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EMPIRICAL BAYESIAN ESTIMATION IN THE
MODEL OF COMPETING RISKS

A.A. Abdushukurov1 and A. L. Muminov1

We study empirical semi-parametric Bayesian estimates of exponential functionals in the model of
competing risks. For these estimates we establish the properties of the uniform strong consistency
and iterated logarithm type laws.

1. Construction of estimates

Let Z : (Ω,A) −→ (X ,B) be a random variable (r.v.) and {A(1), . . . , A(k)} be events, forming a
partition of the space of elementary events Ω. With the use of continuous probability measure P defined
on the measurable space (Ω,A), we define the continuous distributions {Q(i)(B) = P (ω ∩A(i) : Z(ω) ∈
∈ B), B ∈ B, i ∈ J}, where B is the Borel σ-algebra on X (X ⊆ R = (−∞,∞)) and J = {1, . . . , k}.
Note that for all B ∈ B the following relation holds:

Q(1)(B) + . . .+Q(k)(B) = P (ω : Z(ω) ∈ B) = Q(B).

Let {α(i)(·), i ∈ J} be nonnegative continuous finitely additive measures on (X ,B), and α(·) be their
sum: α(B) = α(1)(B)+ . . .+α(k)(B), B ∈ B. Denote by D(α(1), . . . , α(k)) the Dirichlet distribution with
the parameter (α(1), . . . , α(k)) . Following [1, 2], we consider (Q(1), . . . , Q(k)) as a random vector process
on (X ,B) with the prior Dirichlet distribution D(α(1), . . . , α(k)). Then the sub-distributions H(t; i) =
= P (Z � t, A(i)), (t; i) ∈ R× J , are continuous r.v.s with the corresponding prior beta-distributions

Be(α(i)(t);α(R) − α(i)(t)), (t; i) ∈ R× J ,

where α(i)(t) = α(i)((−∞; t]). In the considered generalized model of competing risks (MCR), from the
Bayesian point of view the main interest is in joint properties of the random pairs (Z;A(i)), i ∈ J , and
the task is to estimate the functionals of the cumulative hazard functions (c.h.f.)

Λ(t; i) =

∫

(−∞; t]

dH(u; i)

1−H(u)
, (t; i) ∈ R× J, (1)

from the independent random sample S(n) = {(Zj ; δ
(1)
j , . . . , δ

(k)
j ), j = 1, n}, where

H(t) = P (Z � t) = H(t; 1) + . . .+H(t; k)

is the distribution function (d.f.) of the r.v. Z; δ
(i)
j = I(A

(i)
j ) is the indicator, and

{(Zj ;A
(1)
j , . . . , A

(k)
j ), j � 1}

is a sequence of independent copies of the sample (Z;A(1), . . . , A(k)). The exponential functionals

F (t; i) = 1− exp(−Λ(t; i)), (t; i) ∈ R× J, (2)
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are important functionals of c.h.f. (1), which possess the properties of sub-distributions [1]. From [1, 4, 5]
it follows that Bayesian estimates of the distributions H(t; i) and H(t) with respect to the quadratic
loss function are the statistics

Hα
n (t; i) = qnH0(t; i) + (1− qn)Hn(t; i) and Hα

n (t) = qnH0(t) + (1− qn)Hn(t),

where

qn =
α(R)

α(R) + n
, H0(t; i) =

α(i)(t)

α(R)
, H0(t) =

k∑
i=1

H0(t; i) =
α(t)

α(R)
,

Hn(t; i) =
1

n

n∑
k=1

I(Zk � t; δ
(i)
k = 1), Hn(t) =

k∑
i=1

Hn(t; i).

