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DISCRETE HEDGING IN THE MEAN/VARIANCE
MODEL FOR EUROPEAN CALL OPTIONS

V.N. Nikulin1

We consider a portfolio with the call option and the relevant asset under the standard assumption
that the market price is a random variable with a lognormal distribution. Minimizing the variance
(hedging risk) of the portfolio on the maturity date of the option, we find the relative value of the
asset per option unit. As a direct consequence, we obtain a statistically fair price of the call option
explicitly. Unlike the well-known Black–Scholes theory, the portfolio cannot be risk-free, because no
additional transactions within the contract are allowed, but the sequence of portfolios reduces the
risk to zero asymptotically. This property is illustrated in the experimental section on the example
of the daily stock prices of 18 leading Australian companies over a three year period.

1. Introduction

The typical asset S, as a process of geometrical Brownian motion [15–17], has the price defined by
the equation

dS

S
= μdt+ σdz,

where μ ∈ R and σ ∈ R+ are the shift and volatility coefficients, and z is the standard Wiener process
with Mdz = 0, M(dz)2 = dt. According to the Ito lemma,

d log S(t) =

(
μ− σ2

2

)
dt+ σdz. (1)

Therefore,

log S(t+ T ) ∼ N

(
logS(t) +

(
μ− σ2

2

)
T, σ

√
T

)
,

where N(a, b) is a normal random variable with mean a and standard deviation b. Denote the corre-
sponding density by

fS(x) =
1√

2π · x · b(T ) exp
(
−(log x− a(T ))2

2 · b2(T )

)
,

where a(T ) = logS(t) +

(
μ− σ2

2

)
T, b(T ) = σ

√
T .

Definition 1. The contract of the European call option allows its holder to purchase a unit of the
underlying asset at a fixed price K (strike price) after the date t+ T in the future, or the holder of the
call option may decide not to exercise the contract if the price of the underlying asset is less than the
exercise price K. Accordingly, the price of the European call option with the maturity date t+ T is

C(t+ T ) = ψ(S(t + T )−K) = max {0, S(t+ T )−K} .

The fundamental problem of financial mathematics [8] is to find a reasonable hedge or an option price
at the time t, prior to the expiration time.
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2. The expectation of the hedge (expected hedge — EH) and the Black–Scholes formula
(BS)

In accordance with [14] and [19] we assume that

Cexp(t) = e−r·T ·Mψ(S(t+ T )−K), (2)

where r is a risk-free rate.
Assumption 1. Assume that the parameters t, T, r, and K are arbitrarily fixed. Then

e−r·T ·Mψ (S(t+ T )−K) = S(t) · e(μ−r)T · Φ(α)−K · e−rT · Φ(β), (3)

where Φ(·) is the distribution function of the standard normal law, and

α =
log

(
S(t)
K

)
+

(
μ+ σ2

2

)
T

σ
√
T

, β = α− σ
√
T .

The proof of formula (3) is given in [16], where it is also noted that (3) coincides with the Black–Scholes
formula for the specific case μ = r :

CBS(t) = S(t) · Φ(αr)−K · e−rT · Φ(βr), (4)

where

αr =
log

(
S(t)
K

)
+

(
r + σ2

2

)
T

σ
√
T

, βr = αr − σ
√
T .

Remark 1. Similar results for the variance gamma processes are given in [11]. Let us also mention
the papers [5, 6], where the formulas for call options were obtained with the methods based on the
Fourier transform. However, assumption (2) neglects the fact that the seller may continue to actively
trade in the stock market during the contract. The Black–Scholes formula (4) gives a unique price of the
European call option [10] for the ideal and continuous trading process. With respect to these conditions
the contract is self-financing and risk-free for both the seller and the buyer. On this financial market
the problem of mean variance hedging in continuous time [7, 18] is to find the best approximation of
the price through self-financing trading strategies, where the optimality criterion is the expected mean
square error [4]. In a series of recent papers, this problem has been formulated and related to the task
of linear-quadratic stochastic control [1, 2, 9].

According to [19], the original Black–Scholes formula is criticized on the grounds that it is based
on completely unrealistic terms of risk-free operation and that the exact adherence to the contract may
prevent maximization of the portfolio.

3. Hedging according to the mean/variance model

Consider the portfolio F , consisting of the call option C and h units of the underlying asset S. As
a consequence, the price of the portfolio (the seller case) can be represented by the following formula:

F (t) = −C(t) + h · S(t) (5)

or

F (t) =

{
(h− 1) · S(t) +K, if S(t) � K,
h · S(t), if S(t) < K.

