
Journal of Mathematical Sciences, Vol. 226, No. 4, October, 2017

OPERATOR ESTIMATES IN HOMOGENIZATION
OF ELLIPTIC SYSTEMS OF EQUATIONS

S. E. Pastukhova

Moscow Technological University (MIREA)
78, pr. Vernadskogo, Moscow 119454, Russia

pas-se@yandex.ru UDC 517.946

We study homogenization of nonselfadjoint second order elliptic systems with ε-periodic

rapidly oscillating coefficients as ε → 0. We obtain the L2- and H1-estimates for

the homogenization error of order ε. The estimates admit the operator form and can

be written in terms of the resolvents of the original and approximate systems in the

operator norm ‖ · ‖L2→L2 or ‖ · ‖L2→H1. The shift method is used for obtaining such

estimates. Bibliography: 20 titles.

1 Introduction: Operator Estimates in Homogenization
and Shift Method

Error estimates have always been in the focus of homogenization theory (cf., for example, [1]–[3]).

Such estimates are proved in different norms depending on the specific nature of the problem

under consideration. For example, the H1- and L2-norms connected with energy estimates are

natural for second order elliptic equations of divergence form. In the early results, the majorants

in the estimates depend on the data of the problem in such a way that the estimates cannot be

given an operator meaning. We explain by an example in what situations the error estimate in

homogenization admits the operator interpretation. Let the original and homogenized equations

be written in the resolvent form, and let their solutions can be represented as the action of the

resolvents of the corresponding operators on the right-hand sides of the equations:

uε = (Aε + 1)−1f, u0 = (A0 + 1)−1f.

Assume that for small ε (0 < ε � ε0) the following estimate holds:

‖uε − u0‖L2 � εc‖f‖L2 , (1.1)

where the constant depends only on the dimension and ellipticity constant. Then, by the

definition of the operator norm, the estimate (1.1) implies the following estimate in the operator

norm for the difference of resolvents:

‖(Aε + 1)−1 − (A0 + 1)−1‖L2→L2 � εc, 0 < ε � ε0.
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Thus, the error estimate (1.1) admits the operator interpretation.

Over last decade, there has been an increasing interest in operator error estimates in homog-

enization theory (cf. [4] and the references in [5]).

From the methodological point of view, this paper continues the study going back to the

papers [6] and [7], where the shift method and its modification based on the Steklov average (or

smoothing) were proposed.

We recall the main steps of the shift method and its modifications. First, an additional

integration parameter is introduced, directly via shift or indirectly via Steklov averages. Second,

a residual for the first approximation to the original equation is subject to a specific analysis.

Note that the first approximation can involve a shift with respect fast variables or smoothing with

respect to slow variables, which makes it possible to obtain operator estimates. In many cases, in

particular, for scalar problems, it is possible to pass from the obtained H1-estimates with shifted

or smoothed first approximation to the standard first approximation, but this is not the case for

a general vector problem because the classical first approximation not necessarily belongs to an

H1-space. Hence a question arises how to find a suitable form of the first approximation. This

question was answered in [7] with the help of Steklov averages.

The universality of the shift method can be seen already in the early works [6]–[12] devoted

to obtaining operator estimates in homogenization by the shift method. In particular, it was

shown there that the method is applicable to equations of different type, elliptic and parabolic,

scalar and vector, linear and nonlinear, not necessarily selfadjoint and, possibly, with various

type degenerations (cf. also the references in [5]).

Another feature of the shift method is that it is applicable to problems with not only periodic

but also locally periodic and many-scale coefficients (cf. [13] and the references in [5]). We recall

that a function of the form f(x, xε ) is said to be locally periodic if the function f(x, y), x ∈ R
d,

y ∈ R
d, is periodic only with respect to y, so that f(x, xε ) slowly varies and simultaneously

rapidly oscillates with respect to different groups of variables for small ε > 0. By a multi-scale

function we mean a function that is periodic with respect to different groups of variables with

different periods provided that the periods are infinitely small of different order as ε → 0. For an

example of a multi-scale function one can consider a function of the form f(xε ,
x
δ ), where f(y, z),

y ∈ R
d, z ∈ R

d, is 1-periodic with respect to all variables, δ → 0 and δ/ε → 0 as ε → 0.

In [6, 7], as an example of a vector problem, the system of equations of elasticity theory with

ε-periodic coefficients was intentionally discussed in order to clarify how the shift method works

in the vector case and how technical difficulties of vector analysis could be reduced to similar

ones in the scalar case,

For systems of elasticity theory the corresponding fourth order tensor possesses symmetry

properties (cf., for example, [3, Chapter XII]). Respectively, a special language is required for

problems of elasticity theory because of specific relations and inequalities. For example, if the

problem is formulated in terms of symmetric gradients of vector-valued functions, then various

Korn inequalities are considered as counterparts of the Friedrichs and Poincaré inequalities.