In [1], with the use of these Bayesian estimates the author constructed and studied the asymptotic
properties of the estimates for functionals (2) of the following three types:

Fα
1n(t; i) = 1− exp(−Λα

n(t; i)),

Fα
2n(t; i) = 1−

∏
u�t

(1− (Λα
n(u; i)− Λα

n(u; i))), (3)

Fα
3n(t; i) = 1− (1−Hα

n (t; i))
Rα

n (t;i),

where Rα
n(t; i) = Λα

n(t; i)(Λ
α
n(t))

−1, (t; i) ∈ R× J ;

Λα
n(t) =

∫

(−∞; t]

dHα
n (u)

1−Hα
n (u)

=
n∑

i=1

Λα
n(t; i), Λα

n(t; i) =

∫

(−∞; t]

dHα
n (u; i)

1−Hα
n (u)

,

and Λα
n(t) is the estimate for Λ(t; i). For estimates (3) the author of [1] established the law of iterated

logarithm (LIL) and the results of approximation by the same sequence of Gaussian processes. The
main result of [2] is the theorem on the uniform closeness of order n−1 a.s. (almost surely) between
estimates (3) and the Bayesian-type estimate proposed in [9] and studied by the authors of [6, 7, 10] in
the simple model of right random censoring. In this paper we study analogs of estimates (3) in the
case where the measures α(i)(t) = α(i)(t, θ(i)), i = 1, k, are defined up to some unknown parameter
θ(i) ∈ Θ(i) ⊆ R, which is also subjected to estimation. Let θ̂(i) be some estimate of θ(i) from the sample
S(n), and α̂(i)(t) = α(i)(t, θ̂(i)). Here α(i)(R) = βi, i = 1, k, are unknown. Then α̂(t) = α(t, θ̂(i)), where
θ̂ = (θ̂(1), . . . , θ̂(k)) is an estimate of the vector parameter θ = (θ(1), . . . , θ(k)) and α(R) = β = β1+. . .+βk
is a prior size of the sample. Let θ̂(i) be n1/2-consistent estimates, allowing the following representation
for all i ∈ J with probability 1:

(I(θ0)n)
1/2(θ̂(i) − θ

(i)
0 ) = n−1/2

n∑
j=1

l(i)(Zj ; δ
(i)
j ) + ε(i)n , (4)

where θ
(i)
0 is the real value of θ(i), l(i) is a measurable function (possibly depending on θ

(i)
0 ) with

M∗
θ0
l(i)(Zj ; δ

(i)
j ) = 0, M∗

θ0
[l(i)(Zj ; δ

(i)
j )]2 = I(θ0) ∈ (0;∞), and ε

(i)
n = O(n−λ), λ > 0. Here M∗

θ0
is

the operator of mathematical expectation and is interpreted as M∗
θ [·] = Mθ[M [·]], where the first aver-

aging M is over the joint distribution of the vector (Zj ; δ
(1)
j , . . . , δ

(k)
j ), and the second averaging Mθ is

over the Dirichlet distribution at the point θ. From [1] we have

MθH(t; i) = H0(t; i) =
α(i)(t; θ)

α(R)
, i = 1, k.
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The conditions necessary for the validity of (4) are given in Theorem 8.1 of [3]. In particular, from the
representation (4) we obtain the following properties of the estimates θ̂(i) for all i ∈ J :

n1/2(θ̂(i) − θ
(i)
0 )

d−−−→
n→∞ N(0; I−1(θ0)), (5)

lim
n→∞(θ̂(i) − θ

(i)
0 )(I(θ0))

1/2Ln = 1 a.s. (6)

for Ln =

(
n

2 log log n

)1/2

and

θ̂(i)
a.s.−−−→
n→∞ θ

(i)
0 . (7)

Let us replace in estimates (3) the measures α(i)(t) with their parametric estimates α̂(i)(t) and denote
the resulting estimates of F (t; i) by F̂α

mn(t; i), m = 1, 2, 3, (t; i) ∈ R× J . In this case the corresponding
estimates of the Bayesian decision rules H0(t; i) and H0(t) are

Ĥ0(t; i) =
α̂(i)(t)

β
and Ĥ0(t) = Ĥ0(t; 1) + . . . + Ĥ0(t; k),

for which Ĥ0(∞; i) = βi
β are known and Ĥ0(∞) = 1. The estimates obtained by replacing α(i) with α̂(i)

with good reason can be called empirical Bayesian estimates [4].

