).

Proof. We show that the boundary value problem (10) , (11) satisfies the assumptions of Lemma 2. We set $m = N$,

$$
y = \begin{pmatrix} c_1^{N,\varepsilon}(t) \\ \cdot \\ \cdot \\ c_N^{N,\varepsilon}(t) \end{pmatrix},
$$

 $k_{ij} = (k(x,t)\varphi_i, \varphi_j)_0, b_{ij} = \lambda_i \delta_{ij} + (c\varphi_i, \varphi_j)_0$, and $g_i(y) = (|u^{N,\varepsilon}|^{\rho} u^{N,\varepsilon}, \varphi_l)_0$. Then we have

$$
\sum_{i,j=1}^N \Big(b_{ij} - \frac{1}{2} k_{ijt} \Big) \xi_i \xi_j = \sum_{i=1}^N \lambda_i \xi_i^2 + \int_{\Omega} \Big(c - \frac{1}{2} k_t \Big) \Big(\sum_{i=1}^N \xi_i \varphi_i \Big)^2 dx \geq \delta |\xi|^2 \quad \forall \xi \in R^N.
$$

On the other hand,

$$
\sum_{k=1}^{N} g_k(y) y_k = \int_{\Omega} |u^{N,\varepsilon}|^{\rho+2} dx \geqslant 0.
$$

The existence of a solution to the boundary value problem (10), (11) follows from Theorem 1 and Remark 1. The solution is unique since the function $|t|^{\rho}t$ is monotone. \Box

Theorem 2. *Assume that* $c - \frac{1}{2}k_t \ge \delta > 0$, $c + \frac{1}{2}k_t \ge \delta > 0$, and $f \in W_2^{0,1}(Q)$. Let one of *the following cases holds*:

- 1) $k(x, 0) > 0$, $k(x, T) < 0$, $f(x, 0) = 0$, $f(x, T) = 0$,
- 2) $k(x, 0) > 0$, $k(x, T) \ge 0$, $f(x, 0) = 0$,
- 3) $k(x, 0) \leq 0$, $k(x, T) < 0$, $f(x, T) = 0$,
- 4) $k(x, 0) \leq 0, k(x, T) \geq 0.$

Then the boundary value problem (1), (2) *has a unique solution in* $W_2^{2,1}(Q)$ *and the following estimate holds*:

$$
\int_{Q} \left[(u_t)^2 + \sum_{i=1}^n (u_{tx_i})^2 + (\Delta u)^2 \right] dQ + (\rho + 1) \int_{Q} \left(|u|^{\rho} (u_t)^2 + |u|^{\rho} \sum_{i=1}^n (u_{x_i})^2 \right) dQ
$$

\$\leq C_3 (\|f\|^2 + \|f_t\|^2), \quad C_3 > 0.

Proof. In the case of semilinear parabolic equations with varying time direction, this theorem was proved in [1] by the stationary Galerkin method. Here, we use the modified (nonstationary) Galerkin method and the method of elliptic regularization.

We begin with the case $k(x, 0) > 0$, $k(x,T) < 0$, $f(x, 0) = 0$, $f(x,T) = 0$. We look for approximate solutions $u^{N,\epsilon}(x,t)$ to the boundary value problem (1), (2) in the form

$$
u^{N,\varepsilon}(x,t) \equiv v(x,t) = \sum_{k=1}^{N} c_k^{N,\varepsilon}(t)\varphi_k(x),
$$

where $c_k^{N,\varepsilon} \in W_2^2(0,T)$ are solutions to the boundary value problem (10), (11). We multiply (10) by $c_l^{N,\varepsilon}$ and take the sum with respect to l from 1 to N. Integrating with respect to t, we find

$$
(f, v) = \varepsilon ||v_t||^2 + (Lv, v).
$$

By the estimate (3), we obtain the a priori estimate

$$
\varepsilon ||v_t||^2 + \int\limits_Q |v|^p dQ + ||v||_{1,0}^2 \leqslant C_4 ||f||^2, \quad C_4 > 0.
$$
 (12)

Integrating by parts, from (10) and (11) we find

$$
-(f, v_{tt}) = \varepsilon ||v_{tt}||^2 + \int_{Q} \left[\left(c + \frac{1}{2} k_t \right) v_t^2 + \sum_{i=1}^n v_{tx_i}^2 + c_t v_t v + (\rho + 1) |v|^\rho v_t^2 \right] dQ
$$