However, the symmetry properties of a fourth order tensor are not essential in the shift method.

In this paper, we show that the tools used earlier for systems of elasticity theory can be

also applied to a second order elliptic system of general form. For this purpose no new original

concepts and ideas are required, but only the notation becomes much more cumbersome.

The main results of the paper are presented in Section 3 (Theorems 3.1 and 3.2).
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Unlike problems of elasticity theory, the ellipticity condition for a tensor is formulated not as

an algebraic relation, but in terms of the coercitivity inequality for the energy integral (cf. (3.4)

below). Such an approach to the definition of ellipticity was used, for example, in the survey

[14] on the G-convergence of elliptic operators. This ellipticity condition should be separately

verified for each particular system. For the system of elasticity theory this condition follows from

the algebraic positive definiteness condition for fourth order tensors and the Korn inequality for

compactly supported vector-valued functions.

This paper was planned and discussed with Professor V. V. Zhikov. In fact, this paper could

have appeared more than 10 years ago, after publication of the papers [6, 7]. However, other

problems, more important and urgent, as it seemed to us then, distracted us from this topic.

After the untimely death of V. V. Zhikov, I consider it my duty to bring our plan to life.

2 Homogenization in the Scalar Case

For better understanding the results of the vector theory, we first discuss the scalar case. In

this section, we consider the diffusion equation in the classical setting. In Section 3, where we

proceed with a general elliptic system, we will see that there is a great similarity between the

scalar and vector theories, but some differences are also observed. The differences are mainly

caused by the absence of maximum principles for vector problems.

Considering the scalar case, we restrict ourselves to formulations and some remarks, whereas

detailed proofs are given in the vector case.

2.1. L2-estimate for homogenization. In homogenization theory, the following elliptic

scalar equation in R
d (d � 2) is well studied (cf., for example, [1]–[3]):

uε ∈ H1(Rd), Aεuε + uε = f, f∈L2(Rd),

Aε = −div aε(x)∇, aε(x) = a(ε−1x),
(2.1)

where a(x) = {ajk(x)}dj,k=1 is a measurable periodic matrix with real entries and the periodicity

cell is the unit cube � = [−1
2 ,

1
2)

d. While dealing with the scalar case, all the function spaces used

in this section, for example, H1(Rd) and L2(Rd) are assumed (only for the sake of simplicity)

to consist of real-valued functions.

Let the ellipticity and boundedness conditions hold:

λ|ξ|2 � aξ · ξ, aξ · η � λ−1|ξ| |η| ∀ξ, η ∈ R
d (2.2)

for some λ > 0. The operator Aε depends on the parameter ε ∈ (0, 1] and has rapidly oscillating

ε-periodic coefficients for small ε.

With Equation (2.1) we associate the homogenized equation

u0 ∈ H1(Rd), A0u0 + u0 = −div a0∇u0 + u0 = f, (2.3)

where a0 is a constant positive definite matrix. The matrix a0 can be found by the known

procedure in terms of solutions to auxiliary problems on the periodicity cell � (cf. (2.12) and

(2.13)).
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Solutions to Equations (2.1) and (2.3) are understood in the sense of the theory of distribu-

tions on R
d, i.e., in the sense of integral identities on smooth compactly supported functions.

For example, for Equation (2.1) we consider the integral identity

∫

Rd

[aε(x)∇uε∇ · ϕ+ uεϕ] dx =

∫

Rd

fϕ dx, ϕ ∈ C∞
0 (Rd). (2.4)

By closure, for a test function we can take any function ϕ∈H1(Rd), in particular, the solution

itself uε. Hence we have the energy equality and ε-uniform energy estimate

λ‖∇uε‖2 + ‖uε‖2
(2.2)1
� (aε∇uε,∇uε) + (uε, uε) = (f, uε) � ‖f‖‖uε‖ � ‖f‖2. (2.5)

Therefore, the family uε is bounded in H1(Rd) and, consequently, weakly compact in H1
loc(R

d).

Hence we can talk about the limit function for the family uε. It turns out that the limit function

is a solution to the homogenized equation. Various methods for proving this fact are known.

Throughout the paper, we use the simplified notation for the norm and inner product in

L2(Rd):

‖ · ‖ = ‖ · ‖L2(Rd), (· , · ) = (· , · )L2(Rd). (2.6)

We often use the same notation in the scalar and vector cases (for example, for the spaces L2(Rd)

and L2(Rd)
d
).

The solvability of Equations (2.1) and (2.3) is proved by using the Lax–Milgram theorem.