(6)

According to the fundamental principles of the mean/variance model (MV ) [12], we follow the
rule that the investor considers the expected income as a desirable factor, and the variance as a non-
desirable factor. This rule may be implemented in a different ways. For example, we can define the
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Fig. 1. The behavior of the call option cost C: (a), (c) — depending on the strike price K; (b) and (d) — the
behavior of the sum of the call option and the strike price depending on K. We used the following parameters: (a)
and (b) — S(t) = 20, μ = 0.1, r = 0.05, σ = 1, T = 180/365; (c) and (d) — S(t) = 20, μ = 0.02, r = 0.05, σ =
= 1, T = 180/365; solid, chain, and dotted lines correspond toMV (10), EH (3), and BS (4) solutions respectively.

portfolio structure (or the investing strategy) by maximizing the ratio of mathematical expectation and
the standard deviation of the portfolio, or we can minimize the variance of portfolio (5), assuming that
its mathematical expectation is fixed. In our case we will minimize the variance of portfolio (5), assuming
that the number of call options is fixed. In order to simplify the notations, we consider the portfolio
with a single call option (Fig.1).

The following theorem is the main result of the paper and it determines the value of the parameter
h, minimizing the variance of portfolio (6). The price of the call option hedging (or hedge) can be found
by the formula

CMV(t) = h · S(t)− e−rTMF (t+ T ). (7)

Theorem 1. Suppose that the cost of the portfolio F is defined by (6). Then the hedging problem

min
h

Qvar(F (t+ T )),

where

Qvar(F (t+ T )) := M [F (t+ T )−MF (t+ T )]2 ,

has a unique solution

h =
A4 −K ·A2 + (A2 +A3)(K · A1 −A2)

A4 +A5 − (A2 +A3)2
, (8)
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where the coefficients Ai = Ai(K), i = 1, 5, are defined by the formulas

A1(K) :=
∞∫
K

fS(x)dx = Φ

(
a(T )− logK

b(T )

)
,

A2(K) :=
∞∫
K

xfS(x)dx = exp

(
a(T ) +

b2(T )

2

)
Φ

(
b(T ) +

a(T )− logK

b(T )

)
,

A3(K) :=
K∫
0

xfS(x)dx = exp

(
a(T ) +

b2(T )

2

)
−A2(K),

A4(K) :=
∞∫
K

x2fS(x)dx = exp(2(a(T ) + b2(T )))Φ

(
2b(T ) +

a(T )− logK

b(T )

)
,

A5(K) :=
K∫
0

x2fS(x)dx = exp(2(a(T ) + b2(T ))) −A4(K).

Proof. By the definition of the variance,

Qvar(F (t+ T )) = MF 2(t+ T )− (MF (t+ T ))2 , (9)

where
MF 2(t+ T ) = (h− 1)2A4 + 2K(h− 1)A2 +K2A1 + h2A5,
MF (t+ T ) = h(A2 +A3)−A2 +K ·A1.

Minimizing (9) as a function of h, we find the required solution (8).
Let us now find the hedge for the mean/variance model according to (7):

CMV(t) = h · S(t)− e−rT [h(A2 +A3)−A2 +K · A1] , (10)

where the parameter h is defined in (8), and replace (2)–(3), using new notations:

Cexp(t) = e−rT (A2 −K ·A1). (11)

The above call option is a portfolio with the risk-free asset

F (t) = −C(t) + h, (12)

where h is a parameter. The corresponding standard deviation is invariant with respect to h and can
be calculated by the following formula:

Sdev(F (t+ T )) =
√

A1(1−A1)K2 + 2A2K(A1 − 1) +A4 −A2
2.

Some calculation results with the use of this formula are presented in Fig. 2.
Remark 2. Note that the price (10) can be negative, unlike the price (11), which is always positive

by definition. Using the relations

A2 +A3 = exp

(
a+

b2

2

)
, A4 +A5 = exp(2(a+ b2)),

we can simplify (8):

h(K) =

A4 −K · A2 + exp

(
a+

b2

2

)
(K · A1 −A2)

exp(2a+ b2)(2 exp(b− 1))
. (13)

Let us consider some special properties of the coefficients Ai(K), i = 1, 5:

A1(K) −→
K→0

1, A3(K) −→
K→0

0, A5(K) −→
K→0

0.
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Fig. 2. (a), (c), (e) — standard deviation of the portfolio as a function of K, where the solid line corresponds to
(10), and the chain line corresponds to the portfolio with the risk-free asset (2) (EH-method); (b), (d), (f) — the
value of the parameter h as a function of K. We used the following parameters: (a) and (b) — μ = 0.1, σ = 0.9;
(c) and (d) — μ = 0.1, σ = 1.0; (e) and (f) — μ = 0.1, σ = 1.4. The other parameters are the same as in Fig. 1.

From what was said above, it follows that h(K) −→
K→0

1 and Sdev(K) −→
K→0

0 (see also Fig. 2).

