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We establish the unique solvability of the first boundary value problem for a semilinear

second order parabolic equation with varying time direction by using a modified Galerkin

method and the regularization method. We obtain a priori error estimates for approxi-

mate solutions. Bibliography: 2 titles.

Let Ω be a bounded domain in Rn with smooth boundary S. We denote Ωt = Ω × {t} for

0 � t � T and ST = S × (0, T ). In the cylindrical domain Q = Ω × (0, T ), we consider the

semilinear parabolic equation

Lu ≡ k(x, t)ut −Δu+ c(x, t)u+ |u|ρu = f(x, t), (1)

where the coefficients are assumed to be sufficiently smooth in Q. We note that the sign of

k(x, t) can be arbitrarily changed inside the domain. We introduce the sets

S±
0 = {(x, 0) : k(x, 0) ≷ 0, x ∈ Ω},

S±
T = {(x, T ) : k(x, T ) ≷ 0, x ∈ Ω}

and put p = ρ+ 2, −1 < ρ < 2/(n− 1).

Boundary value problem. Find a solution to Equation (1) in Q such that

u |ST
= 0, u |

S
+
0
= 0, u |

S
−
T
= 0. (2)

Let Lp(Q), 1 < p < ∞, be the Banach space of measurable p-integrable functions in Q

equipped with the norm

‖u‖Lp(Q) =

( ∫
Q

|u(x, t)|pdxdt
)1/p

.
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The space L2(Q) is a Hilbert space relative to the inner product

(u, v) =

∫
Q

uvdQ =

T∫
0

(u, v)0dt, ||u||2 = (u, u).

Denote by Wm,s
2 (Q) the anisotropic Sobolev space equipped with the norm

‖u‖2m,s =

∫
Q

[ ∑
|α|�m

(Dαu)2 + (Ds
tu)

2
]
dQ

and by CL the class of functions in W 2,1
2 (Q) satisfying the boundary conditions (2).

Lemma 1 (cf. [1]). Assume that c− 1
2kt � 0, (x, t) ∈ Q. Then for any u ∈ CL∫

Q

|u|pdQ+ ‖u‖21,0 � C1(Lu, u), C1 > 0. (3)

We consider vector-valued functions y(t) = (y1(t), . . . , ym(t))∗, f(t) = (f1(t), . . . , fm(t))∗,
g(y) = (g1(y), . . . , gm(y))∗ in Rm and continuous symmetric matrices K(t) = (kij(t))m×m,

B(t) = (bij(t))m×m, 0 � t � T , such that the following assumptions hold:

1) gk(y) is continuous with respect to y and fk ∈ L2(0, T ) for k = 1,m,

2)
m∑
k=1

gk(y)yk � 0 for continuous vector-valued functions y, t ∈ [0, T ],

3) B(t)− 1
2Kt � δE, δ > 0, t ∈ [0, T ].

We look for a solution to the nonlinear system of second order ordinary differential equations

Ly = −εy′′ +K(t)y′ +B(t)y + g(y) = f(t), ε > 0, 0 < t < T, (4)

y(0) = 0, y(T ) = 0 (5)

with the boundary conditions

y(0) = 0, y′(T ) = 0, K(T ) � 0, (5′)

y′(0) = 0, y(T ) = 0, K(0) � 0, (5′′)

y′(0) = 0, y′(T ) = 0, K(0) � 0, K(T ) � 0. (5′′′)

We denote by W̃ 1
2(0, T ) the closure of the set of smooth functions u(t) satisfying (5) in the

W 1
2 (0, T )-norm.

Definition 1. A vector-valued function y(t), (yk ∈ W̃ 1
2(0, T )) is a weak solution to the

boundary value problem (4), (5) if

ai(y, η) =

T∫
0

[
εy′η′ +

m∑
j=1

kijy
′
jη +

m∑
j=1

bijyjη + gi(y)η

]
dt =

T∫
0

fiηdt (6)

for all η ∈ W̃ 1
2(0, T ), i = 1,m.
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Let functions ψk(t), k = 1, . . ., be orthonormal in L2(0, T ) and satisfy the equation

−u′′ = γu, 0 < t < T,

and the boundary conditions (5).

We look for approximate solutions yN = (yN1 , . . . , yNm)∗ to the problem (4), (5) in the form

yNk (t) =

N∑
k=1

cNklψl(t), k = 1,m,

where the constants cNkl are determined by the system of nonlinear algebraic equations

ai(y
N , ψl) =

T∫
0

fi(t)ψldt, i = 1,m, l = 1, N. (7)

Lemma 2. Let Assumptions 1)–3) hold. Then the system of algebraic equations (7) has at

least one solution.