In the language of operators this means the following. By the condition (2.2), the differential

operators Aε and A0 realize bounded mappings from H1(Rd) to the dual H−1(Rd) = (H1(Rd))∗.
Namely, with any u ∈ H1(Rd) we can associate functionals Aεu and A0u such that

〈Aεu, ϕ〉 = (aε∇u,∇ϕ), ϕ ∈ H1(Rd),

〈A0u, ϕ〉 = (a0∇u,∇ϕ), ϕ ∈ H1(Rd),

where 〈f, ϕ〉 denotes the value of a functional f∈H−1(Rd) on a function ϕ∈H1(Rd).

The first inequality in (2.5) and a similar inequality for the homogenized equation lead to

the coercitivity property

〈(Aε + 1)ϕ,ϕ〉 � λ‖ϕ‖2H1(Rd),

〈(A0 + 1)ϕ,ϕ〉 � λ‖ϕ‖2H1(Rd)

for any ϕ ∈ H1(Rd). By the Lax–Milgram theorem, there exist resolvents

(Aε+1)−1 : H−1(Rd) → H1(Rd),

(A0+1)−1 : H−1(Rd) → H1(Rd).
(2.7)

In particular, by the embeddings H1(Rd) ⊂ L2(Rd) ⊂ H−1(Rd), these resolvents can be regarded

as operators in L2(Rd).

The result about the strong convergence of solutions uε → u0 in L2(Rd) is well known. In

the language of operators this means the strong resolvent convergence (Aε+1)−1 → (A0+1)−1
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in L2(Rd). The last convergence can be strengthened to the uniform resolvent convergence

‖(Aε+1)−1−(A0+1)−1‖L2(Rd)→L2(Rd)→0 (cf., for example, [15]). For the uniform convergence

rate the following exact estimate with respect to the parameter ε was proved in [4, 6, 7]:

‖(Aε + 1)−1 − (A0 + 1)−1‖L2(Rd)→L2(Rd) � cε, c = const (d, λ), (2.8)

which implies the following estimate for solutions to Equations (2.1) and (2.3):

‖uε − u0‖ � cε‖f‖ (2.9)

with the same constant depending only on the dimension d and the ellipticity constant λ in (2.2).

To prove the estimate (2.8), a spectral approach was used in [4]. For the same purpose

another method (possibly, simpler from the conceptual point of view) was proposed in [6] and

[7]: the shift method and its modification based on the notion of a generalized shift. We note that

a generalized shift is sometimes understood as the Steklov average (or smoothing) (cf. details

in Subsection 2.4).

2.2. H1-estimate for homogenization. According to (2.8), the resolvent (A0 + 1)−1 of

the homogenized operator is taken for the zeroth approximation of the resolvent (Aε + 1)−1 of

the original operator in the operator L2-norm. If the resolvent (Aε + 1)−1 is regarded as an

operator from L2(Rd) to H1(Rd), then for its approximation we should take the sum of the

constructed zeroth approximation and corrector, i.e., (A0 + 1)−1 +Kε; moreover,

‖(Aε + 1)−1 − (A0 + 1)−1 −Kε‖L2(Rd)→H1(Rd) � cε, c = const (d, λ). (2.10)

The operator Kε : L
2(Rd) → H1(Rd) is defined by

Kεf = εN ε · ∇(A0 + 1)−1f, N ε(x) = N(ε−1x), (2.11)

where N(y) = {N j(y)}dj=1 is the periodic vector composed of the solutions to the problem on

the cell

N j ∈ H1
per(�), divya(y)(e

j +∇yN
j) = 0, j = 1, . . . , d. (2.12)

Here, e1, . . . , ed is the canonical basis for the space R
d and H1

per(�) is the Sobolev space of

1-periodic functions with zero mean over the cell �, equipped with the norm

‖ϕ‖H1
per(�) = (∇ϕ,∇ϕ)

1/2
L2(�)

.

Using the solutions to the problem on the cell, we can introduce the homogenized matrix,

a0ej = 〈a(ej +∇yN
j)〉, j = 1, . . . , d, (2.13)

where

〈·〉 =
∫

�

· dy

denotes the mean value over the cell.

A solution to the problem (2.12) is understood in the sense of integral identity on smooth

periodic functions

〈a(ej +∇yN
j) · ∇ϕ〉 = 0, ϕ ∈ C∞

per(�) (2.14)
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which can be extended by closure to any test function in H1
per(�).

The solvability of the problem (2.12) is again established by the Lax–Milgram theorem

applied to the operator A = divy(a(y)∇y) : H1
per(�) → (H1

per(�))
∗ acting from the space

H1
per(�) to its dual by the identity (2.14). We preliminarily write the problem (2.12) as the

operator equation

AN j = F j , F j = −divy(a(y)e
j), (2.15)

where F j ∈ (H1
per(�))

∗ in view of the boundedness of the matrix a.