2. The choice of measure, reflecting the a priori idea of the studied model

Let us give an example of how the measures α(i)(t; θ(i)) can be chosen and the parameters θ(i) can
be estimated. Let

α(i)(t; θ(i)) = βi

(
1− exp

(
−g(t)

θ(i)

))
,

where t � 0, θ(i) > 0, βi > 0 (known), and g(t) be strictly increasing, ∃g′(t), g(0) = 0 and g(∞) = ∞.
Then for all i = 1, k : α(i)(0; θ(i)) = 0, α(i)(∞; θ(i)) = βi and

dα(i)(t; θ(i))

dt
= βi

g′(t)
θ(i)

exp

(
−g(t)

θ(i)

)
= α(i)′(t; θ(i)), (8)

dα(i)(t; θ(i))

dθ(i)
= βi

g(t)

(θ(i))2
exp

(
−g(t)

θ(i)

)
. (9)

We construct the estimates of the parameters θ(i) in two ways. Let H(0) = 0 and lim
x→∞ g(x)(1−H(x)) = 0

a.s.

The method of maximum likelihood (MML). Let us construct the likelihood function from the
sample S(n) with the use of the densities of prior representations

d

dt

[
H0(t; i)

]
=

1

β
α(i)′(t; θ(i)) : Ln(θ) =

n∏
j=1

k∏
i=1

{
1

β
α(i)′(Zj ; θ

(i))

}δ
(l)
j

=

=
1

βn

n∏
j=1

g′(Zj)

k∏
l=1

(
βl
θ(l)

) n∑

j=1
δ
(l)
j

· exp
(
−

n∑
j=1

k∑
l=1

δ
(l)
j

g(Zj)

θ(i)

)
.
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Hence we obtain the system

d logLn(θ)

dθ(i)
= − 1

θ(i)

n∑
j=1

δ
(i)
j +

1

(θ(i))2

n∑
j=1

δ
(i)
j g(Zj) = 0, i = 1, k,

and then the MML estimates (MLE) for θ(i) in the form

θ̂(i) =

( n∑
j=1

δ
(i)
j

)−1

·
n∑

j=1

δ
(i)
j g(Zj), i = 1, k. (10)

The method of least squares (MLS). Before applying the MLS, let us calculate the following
mathematical expectations:

Mg(Zj) =

∞∫

0

g(t)dH(t) =

∞∫

0

(1−H(t))dg(t),

M∗
θ g(Zj) = Mθ[Mg(Zj)] =

∞∫

0

Mθ(1−H(t))dg(t) =

∞∫

0

[
1− α(t; θ)

β

]
dg(t) =

=

∞∫

0

[
1− 1

β

k∑
i=1

βi

(
1− exp

(
−g(t)

θ(i)

))]
dg(t) =

1

β

k∑
i=1

βi

∞∫

0

exp

(
−g(t)

θ(i)

)
dg(t) =

=
1

β

k∑
i=1

βiθ
(i) =

k∑
i=1

θ(i)MθH(∞; i) =

k∑
i=1

θ(i)Mθ[Mδ
(i)
j ].

Thus,

M∗
θ g(Zj)−

k∑
i=1

θ(i)M∗
θ δ

(i)
j = 0. (11)

With the use of (11) we estimate the parameters θ(i) minimizing the empirical quadratic deviation

U2
n(θ) =

1

n

n∑
j=1

[g(Zj)−
k∑

l=1

θ(i)δ
(l)
j ]2 → min,

which yields the MLS estimate (LSE) for θ(i), i = 1, k . From the MLS system

dU2
n(θ)

dθ(i)
=

−2

n

n∑
j=1

[g(Zj)−
k∑

l=1

θ(l)δ
(l)
j ]δ

(i)
j = 0, i = 1, k,

we obtain estimates (10). Thus, the MLE and LSE of parameters θ(i) coincide and are given by (10).
Note that both methods are usual statistical methods and not Bayesian ones. Let us show that for
estimates (10) representation (4) holds with

l(i)(Zj ; δ
(i)
j ) = − 1

θ(i)
δ
(i)
j +

1

(θ(i))2
δ
(i)
j g(Zj), i = 1, k.