Proposition 2. Assume that σ > 0. Then 0 < h < 1, where the asset split parameter h is defined
in (8).

The proof of Proposition 2 follows from the two lemmas.

Lemma 1. For any v ∈ R and b ∈ R+ the following inequality holds:

Φ(v + b)− Φ(v)

Φ(v)− Φ(v − b)
< exp

(
b2

2
− b · v

)
. (14)

Proof. We have

Φ(v)− Φ(v − b) =
1√
2π

v+b∫
v

exp

(
−(t− b)2

2

)
dt =

=
exp(−0.5b2)√

2π

v+b∫
v

exp(−0.5t2 + bt)dt <
exp(− b2

2 + bv)√
2π

v+b∫
v

exp

(
− t2

2

)
dt =

=
exp(− b2

2 + bv)√
2π

[Φ(v + b)− Φ(v)] .

The proof is complete.

Lemma 2. For any v ∈ R and b ∈ R+ the following inequality holds:

Φ(v) <
eb

2
Φ(v + b) + exp( b

2

2 − bv)Φ(v − b)

1 + exp( b
2

2 − bv)
. (15)
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Proof. We have

eb
2
Φ(v + b)− Φ(v) > eb

2
[Φ(v + b)− Φ(v)] =

eb
2

√
2π

v+b∫
v

exp

(
− t2

2

)
dt =

=
eb

2

√
2π

v∫
v−b

exp

(
−(t+ b)2

2

)
dt =

=
exp( b

2

2 )√
2π

v∫
v−b

exp

(
− t2

2
− bt

)
dt > exp

(
b2

2
− bv

)
[Φ(v)− Φ(v − b)] .

The proof is complete.
Using the definition of the coefficients Ai(K), i = 1, 5, let us rewrite (13) in the following form:

h =
eb

2
Φ(v + b)− Φ(v)− exp

(
b2
/
2− bv

)
[Φ(v)− Φ(v − b)]

exp(b2)− 1
,

where

v = b+
a− logK

b
.

Then the exact upper and lower bounds for h (as it is established in Proposition 2) are found from (14)
and (15), if σ > 0.

Remark 3. Figure 1 (a), (c) illustrates the property of decrease of the call option price as a function
of the strike price. It is interesting that the sum of the call option and the strike price is an increasing
function of the strike price. This fact is quite understandable, since the second part of the deal (buying
the assets) is not mandatory. According to Fig. 1, formulas (3) and (10) are more flexible compared to
the Black–Scholes formula, which does not depend on the shift coefficient μ.

4. Experiments

The experimental part of the study was based on the daily stock prices of 18 leading Australian
companies over a three-year period.

The estimate for the current volatility [13] was calculated on the basis of representation (1) by the
formula

σ̂i,t =

√∑n
j=1

(
Ri,t−j − R̄i,t

)2
n− 1

, (16)

where

Ri,t−j = log
Si,t−j+1

Si,t−j
;

Si,t is a final price of the ith asset in a day t > n, and

R̄i,t =
1

n

n∑
j=1

Ri,t−j .

The current shift (shift parameter) was estimated as follows:

μ̂i,t = R̄i,t +
1

2
σ̂2
i,t. (17)

The left column in Fig.3 illustrates the stock prices of Fairfax, Harvey Norman, Rio–Tinto, Tabcorp,
and Westpac during the 1000 day period (where 2006 January 10 is the last day); the middle and the
right columns illustrate the behavior of the mean and the standard deviation, which are calculated
according to (17) and (16) with the use of the smoothing parameter n = 120.
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Fig. 3. Daily stock prices.

4.1. The mathematical expectation of the hedge

The call option price Ci,t (the right column in Fig. 4) was calculated according to (11) under the
following condition: Ci,t � 0.03 · Si,t (administrative costs are no less than 3%). The strike price was
calculated with the use of the estimates of the shift and volatility coefficients

Ki,t = Si,t · exp
(

μi,t · T
β + γ · σi,t

)
, β = 1.1, γ = 20.

The left and the middle columns in Fig. 4 correspond to the income of the buyer PBi,t and the seller
PSi,t, which were calculated for 100 consecutive days (where 2006 January 10 is the last day). The
calculations were made with the use of the following rules:

PBi,t+T+j+1 = PBi,t+T+j+

+

{
Si,t+T+j+1 −Ki,t+j+1 −Ci,t+j+1, if Si,t+T+j+1 � Ki,t+j+1;
−Ci,t+j+1, if Si,t+T+j+1 < Ki,t+j+1,

(18)

and

PSi,t+T+j+1 = PSi,t+T+j+

+

{
Ki,t+j+1 + Ci,t+j+1 − Si,t+T+j+1, if Si,t+T+j+1 � Ki,t+j+1;
Ci,t+j+1, if Si,t+T+j+1Ki,t+j+1,

(19)

where the initial values of PBi,t+T and PSi,t+T are equal to zero.