The operator (2.11) possess the property

Kε is a bounded operator from L2(Rd) to H1(Rd), (2.16)

and the following estimate holds:

‖Kε‖L2(Rd)→H1(Rd) � c, c = const (d, λ). (2.17)

This fact is not obvious. Actually, it is a consequence of the L∞-boundedness of solutions to the

problem on the cell, which, in turn, is guaranteed by the generalized maximum principle valid

for scalar, but not vector equations.

In the proof of the estimate (2.17), an important role is played by the elliptic estimate for

solutions to the homogenized equation

‖u0‖H2(Rd) � c‖f‖, c = const (λ), (2.18)

which can be easily proved by using the Fourier transform since the matrix a0 > 0 is constant.

The estimate (2.10) can be written in terms of the solutions to Equations (2.1), (2.3) and the

corresponding corrector:

‖uε − u0 − εN ε · ∇u0‖H1(Rd) � cε‖f‖, c = const (d, λ). (2.19)

The estimate (2.19) with majorant as above was first obtained in [7] and [9] with the help

of the shift method or its modification based on Steklov averages.

Remarks. 1. In [7] and [9], the following estimate with a Steklov smoothed corrector was

preliminarily proved:

‖uε − u0 − εN ε · ∇Sεu0‖H1(Rd) � cε‖f‖, c = const (d, λ) (2.20)

and only at the final stage it was proved that the smoothing operator Sε can be omitted in this

estimate. A counterpart of the estimate (2.20) in the vector case will be proved below. The fact

that the smoothing operator Sε is involved in the corrector makes it possible to overcome tech-

nical difficulties in estimating the residual in the equation for the first approximation. Note that

such difficulties arise if the problem (2.1) is considered under minimal regularity assumptions.

2. Efficiency of the use of the smoothing operator Sε in homogenization problems was first

observed in [6]–[10].

3. In previous works, H1-estimates for homogenization of Equation (2.1) have the form

‖uε − u0 − εN ε · ∇u0‖H1(Rd) � C0ε (2.21)
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under high regularity assumptions on the function f or the coefficient matrix a; moreover, the

constant C0 can depend on higher order Sobolev norms ‖f‖Hk and the smoothness characteristics

of the matrix a like the norms ‖a‖Ck with rather large k. Under such a dependence of the

constant C0 on the data, the estimate (2.21) cannot be interpreted in the operator form.

3 Homogenization of Vector Equation

3.1. The original equation.We consider the following problem for vector-valued functions:

uε ∈ H , Aεuε + uε = f, f ∈ H ∗,

Aε = D∗ aε(x)D, aε(x) = a(ε−1x),
(3.1)

where the ε-periodic coefficients are complex, D = −i∇ (i2 = −1), H = H1(Rd,Cn) =

H1(Rd)n, and H ∗ is the dual. We assume that a(x) = {ajk(x)}dj,k=1 is a measurable bounded

1-periodic block nd × nd-matrix with complex entries such that each block ajk(x) is an n × n-

matrix, n � 1. Any fourth order tensor acting as a linear operator in the space of complex

n× d-matrices can be written in this form. Denoting by L(E) the set of linear operators in the

vector space E, we can write this assumption on a(x) as

a ∈ L∞
per(�,L(C

n×d)) = L∞
per(�)

n×d×n×d. (3.2)

Equation (3.1) involves the gradient ∇uε of the vector-valued function uε which can be

represented as an (n×d)-matrix whose columns are n-dimensional vectors {∂juε}, ∂j = ∂/∂xj ,

j = 1, . . . , d. The action of the operator Aε on the vector-valued function uε is defined by

Aεuε = −
d∑

j,k=1

∂

∂xj

(
ajk(ε

−1x)
∂uε
∂xk

)
.

Thus, we obtain a formula identical to that in the scalar case n = 1 (cf. (2.1)).

By definition, a solution to Equation (3.1) satisfies the integral identity

(aεDuε, Dϕ) + (uε, ϕ) = 〈f, ϕ〉, ϕ ∈ H . (3.3)

Setting ϕ = uε in (3.3), we obtain the energy equality

(aεDuε, Duε) + ‖uε‖2 = 〈f, uε〉,
where 〈f, ϕ〉 denotes the value of a functional f ∈ H ∗ on an element ϕ ∈ H . Hereinafter, ( , )

and ‖ · ‖ denote the inner product and norm in the space L2(Rd). Unlike (2.6), this notation

now deals with complex-valued functions most often of dimension n or nd.

We formulate a condition for a solution to the problem (3.1) to exist and be ε-uniformly

bounded in the energy norm. By (3.2), the bounded operator Aε : H → H ∗ sends a function

u ∈ H to the functional Aεu defined by

〈Aεu, ϕ〉 = (aεDuε, Dϕ), ϕ ∈ H .

We assume that there is c0 > 0 such that

Re (aDu,Du) � c0‖Du‖2 ∀u ∈ C∞
0 (Rd)n. (3.4)
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By closure, this inequality remains valid for any function in H . A tensor (matrix) a satisfying

the condition (3.4) is referred to as elliptic.