Since for all i = 1, k

Ml(i)(Zj ; δ
(i)
j ) = −H(∞; i)

θ(i)
+

1

(θ(i))2

∞∫

0

g(t)dH(t; i),
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then

M∗
θ l

(i)(Zj ; δ
(i)
j ) = −H0(∞; i)

θ(i)
+

1

(θ(i))2

∞∫

0

g(t)dH0(t; i) =

= − βi

θ(i)β
+

βi

(θ(i))2β

∞∫

0

g(t)de
−
g(t)

θ(i) = 0

and, similarly,

M∗
θ [l

(i)(Zj ; δ
(i)
j )]2 = Mθ

{
H0(∞; i)

(θ(i))2
− 2

(θ(i))3

∞∫

0

g(t)dH(t; i)+

+
1

(θ(i))4

∞∫

0

g2(t)dH(t; i)

}
=

βi

(θ(i))2β
+

2βi

(θ(i))3β

∞∫

0

g(t)de
−
g(t)

θ(i) −

− βi
(θ(i))4β

∞∫

0

g2(t)de
−
g(t)

θ(i) =
βi

(θ(i))2β
∈ (0;∞).

Thus, for estimates (10), representation (4) and, hence, properties (5)–(7) hold. The considered example
of exponential measures α(i)(t; θ(i)) contains the corresponding measure from [8], which is obtained with
k = 1 and g(t) ≡ t. However, we propose three types of estimates for F (t; i), which differ from
the multiplicative estimate from [8]. Since we consider more general measures than exponential, the
estimates of the parameters of which satisfy representation (4), we can also consider a generalized
analog of the estimate from [8] in the following form:

F̂α
4n(t; i) = 1− (1− Ĥα

n (t))

n∏
j=1

[
1− Ĥα

n (Zj) +
1

n+β

1− Ĥα
n (Zj)

]γ(i)
j (t)

, (12)

where γ
(i)
j (t) = (1 − δ

(i)
j )I(Zj � t). Note that the estimate of type (12) with the known parameters

α(i), which is Bayesian with respect to the quadratic risk in the MCR, was studied in [2], where the
author established its uniform closeness of order O(n−1) a.s. to estimates (3). In this sense, estimate
(3) can be called asymptotically Bayesian, and {F̂α

mn(t; i),m = 1, 4} can be called empirically Bayesian.
Since the difference between the estimates Fα

mn and F̂α
mn, m = 1, 4, is that in the empirical estimates

the prior sub-distributions H0(t; i) are estimated by Ĥ0(t; i), we provide only additional calculations in
the proofs of the properties of empirical estimates. When studying the empirical estimates, the question
arises concerning the choice of parameters βi, i = 1, k. If, following the authors of [8], we proceed from
the mean squared error of the estimates Hα

n (t; i):

M [Hα
n (t; i)−H(t; i)]2 = M [qn(H0(t; i)−H(t; i)) + (1− qn)(Hn(t; i) −H(t; i))]2 =

= q2n(H0(t; i) −H(t; i))2 + (1− qn)
2H(t; i)(1 −H(t; i))

n
,

where the first term is the square of the bias introduced into the Bayesian estimate Hα
n (t; i) by the

prior representation H0(t; i) of the sub-distribution H(t; i), and the second one is the variance of the
empirical sub-distribution Hn(t; i), then it converges to zero for βi = O(nci), where ci < 1, i = 1, k. If
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we require that both terms have the same order of smallness, then we must choose βi = O(n
1
2 ), i = 1, k.