+
$$
\frac{1}{2} \int_{\Omega_0} k v_t^2 dx - \frac{1}{2} \int_{\Omega_T} k v_t^2 dx - \int_{\Omega} \left[\sum_{i=1}^n v_{x_i} v_{tx_i} + c v v_t + |v|^\rho v v_t \right] dx \Big|_{t=0}^{t=T}.
$$

Taking into account the boundary conditions (11) and using the estimate (12) and the Cauchy inequality $|ab| \leq \gamma a^2 + \frac{1}{4\gamma} b^2$, $\gamma > 0$, we arrive at the estimate

$$
\varepsilon \|v_{tt}\|^2 + \|v_t\|_{1,0}^2 + \int\limits_{Q} |v|^\rho v_t^2 dQ \leqslant C_5(\|f\|^2 + \|f_t\|^2), \quad C_5 > 0. \tag{13}
$$

Integrating by parts, from (10) and (11) we get

$$
-(f, \Delta v) = \int_{Q} \left[(\Delta v)^2 - kv_t \Delta v - cv \Delta v + (\rho + 1) ||v||^{\rho} \sum_{i=1}^{n} v_{x_i}^2 \right] dQ
$$

$$
+ \varepsilon \int_{Q} \sum_{i=1}^{n} v_{tx_i}^2 dQ + \varepsilon \int_{\Omega} v_t \Delta v dx \Big|_{t=0}^{t=T}.
$$
(14)

Using the estimate (13) and the Cauchy inequality, from (14) we obtain the a priori estimate

$$
\varepsilon \int_{Q} \sum_{i=1}^{n} v_{tx_i}^2 dQ + \int_{Q} (\Delta v)^2 dQ + (\rho + 1) \int_{Q} |v|^{\rho} \sum_{i=1}^{n} v_{x_i}^2 dQ \leqslant C_6 (\|f\|^2 + \|f_t\|^2), \quad C_6 > 0. \tag{15}
$$

By (12), (13), and (15), the approximate solutions $u^{N,\epsilon}(x,t)$ satisfy the a priori estimate

$$
\int_{Q} \left[(u_t^{N,\varepsilon})^2 + \sum_{i=1}^n (u_{tx_i}^{N,\varepsilon})^2 + (\Delta u^{N,\varepsilon})^2 \right] dQ + (\rho + 1) \int_{Q} \left(|u^{N,\varepsilon}|^{\rho} (u_t^{N,\varepsilon})^2 + |u^{N,\varepsilon}|^{\rho} \sum_{i=1}^n (u_{x_i}^{N,\varepsilon})^2 \right) dQ
$$
\n
$$
\leq C_7 (\|f\|^2 + \|f_t\|^2), \quad C_7 > 0,
$$
\n(16)

which allows us to complete the proof by standard arguments since $|u^{N,\varepsilon}|^{\rho}u^{N,\varepsilon}$ is bounded in $L_2(Q)$ in view of the embedding theorem. The remaining cases are considered in a similar way.

The uniqueness of a solution to the boundary value problem (1), (2) in the class $W_2^{2,1}(Q)$ follows from the inequality $(|u|^{\rho}u - |v|^{\rho}v)(u - v) \geq 0$.

Theorem 3. *Let all the assumptions Theorem* 2 *be satisfied. Then*

$$
||u - u^{N,\varepsilon}||_{1,0} \leq C_8(||f|| + ||f_t||) \left(\varepsilon^{1/2} + \lambda_{N+1}^{-1/2}\right), \quad C_8 > 0,
$$
\n(17)

where $u(x, t)$ *is an exact solution to the boundary value problem* (1), (2).

Proof. We again consider the case $k(x, 0) > 0$, $k(x, T) < 0$, $f(x, 0) = 0$, $f(x, T) = 0$. Let $u(x, t)$ be an exact solution to the boundary value problem (1), (2) which exists in view of Theorem 2. We represent Lu in the form $Lu = L_0u + |u|^\rho u$. We note that the function $u(x, t)$ can be represented as the Fourier series

$$
u(x,t) = \sum_{k=1}^{\infty} c_k(t)\varphi_k(x), \quad c_k(t) = (f, \varphi_k)_0.
$$

Moreover,

$$
-\Delta u = \sum_{k=1}^{\infty} c_k(t) \lambda_k \varphi_k(x).
$$

Hence

$$
\sum_{k=1}^{\infty} \lambda_k^2 \int_0^T c_k^2(t)dt = \|\Delta u\|^2 \leqslant C_9(\|f\|^2 + \|f_t\|^2), \quad C_9 > 0.
$$
 (18)