Applying homothety to the integrals in (3.4), we obtain a similar inequality with an ε-periodic

matrix aε for all ε ∈ (0, 1] and the same constant, i.e.,

Re (aεDu,Du) � c0‖Du‖2 ∀u ∈ H , (3.5)

which implies that the operator of the problem (3.1) is uniformly coercive, i.e.,

Re 〈(Aε + 1)u, u〉 � c‖u‖2H ,

where c = min(1, c0). By the Lax–Milgram theorem, Equation (3.1) has a unique solution;

moreover the following ε-uniform estimate holds:

‖uε‖H � 1

c
‖f‖H ∗

or, in the operator form,

‖(Aε + 1)−1‖H ∗→H � 1

c
. (3.6)

Thus, the problem (3.1) with the bounded elliptic tensor a(x) (cf. (3.2) and (3.4)) is well

posed and a question about homogenization of this problem naturally arises.

The ellipticity condition guaranteeing the homogenization procedure was expressed in terms

of the coercitivity estimate of type (3.4) already in the survey [14] devoted to the G-convergence

of differential operators, where, in particular, homogenization of elliptic operators of an arbitrary

even order with rapidly oscillating coefficients was discussed. This approach was further applied

to higher order operators (cf., for example, [16] and [5]). For matrix-vector operators arising in

the study of systems of equations this approach is also efficient.

3.2. Problem on the cell. In the set of smooth 1-periodic vector-valued functions of class

C∞
per(�,C

n) = C∞
per(�)

n with zero mean over the cell �, we introduce the norm

( ∫

�

|Du|2 dx
)1/2

,

which is possible because of the Poincaré inequality. We denote by H� the completion of this

set in this norm. The inequality (3.4) for a periodic tensor a(x) and compactly supported test

functions implies a similar inequality for periodic functions on the cell �

Re (aDv,Dv)� � c0‖Dv‖2� ∀v ∈ C∞
per(�)

n, (3.7)

where (·, ·)� and ‖ · ‖� denote the inner product and norm in the space L2(�) of complex-valued

functions most often of dimension n or nd. The inequality (3.7) will be proved below. By

closure, the inequality (3.7) holds for all functions u∈H� and implies that A = D∗a(x)D is a

coercive operator from H� to the dual (H�)
∗. The operator A = D∗a(x)D is bounded in view

of (3.2).

For vector-valued functions Nξ we consider the following problem on the cell:

Nξ ∈ H�, D∗a(x)(DNξ + ξ) = 0, (3.8)
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where ξ = {ξjk} ∈ C
n×d is a fixed matrix playing the role of a parameter. By definition, the

solution satisfies the integral identity on periodic functions

(a(DNξ + ξ), Dϕ)� = 0, ϕ ∈ H�. (3.9)

The problem (3.8) can be written as ANξ = F with F = −D∗(a(x)ξ) ∈ (H�)
∗. By the

properties of the operator A , this equation is uniquely solvable in view of the Lax–Milgram

theorem and the solution satisfies the estimate

‖Nξ‖H�
� c‖ξ‖Cn×d , (3.10)

where the constant depends on the norm ‖a‖L∞(�) and the ellipticity constant c0 in (3.4). One

can observe a certain similarity in obtaining the solvability result for Equation (3.1) and the

related problem (3.8) on the cell.

Since the problem (3.8) is linear, from the expansion ξ =
∑

j,k e
jkξjk, of a constant (n× d)-

matrix ξ = {ξjk} in the basis matrices ejk in C
n×d we obtain the representation

Nξ(x) =
∑
j,k

N jk(x)ξjk, (3.11)

where N jk is the solution to the problem (3.8) with ξ = ejk.

To conclude the subsection, we justify the key inequality (3.7) for the problem (3.8), We use

arguments of [14], where a similar situation was considered.

Lemma 3.1. If a(x) is a bounded elliptic tensor, then (3.4) implies (3.7).

Into the inequality (3.5) obtained from (3.4), we substitute a compactly supported function

ψε(x) = εv(ε−1x)ϕ(x), v ∈ C∞
per(�)

n, ϕ ∈ C∞
0 (Rd), such that

Dψε(x) = (Dv)(ε−1x)ϕ(x) + εv(ε−1x)⊗Dϕ(x),

where the tensor product of vectors is of order O(ε). As a result, we have

Re (aεDψε, Dψε) � c0‖Dψε‖2.
Letting ε → 0, we find

Re (aDv,Dv)�

∫

Rd

|ϕ(x)|2 dx � c0‖Dv‖2�
∫

Rd

|ϕ(x)|2 dx

in view of the mean value property of periodic functions. Reducing by a common factor, we

obtain (3.7). We recall the mean value property of periodic functions (cf. [3, Chapter I, Section

1]): if g ∈ Lp(�), p � 1, then g(ε−1x) ⇀ 〈g〉 in Lp
loc(R

d) as ε → 0, where

〈g〉 =
∫

�

g dx.