Proof. We set

Ail(c) ≡ ai(y
N , ψl), hil =

T∫
0

fiψldt.

Then the system (7) takes the form

Ail(c) ≡ hil, i = 1,m, l = 1, N. (8)

By the properties of ψk and Assumptions 1)–3),

m∑
i=1

N∑
l=1

Ail(c)c
N
il � δ|c|2 + 1

2

m∑
i,j=1

kij(t)y
N
i yNj

∣∣∣∣
t=T

t=0

+

T∫
0

m∑
k=1

gk(y
N )yNk dt � δ|c|2,

where

|c|2 =
m∑
i=1

N∑
l=1

(cNkl)
2.

Then the solvability of the system (8) follows according to [2].

Theorem 1. Let Assumptions 1)–3) hold. Then the boundary value problem (4), (5) has a

unique weak solution y(t), yk(t) ∈ W̃ 1
2(0, T ), k = 1,m.

Proof. By Lemma 2, the boundary value problem (4), (5) has at least one approximate

solution yN . By (7), we obtain the a priori estimate

T∫
0

m∑
i=1

[
ε
(dyNi

dt

)2
+ (yNi )2

]
dt � C2

m∑
i=1

‖fi‖2L2(0,T ), C2 > 0, (9)

which implies the existence of a function yi ∈ W̃ 1
2(0, T ), i = 1,m, such that yNk

i → yi weakly

in W 1
2 (0, T ). Since W 1

2 (0, T ) is compactly embedded itno C[0, T ], we have yNk
i → yi strongly in
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C[0, T ] for i = 1,m. Then the sequence gi(y
Nk) strongly converges to gi(y) in C[0, T ] for y =

(y1, . . . , ym). Passing to the limit in (7) as N = Nk → ∞, we obtain (6) for any η(t) ∈ W̃ 1
2(0, T ),

i.e., y(t) is a weak solution to the boundary value problem (4), (5).

It is easy to show that any weak solution y(t) to the boundary value problem (4), (5) satisfies

the estimate (9) which implies the uniqueness of the weak solution.

Remark 1. According to the theory of ordinary differential equations, from Assumption 1)

it follows that
d2y

dt2
∈ L2(0, T ), k = 1,m, where y = (y1, . . . , ym) is a weak solution to the

boundary value problem (4), (5).

For ε > 0 we set Lεu ≡ −εutt + Lu. For basis functions we take the solutions ϕk(x) to the

problem

−Δϕ = λϕ, ϕ|S = 0.

Moreover, ϕk(x) form an orthonormal basis for the space L2(Ω) and the corresponding eigen-

values λk are such that 0 < λ1 � λ2 � · · · and λk → +∞ as k → ∞.

We look for approximate solutions to the boundary value problem (1), (2) in the form

uN,ε(x, t) =

N∑
k=1

cN,ε
k (t)ϕk(x).

We consider the boundary value problem for the system of nonlinear second order ordinary

differential equations

(Lεu
N,ε, ϕl)0 = (f, ϕl)0 (10)

with the boundary conditions

cN,ε
l |t=0 = 0, cN,ε

l |t=T = 0, l = 1, N. (11)

or

cN,ε
l (0) = 0, Dtc

N,ε
l |t=T = 0, l = 1, N, k(x, T ) � 0, (11′)

Dtc
N,ε
l |t=0 = 0, cN,ε

l (0) = 0, l = 1, N, k(x, 0) � 0, (11′′)

Dtc
N,ε
l |t=0 = 0, Dtc

N,ε
l |t=T = 0, l = 1, N, k(x, 0) � 0, k(x, T ) � 0. (11′′′)

Lemma 3. Assume that c− 1
2kt � δ > 0, f ∈ L2(Q), −1 < ρ � 2/(n−1). Then there exists

a unique solution cN,ε
k in W 2

2 (0, T ) to the boundary value problem (10), (11).

Proof. We show that the boundary value problem (10), (11) satisfies the assumptions of

Lemma 2. We set m = N ,

y =

⎛
⎜⎜⎜⎝
cN,ε
1 (t)

.