For simplicity, we choose the prior sample size as α(R) = β = n
1
2 , and then

qn =
1

1 + n1/2
< n−1/2. (13)

Let Ki be a compact set containing the point θ(i), the derivatives
dα(i)(t; θ(i))

dθ(i)
exist, and

sup
(t;θ(i))∈R×Ki

∣∣∣∣∣
dα(i)(t; θ(i))

dθ(i)

∣∣∣∣∣= O(βi), i = 1, k. (14)

According to (9), condition (14) holds for exponential measures. Then for each i = 1, k the following
inequality holds a.s.:

sup
(t;θ(i))∈R×Ki

|Ĥα
n (t; i)−Hα

n (t; i)| � qn · sup
(t;θ(i))∈R×Ki

|Ĥ0(t; i)−H0(t; i)| �

� qn
β

· sup
(t;θ(i))∈R×Ki

|α(i)(t; θ̂(i))− α(i)(t; θ(i))| � (15)

� qn
β

sup
(t;θ(i))∈R×Ki

∣∣∣∣∣
dα(i)(t; θ(i))

dθ(i)

∣∣∣∣∣·|θ̂(i) − θ(i)| = O(qn · L−1
n ) = O

(
(log log n)1/2

n

)
.

This inequality is derived with the use of the mean value theorem, LIL (6), and relations (13), (14),
β(i) < β, i = 1, k. Now with the use of (15) and the LIL for the empirical sub-distributions, we obtain

sup
(t;θ(i))∈R×Ki

|Ĥα
n (t; i)−H(t; i)| � qn sup

(t;θ(i))∈R×Ki

|Ĥ0(t; i)−H0(t; i)| �

� qn sup
(t;θ(i))∈R×Ki

|H0(t; i)−Hn(t; i)| + sup
−∞<t<∞

|Hn(t; i)−H(t; i)| = (16)

= O(qn · L−1
n ) +O(qn) +O(L−1

n ) = O(L−1
n ) = O

((
log log n

n

)1/2
)

a.s.

For the parametric Bayesian estimates Λ̂α
n(t; i) of c.h.f. (1), the LIL holds. Let

T < TH = inf{t ∈ R : H(t) = 1}.
Theorem 1. Assume that relations (4) and (14) hold. Then for all i ∈ J

sup
−∞<t�T

|Λ̂α
n(t; i) − Λ(t; i)| = O

((
log log n

n

)1/2
)

a.s.

Let the sequence {Tn, n � 1} be such that Tn < TH and Tn → ∞ for n → ∞ in a way that

1−H(Tn) �
(
log log n

n

)1/2

.

Then for all i ∈ J

sup
−∞<t�Tn

|(1 −H(t))(Λ̂α
n(t; i) − Λ(t; i))| = O

((
log log n

n

)1/2
)

a.s.
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The proof of Theorem 1 is the same as that of Theorem 3.4.1 from [1]. One just needs to take into
consideration estimates (13), (15), and (16).

Let us now formulate the corresponding LIL-type results for all introduced estimates of the expo-
nential functionals.

Theorem 2. Under the conditions of Theorem 1, for m = 1, 4 and i ∈ J we have

sup
−∞<t<Tn

|F̂α
mn(t; i) − F (t; i)| = O

((
log log n

n

)1/2
)

a.s.,

sup
−∞<t<Tn

|(1 −H(t))(Fα
n (t; i) − F (t; i))| = O

(
max

{(
log log n

n

)1/2

, λ(i)(n)

})
a.s.,

where
λ(i)(n) = (1−H(Tn))(1 − F (Tn; i)).

The proof of Theorem 2 for m = 1, 2, 3 repeats that of Theorem 3.4.2 from [1], and for m = 4
repeats the proof of the main theorem of [2]. One just needs to use estimate (13) for qn, from which for
m = 1, 2, 3 and i ∈ J it follows that

sup
−∞<t<T

|F̂α
mn(t; i)− F̂α

4n(t; i)| = O

(
1

n1/2

)
a.s.
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