The symbol ⇀ means the weak convergence in the corresponding space. In particular, by the

mean value property,

lim
ε→0

∫

Rd

g(ε−1x)ϕ(x) dx = 〈g〉
∫

Rd

ϕ(x) dx, ϕ ∈ C∞
0 (Rd). (3.12)
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3.3. Homogenized equation. We introduce the homogenized tensor a0 by

a0ξ =

∫

�

a(x)(DNξ(x) + ξ) dx = 〈a(·)(DNξ(·) + ξ)〉 ∀ξ ∈ C
n×d (3.13)

where Nξ is a solution to the problem (3.8).

Lemma 3.2. The tensor a0 is elliptic of class (3.4).

Proof. We need to verify the inequality

Re (a0Du,Du) � c0‖Du‖2 ∀u ∈ C∞
0 (Rd)n. (3.14)

For this purpose we substitute the function

ψε(x) = u(x) + ε
∑
j,k

N jk(ε−1x)Dkuj(x)

into (3.5), where N jk is the same solution to the problem on the cell as in (3.11) and uj , Dk are

components of the vectors u, D respectively. Then we obtain the inequality

Re (aεDψε, Dψε) � c0‖Dψε‖2 (3.15)

and pass to the limit as ε → 0. We note that

Dψε = Du+
∑
j,k

(DN jk)(ε−1x)Dkuj + ε
∑
j,k

N jk(ε−1x)⊗D(Dkuj)

=
∑
j,k

(
ejk + (DN jk)(ε−1x)

)
Dkuj + ε

∑
j,k

N jk(ε−1x)⊗D(Dkuj). (3.16)

Therefore,

lim
ε→0

(aεDψε, Dψε)

= lim
ε→0

∑
j,k,l,m

(aε(ejk + (DN jk)(ε−1x))Dkuj , (e
lm + (DN lm)(ε−1x))Dmul)

=
∑

j,k,l,m

(a(ejk +DN jk), (elm +DN lm))�

∫

Rd

DkujDmul dx, (3.17)

where we used the mean value property (3.12) at each step.

We recall that N jk is the solution to the problem (3.8) on the cell with ξ = ejk

(a(ejk +DN jk), DN lm)� = 0

in view of the integral identity (3.9) with the test function ϕ = N lm. Hence

(a(ejk +DN jk), (elm +DN lm))� = (a(ejk +DN jk), elm)�

= 〈a(ejk +DN jk)〉 · elm = a0ejk · elm, (3.18)
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where the definition (3.13) of the homogenized tensor is taken into account.

From (3.17) and (3.18) it follows that

lim
ε→0

Re (aεDψε, Dψε) =
∑

j,k,l,m

Re

∫

Rd

a0ejkDkuj · elmDmul dx

= Re

∫

Rd

a0

( ∑
j,k

ejkDkuj

)
·
( ∑

l,m

elmDmul

)
dx = Re (a0Du,Du). (3.19)

Hence we obtain the limit of the left-hand side of (3.15).

Now, we pass to the limit on the right-hand side of (3.15). The structure of Dψε is such

that (cf. (3.16)) Dψε ⇀ Du in L2
loc(R

d) in view of the mean value property (3.12). By the weak

lower semicontinuity property,

lim inf
ε→0

‖Dψε‖2 � ‖Du‖2. (3.20)

Thus, (3.15), (3.19), and (3.20) imply (3.14). The lemma is proved.

The homogenized problem for the problem (3.1) has the form

u ∈ H , A0u+ u = f, f ∈ H ∗,

A0 = D∗ a0D,
(3.21)

where the tensor a0 is defined by (3.13). Since the constant tensor a0 is elliptic of class (3.1), this

problem has a solution and an operator estimate of type (3.6) holds for the resolvent (A0+1)−1.

If f ∈ L2(Rd)n, then the solution to the homogenized problem belongs to H2(Rd)n and

‖u‖H2(Rd)n � c1‖f‖L2(Rd)n , c1 = const (c0, d), (3.22)

which can be obtained by differentiating the equation in (3.21).

3.4. First approximation. For an approximation to the solution to the problem (3.1) in

the energy norm we take

vε(x) = Sεu(x) + ε
∑
j,k

N jk(ε−1x)DkS
εuj(x) = Sεu(x) +Kε(x), (3.23)

where u is the solution to the homogenized problem, N jk is the solution to the periodic problem

(3.8) with ξ = ejk, and

Sεϕ(x) =

∫

�

ϕ(x− εω) dω

is the Steklov average (or smoothing operator) defined for ϕ ∈ L1
loc(R

d). It is natural to call a

term Kε(x) in (3.23) the corrector.