.

cN,ε
N (t)

⎞
⎟⎟⎟⎠ ,

kij = (k(x, t)ϕi, ϕj)0, bij = λiδij + (cϕi, ϕj)0, and gi(y) = (|uN,ε|ρuN,ε, ϕl)0. Then we have

N∑
i,j=1

(
bij − 1

2
kijt

)
ξiξj =

N∑
i=1

λiξ
2
i +

∫
Ω

(
c− 1

2
kt

)( N∑
i=1

ξiϕi

)2
dx � δ|ξ|2 ∀ξ ∈ RN .
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On the other hand,
N∑
k=1

gk(y)yk =

∫
Ω

∣∣uN,ε
∣∣ρ+2

dx � 0.

The existence of a solution to the boundary value problem (10), (11) follows from Theorem 1

and Remark 1. The solution is unique since the function |t|ρt is monotone.

Theorem 2. Assume that c − 1
2kt � δ > 0, c + 1

2kt � δ > 0, and f ∈ W 0,1
2 (Q). Let one of

the following cases holds:

1) k(x, 0) > 0, k(x, T ) < 0, f(x, 0) = 0, f(x, T ) = 0,

2) k(x, 0) > 0, k(x, T ) � 0, f(x, 0) = 0,

3) k(x, 0) � 0, k(x, T ) < 0, f(x, T ) = 0,

4) k(x, 0) � 0, k(x, T ) � 0.

Then the boundary value problem (1), (2) has a unique solution in W 2,1
2 (Q) and the following

estimate holds:∫
Q

[
(ut)

2 +
n∑

i=1

(utxi)
2 + (Δu)2

]
dQ+ (ρ+ 1)

∫
Q

(
|u|ρ(ut)2 + |u|ρ

n∑
i=1

(uxi)
2
)
dQ

� C3(‖f‖2 + ‖ft‖2), C3 > 0.

Proof. In the case of semilinear parabolic equations with varying time direction, this theo-

rem was proved in [1] by the stationary Galerkin method. Here, we use the modified (nonsta-

tionary) Galerkin method and the method of elliptic regularization.

We begin with the case k(x, 0) > 0, k(x, T ) < 0, f(x, 0) = 0, f(x, T ) = 0. We look for

approximate solutions uN,ε(x, t) to the boundary value problem (1), (2) in the form

uN,ε(x, t) ≡ v(x, t) =

N∑
k=1

cN,ε
k (t)ϕk(x),

where cN,ε
k ∈ W 2

2 (0, T ) are solutions to the boundary value problem (10), (11). We multiply

(10) by cN,ε
l and take the sum with respect to l from 1 to N . Integrating with respect to t, we

find

(f, v) = ε‖vt‖2 + (Lv, v).

By the estimate (3), we obtain the a priori estimate

ε‖vt‖2 +
∫
Q

|v|pdQ+ ‖v‖21,0 � C4‖f‖2, C4 > 0. (12)

Integrating by parts, from (10) and (11) we find

−(f, vtt) = ε‖vtt‖2 +
∫
Q

[(
c+

1

2
kt

)
v2t +

n∑
i=1

v2txi
+ ctvtv + (ρ+ 1)|v|ρv2t

]
dQ

+
1

2

∫
Ω0

kv2t dx− 1

2

∫
ΩT

kv2t dx−
∫
Ω

[ n∑
i=1

vxivtxi + cvvt + |v|ρvvt
]
dx

∣∣∣∣
t=T

t=0

.
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Taking into account the boundary conditions (11) and using the estimate (12) and the Cauchy

inequality |ab| � γa2 + 1
4γ b

2, γ > 0, we arrive at the estimate

ε‖vtt‖2 + ‖vt‖21,0 +
∫
Q

|v|ρv2t dQ � C5(‖f‖2 + ‖ft‖2), C5 > 0. (13)

Integrating by parts, from (10) and (11) we get

−(f,Δv) =

∫
Q

[
(Δv)2 − kvtΔv − cvΔv + (ρ+ 1)‖v‖ρ

n∑
i=1

v2xi

]
dQ

+ ε

∫
Q

n∑
i=1

v2txi
dQ+ ε

∫
Ω

vtΔvdx

∣∣∣∣
t=T

t=0

. (14)

Using the estimate (13) and the Cauchy inequality, from (14) we obtain the a priori estimate

ε

∫
Q

n∑
i=1

v2txi
dQ+

∫
Q

(Δv)2dQ+ (ρ+ 1)

∫
Q

|v|ρ
n∑

i=1

v2xi
dQ � C6(‖f‖2 + ‖ft‖2), C6 > 0. (15)

By (12), (13), and (15), the approximate solutions uN,ε(x, t) satisfy the a priori estimate∫
Q

[
(uN,ε

t )2 +

n∑
i=1

(uN,ε
txi

)2 + (ΔuN,ε)2
]
dQ+ (ρ+ 1)

∫
Q

(
|uN,ε|ρ(uN,ε

t )2 + |uN,ε|ρ
n∑

i=1

(uN,ε
xi

)2
)
dQ

� C7(‖f‖2 + ‖ft‖2), C7 > 0, (16)

which allows us to complete the proof by standard arguments since |uN,ε|ρuN,ε is bounded in

L2(Q) in view of the embedding theorem. The remaining cases are considered in a similar way.