In order to estimate the efficiency of this approach, we used m assets with the special weight coeffi-
cients: wi ∝ (ui)

−1 ,
∑m

i=1 wi = 1, where {ui, i = 1,m, } are the average stock prices for the considered
period.
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Fig. 4. The EH-method.
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Fig. 5. MV method: the first two columns represent the change in the income of the buyer (18) and the seller
(21) during the 100 day period; the third column represents the change of the parameter h (8).

Average incomes of the buyers ABt and the sellers ASt were calculated with the use of the formulas

ABt =

m∑
i=1

wi · PBi,t, (20a)

ASt =

m∑
i=1

wi · PSi,t, (20b)

ATt =
m∑
i=1

wi · Ci,t. (20c)

4.2. MV hedge

Here we need to modify (19) and (20a); all other formulas are the same as in the previous section:

PSi,t+T+j+1 = PSi,t+T+j + Ci,t+j+1+

+

{
(1− hi,j+1)(Ki,t+j+1 − Si,t+T+j+1), if Si,t+T+j+1 � Ki,t+j+1;
hi,j+1(Si,t+T+j+1 − Si,t+j+1), otherwise,

. (21)

and

AQt =

m∑
i=1

wi · (Ci,t + hi,tSi,t). (22)

The seller’s income in this case is higher than the buyer’s income. The calculation results with the use
of the EH and MV algorithms for m = 18 assets are presented in Fig. 6 and in Table 1.

The prices in the table are given in cents. The second column represents the average price during
the 100 day period (see Figs. 4–6). Columns 3–6 represent the final profit of the buyer and the seller,
obtained by applying the EH and MV methods.
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Fig. 6. The general case of m = 18 assets. The implementation of the portfolio based on the EH- (1st and 2nd
rows) and MV (3d and 4th rows) algorithms, where the solid line represents the income of the buyer (1st and 3d
rows) and the seller (2nd and 4th rows), and the chain line represents the average turnover of financial resources.
All calculations were made in accordance with (20a–20c) and (22), where the parameter h is defined in (8). The
right column illustrates the corresponding incomes.

Table 1

The name Average price EH method MV method
of the asset of the asset Buying Selling Buying Selling

ANZ Bank 2306.53 922.63 −922.63 1801.59 3125.66

CSS bank 3909.16 −1410.77 1410.77 −485.93 5702.04

Coles Myers 990.6 24.78 −24.78 461.42 1477.59

David Jones 236.11 1428.42 −1428.42 1844.33 −513.65

Fairfax 417.18 -816.73 816.73 −657.82 −58.73

Harvey Norman 277.67 671.77 −671.77 347.12 642.38

National Bank 3193.27 −4433.27 4433.27 −4172.65 6730.61

Publish.Brodcast. 1625.36 3416 −3416 2419.06 2119.44

Qantas 350.14 2234.44 −2234.44 1344.69 64.72

QBE Insurance 1813.72 1216.89 −1216.89 5023.97 1466.49

Rio–Tinto 5788.09 33156.66 −33156.66 47506.18 −10089.97

Santos 1141.14 −9401.15 9401.15 −2086.32 3910.58

Tabcorp 1606.01 −183.37 183.37 −1558.01 2335.71

TEN Network 342.78 −1192.97 1192.97 −1816.85 818.41

Telstra 412.26 −1372.16 1372.16 −1924.31 −1068.74

Westpac Bank 2104.37 3293.2 −3293.2 2949.07 2272.26

Woolworth 1633.53 −3596.63 3596.63 −2517.34 3440.02

Woodside
Petroleum 3361.07 −21427.93 21427.93 3208.89 11465.86
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5. Concluding notes

The classical equation (2) determines such hedging where the transactions are statistically profitable
for the buyer if the price is lower, or for the seller if the price is higher. Any transaction is not risk-free,
but a sequence of independent transactions may substantially reduce the risk (see Fig.6 and Table 1).
In contrast, the risk-free formula (4) was obtained under the ideal assumption of absolute liquidity of
the market. This means that every transaction is a continuous sequence of trades, which (as noted in
many articles) cannot be implemented in real time.

Combining the call option with the corresponding asset gives an additional degree of flexibility. On
the one hand, it helps to reduce the risk to the seller. On the other hand, the price of the call option
will be reduced if the demand for the asset is historically high. In any case, the level of the MV hedge
is located between the BS and EH prices. Therefore the MV hedge can be considered as a compromise
between the two major decisions (see Fig. 1). Comparing the third and the fourth rows with the first
two rows (see graphs in Fig. 6), which were built using the same governing parameters, we can see the
benefits of the MV method in comparison with the EH method.
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