The following property (first noted and proved in [7]) of the Steklov smoothing operator

played a crucial role in the choice of the first approximation in the form (3.23).

Lemma 3.3. If ϕ∈L2(Rd), b∈L2
per(�), and bε(x) = b(ε−1x), then bεSεϕ ∈ L2(Rd) and

‖bεSεϕ‖L2(Rd) � ‖b‖L2(�)‖ϕ‖L2(Rd). (3.24)
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Based on this property, it is easy to see that the most problem term Kε(x) in (3.23) belongs

to the space H and the following estimates hold:

‖Kε‖L2(Rd) � cε‖u‖H1(Rd),

‖DKε‖L2(Rd) � c‖u‖H2(Rd),
(3.25)

where the constant depends only on the norms ‖N jk‖H�
. Without the smoothing operator in

(3.23), it is impossible to guarantee that vε belongs to the energy space H ; moreover, both

estimates in (3.25) become questionable.

Theorem 3.1. Let uε be a solution to the problem (3.1) with a bounded elliptic tensor a(x)

and f ∈ L2(Rd)n, and let vε be defined by (3.23). Then

‖uε − vε‖L2(Rd)n + ‖D(uε − vε)‖L2(Rd)n×d � εC‖f‖L2(Rd)n , (3.26)

where the constant C depends on the L∞-norm of the tensor a (cf. (3.2)), the ellipticity constant

c0 in (3.4), and the dimension d.

For the first approximation to uε we can take a slightly modified function vε with smoothing

only in the corrector:

v̂ε(x) = u(x) + ε
∑
j,k

N jk(ε−1x)DkS
εuj(x) = u(x) +Kε(x). (3.27)

Theorem 3.2. Under the assumptions of Theorem 3.1,

‖uε − u‖L2(Rd)n � εC‖f‖L2(Rd)n , (3.28)

‖uε − v̂ε‖L2(Rd)n + ‖D(uε − v̂ε)‖L2(Rd)n×d � εC‖f‖L2(Rd)n , (3.29)

where C is a constant of the same type as in (3.26).

Theorems 3.1 and 3.2 are proved in the following section.

To obtain homogenization estimates, we use, in addition to (3.24), other properties of the

Steklov smoothing operator:

‖Sεϕ‖L2(Rd) � ‖ϕ‖L2(Rd), (3.30)

‖Sεϕ− ϕ‖L2(Rd) � (
√
d/2)ε‖∇ϕ‖L2(Rd), (3.31)

‖Sεϕ− ϕ‖H−1(Rd) � (
√
d/2)ε‖ϕ‖L2(Rd). (3.32)

The proof of (3.30)–(3.32) can be found, for example, in [7] or [5].

3.5. Remarks and examples. In a close setting, operator estimates for systems of elliptic

equations were studied in [17, 18]. In [17], the coefficients are assumed to be sufficiently smooth,

which makes it possible to apply the first approximation method in the classical form [1]–[3]

without using any shift or smoothing. In [18], the spectral method in a version going back to

[4] was used and, respectively, the smoothing operator naturally appears in the H1-estimates,

but of different kind than that in (3.29). In [17, 18], the matrix differential operator is allowed

to involve lower order terms; moreover, in [18], the coefficients of lower order terms can be
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unbounded. Such a generalization can be also handled by our method: in [16, 5], the shift

method was applied to the study of operators with lower order terms. In [17], locally periodic

coefficients were admitted. The shift method is also adapted for operators with such coefficients

(we refer to [13, 5] for homogenization estimates for operators with multi-scale coefficients).

In this paper, we do not pursue the goal of covering the most general operators, but we focus

on operators of matrix-vector structure.

Finally, we give examples of operators satisfying the condition (3.4). First of all, this condi-

tion is satisfied by the selfadjoint operators studied in [4] and their nonselfadjoint generalizations.

The operator homogenization estimates in [4] are proved for second order factorized operators

written as the products of mutually adjoint first order differential operators, for example,

A = X ∗X , X = h b(D), b(D) =
d∑

j=1

Djbj , (3.33)

where bj are (m×n)-matrices with constant coefficients, m�n, rank b(ξ) = n, 0�=ξ ∈ R
d, and

the 1-periodic (m×m)-matrix h = h(x) is bounded and boundedly invertible.

For many operators in mathematical physics a factorization of type (3.3) is already present

from the very beginning or can be “imported” by some artificial tricks (cf. [4, 17]). Differential

operators of the form (3.33) and similar ones were studied in [19, 20].

An operator of the form (3.33) can be written as

A =

d∑
j,k=1

DjajkDk, ajk = b∗j g bk, (3.34)

where g = h∗h. One can take a nonfactorized operator of the form (3.34) with the same matrices

bj as above, but assuming only that g ∈ L∞
per(�,C

n×n) and Re g is uniformly positive definite,

instead of factorization of g = g(x).