The uniqueness of a solution to the boundary value problem (1), (2) in the class W 2,1
2 (Q)

follows from the inequality (|u|ρu− |v|ρv)(u− v) � 0.

Theorem 3. Let all the assumptions Theorem 2 be satisfied. Then∥∥u− uN,ε
∥∥
1,0

� C8

(‖f‖+ ‖ft‖
)(
ε1/2 + λ

−1/2
N+1

)
, C8 > 0, (17)

where u(x, t) is an exact solution to the boundary value problem (1), (2).

Proof. We again consider the case k(x, 0) > 0, k(x, T ) < 0, f(x, 0) = 0, f(x, T ) = 0. Let

u(x, t) be an exact solution to the boundary value problem (1), (2) which exists in view of

Theorem 2. We represent Lu in the form Lu = L0u + |u|ρu. We note that the function u(x, t)

can be represented as the Fourier series

u(x, t) =

∞∑
k=1

ck(t)ϕk(x), ck(t) = (f, ϕk)0.

Moreover,

−Δu =

∞∑
k=1

ck(t)λkϕk(x).
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Hence
∞∑
k=1

λ2
k

T∫
0

c2k(t)dt = ‖Δu‖2 � C9(‖f‖2 + ‖ft‖2), C9 > 0. (18)

On the other hand, for u(x, t) we have

(Lu, ϕl) = (f, ϕl), l = 1, 2, . . . (19)

In the space L2(Q), we introduce the linear manifold

HN =

{
η(x, t) =

N∑
l=1

dl(t)ϕl(x) : dl ∈ W 1
2 (0, T ), dl(0) = dl(T ) = 0

}
.

By (10) and (19),

(Lεu
N,ε, η) = (f, η), (Lu, η) = (f, η) ∀η ∈ HN .

Hence

(L0(u− uN,ε) + |u|ρu− |uN,ε|ρuN,ε, η) = −ε(uN,ε
tt , η) ∀η ∈ HN .

Setting η = w − uN,ε = (u− uN,ε) + (w − u), w ∈ HN , from the last identity we have

(L0(u− uN,ε), u− uN,ε) + (|u|ρu− |uN,ε|ρuN,ε, u− uN,ε)

= ε(uN,ε
t , wt − uN,ε

t ) + (f − LuN,ε, u− w)− ε

( ∫
Ω

uN,ε
t (w − u)dx

)∣∣∣∣
t=T

t=0

. (20)

We note that {L0u
N,ε} is bounded in L2(Q) and |uN,ε|ρuN,ε is bounded in L2(Q) by the embed-

ding theorem for −1 < ρ � 2/(n− 1). Since |τ |ρτ is monotone, from (20) we get

‖u− uN,ε‖21,0 � C10[ε‖uN,ε
t ‖ ‖wt − uN,ε

t ‖+ ‖f − LuN,ε‖ ‖u− w‖], C10 > 0. (21)

For w =
N∑
k=1

ck(t)ϕk(x) ∈ HN we have

‖u− w‖2 =
∞∑

k=N+1

T∫
0

c2k(t)dt � λ−2
N+1

∞∑
k=N+1

λ2
k

T∫
0

c2k(t)dt

which implies

‖u− w‖ � C11λ
−1
N+1(‖f‖+ ‖ft‖), C11 > 0. (22)

Taking into account (3), (16), (18), and (22), from (21) we derive the error estimate for the

modified Galerkin method (17). We can consider the remaining cases in a similar way with the

linear manifold

HN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
η(x, t) =

N∑
l=1

dl(t)ϕl(x), dl ∈ W 1
2 (0, T ) : dl(0) = 0

}
, k(x, 0) > 0, k(x, T ) � 0,

{
η(x, t) =

N∑
l=1

dl(t)ϕl(x), dl ∈ W 1
2 (0, T ) : dl(T ) = 0

}
, k(x, 0) � 0, k(x, T ) < 0,

{
η(x, t) =

N∑
l=1

dl(t)ϕl(x), dl ∈ W 1
2 (0, T )

}
, k(x, 0) � 0, k(x, T ) � 0.

Theorem 3 is proved.
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