On the other hand, for $u(x, t)$ we have

$$
(Lu, \varphi_l) = (f, \varphi_l), \quad l = 1, 2, \dots \tag{19}
$$

In the space $L_2(Q)$, we introduce the linear manifold

$$
H_N = \left\{ \eta(x,t) = \sum_{l=1}^N d_l(t) \varphi_l(x) : d_l \in W_2^1(0,T), d_l(0) = d_l(T) = 0 \right\}.
$$

By (10) and (19),

$$
(L_{\varepsilon}u^{N,\varepsilon},\eta) = (f,\eta), \quad (Lu,\eta) = (f,\eta) \quad \forall \eta \in H_N.
$$

Hence

$$
(L_0(u - u^{N,\varepsilon}) + |u|^\rho u - |u^{N,\varepsilon}|^\rho u^{N,\varepsilon}, \eta) = -\varepsilon(u^{N,\varepsilon}_{tt}, \eta) \quad \forall \eta \in H_N.
$$

Setting $\eta = w - u^{N,\epsilon} = (u - u^{N,\epsilon}) + (w - u)$, $w \in H_N$, from the last identity we have $N \sim$ $N \epsilon$ \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}

$$
(L_0(u - u^{N,\varepsilon}), u - u^{N,\varepsilon}) + (|u|^\rho u - |u^{N,\varepsilon}|^\rho u^{N,\varepsilon}, u - u^{N,\varepsilon})
$$

$$
= \varepsilon(u_t^{N,\varepsilon}, w_t - u_t^{N,\varepsilon}) + (f - Lu^{N,\varepsilon}, u - w) - \varepsilon \left(\int_{\Omega} u_t^{N,\varepsilon}(w - u) dx \right) \Big|_{t=0}^{t=T}.
$$
 (20)

We note that $\{L_0u^{N,\varepsilon}\}\$ is bounded in $L_2(Q)$ and $|u^{N,\varepsilon}|^{\rho}u^{N,\varepsilon}$ is bounded in $L_2(Q)$ by the embedding theorem for $-1 < \rho \leq 2/(n-1)$. Since $|\tau|^{\rho} \tau$ is monotone, from (20) we get

$$
||u - u^{N,\varepsilon}||_{1,0}^2 \leq C_{10}[\varepsilon||u_t^{N,\varepsilon}|| \, ||w_t - u_t^{N,\varepsilon}|| + ||f - Lu^{N,\varepsilon}|| \, ||u - w||], \quad C_{10} > 0. \tag{21}
$$

For $w = \sum_{n=1}^{N}$ $\sum_{k=1} c_k(t)\varphi_k(x) \in H_N$ we have

$$
||u - w||^{2} = \sum_{k=N+1}^{\infty} \int_{0}^{T} c_{k}^{2}(t)dt \le \lambda_{N+1}^{-2} \sum_{k=N+1}^{\infty} \lambda_{k}^{2} \int_{0}^{T} c_{k}^{2}(t)dt
$$

which implies

$$
||u - w|| \leq C_{11} \lambda_{N+1}^{-1} (||f|| + ||f_t||), \quad C_{11} > 0.
$$
 (22)

Taking into account (3) , (16) , (18) , and (22) , from (21) we derive the error estimate for the modified Galerkin method (17). We can consider the remaining cases in a similar way with the linear manifold

$$
H_N = \begin{cases} \left\{ \eta(x,t) = \sum_{l=1}^N d_l(t)\varphi_l(x), d_l \in W_2^1(0,T) : d_l(0) = 0 \right\}, & k(x,0) > 0, \ k(x,T) \ge 0, \\ \left\{ \eta(x,t) = \sum_{l=1}^N d_l(t)\varphi_l(x), \ d_l \in W_2^1(0,T) : d_l(T) = 0 \right\}, & k(x,0) \le 0, \ k(x,T) < 0, \\ \left\{ \eta(x,t) = \sum_{l=1}^N d_l(t)\varphi_l(x), \ d_l \in W_2^1(0,T) \right\}, & k(x,0) \le 0, \ k(x,T) \ge 0. \end{cases}
$$
eorem 3 is proved.

Theorem 3 is proved.

Acknowledgments

The work is supported by the Ministry of Education and Science of the Russian Federation (grant No. 3047).

References

- 1. E. S. Efimova, I. E. Egorov, and M. S. Kolesova, "Error estimate for the stationary Galerkin method applied to a semilinear parabolic equation with alternating time direction," *J. Math. Sci., New York* **213**, No. 6, 838–843 (2016).
- 2. Yu. A. Dubinskii, "Quasilinear elliptic and parabolic equations of arbitrary order" [in Russian], *Usp. Mat. Nauk* **23**, No. 1, 45–90 (1968).

Submitted on December 20, 2015