4 Proof of Estimates in Homogenization

We divide the proof of the error estimates in homogenization into several steps.

1◦ First of all, we note that the function Sεu, in (3.23) is a solution to the homogenized

equation with smoothed right-hand side

(A0 + 1)Sεu = Sεf. (4.1)

We find a residual of the approximation (3.23) in Equation (3.1):

Aε(vε − uε) + (vε − uε) = Aεvε + vε − (Aεuε + uε)

= Aεvε + vε − f = Aεvε + vε − Sεf + (Sεf − f)

(4.1)
= Aεvε + vε − (A0 + 1)Sεu+ (Sεf − f)

= Aεvε −A0Sεu+ (vε − Sεu) + (Sεf − f).
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Recalling the structure of the function vε (cf. (3.23)) and the operators Aε and A0, we obtain

the following equation for the difference vε − uε:

Aε(vε − uε) + (vε − uε) = D∗(aεDvε − a0DSεu) +Kε + (Sεf − f). (4.2)

Since the resolvent (Aε + 1)−1 satisfies the operator estimate (3.6), we need to show that each

component of the right-hand side of this equation is sufficiently small in the H ∗-norm. We note

that the second and third terms satisfy the estimates

‖Kε‖H ∗ � Cε‖f‖L2(Rd),

‖Sεf − f‖H ∗ � Cε‖f‖L2(Rd)

(4.3)

in view of (3.25)1, (3.10), the energy estimate for the solutions to the homogenized equation,

and the properties of the Steklov average (3.32).

We study the first term on the right-hand side of (4.2). As in (3.16), we represent the

gradient Dvε in the form

Dvε =
∑
j,k

(ejk + (DN jk)(ε−1x))DkS
εuj + ε

∑
j,k

N jk(ε−1x)⊗D(DkS
εuj).

Then aεDvε − a0DSεu can be written as

aεDvε − a0DSεu =
∑
j,k

gjk(ε−1x)DkS
εuj + εaε

∑
j,k

N jk(ε−1x)⊗D(DkS
εuj), (4.4)

where

gjk(y) = a(y)(ejk +DN jk(y))− 〈a(ejk +DN jk)〉, (4.5)

provided that we take into account the definition of the averaged tensor (cf. (3.13)) and the

representation of the averaged flux

a0Dw = a0
∑
j,k

ejkDkwj =
∑
j,k

(a0ejk)Dkwj =
∑
j,k

〈a(ejk +DN jk)〉Dkwj , w = Sεu.

By (4.4), we have

D∗(aεDvε − a0DSεu) = D∗S1 +D∗S2, (4.6)

where

S1 =
∑
j,k

gjk(ε−1x)DkS
εuj , S2 =

∑
j,k

εaεN jk(ε−1x)⊗D(DkS
εuj).

Our next goal is to prove the estimates

‖D∗S1‖H ∗ � Cε‖f‖L2(Rd),

‖D∗S2‖H ∗ � Cε‖f‖L2(Rd).
(4.7)

2◦ We consider the matrix (4.5) for any fixed pair j, k and the corresponding typical term

gjk(ε−1x)DkS
εuj in S1. We simplify the notation as follows:

gjk(y) = g(y), gjk(ε−1x)DkS
εuj = g(ε−1x)z(x) = gε(x)z(x). (4.8)
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We need to estimate the norm ‖D∗(gεz)‖H ∗ . By construction, the (n×d)-matrix g(y) = {ghs(y)}
possesses the properties 〈g〉 = 0 and (g,Dϕ)� = 0 for all ϕ ∈ C∞

per(�)
n. Consequently, each

row of the matrix g is a solenoidal vector gh = {ghs}ds=1 in L2
per(�)

d with zero mean over the

cell, i.e., 〈gh〉 = 0 and (g,Dψ)� = 0 for all ψ ∈ C∞
per(�). It is known that such a vector can be

represented as the divergence of a skew-symmetric matrix (cf. [3, Chapter I, Section 1]). More

exactly, there exists a matrix Gh = {Gh
st} ∈ H1

per(�,C
d×d) such that

(i) ‖Gh‖H1
per(�)d×d � c‖gh‖L2

per(�)d , c = const (d),

(ii) Gh is a skew-symmetric matrix, i.e., Gh
st = −Gh

ts for all s, t,

(iii) gh = D∗Gh, i.e., ghs =
∑

tDtG
h
st, 1 � s � d.

The solenoidal vector gh related with the particular matrix (4.5) satisfies the estimate

‖gh‖L2
per(�)d � c, c = const (c0, ‖a‖L∞)

in view of (3.10). Therefore, by (i),

‖Gh‖H1
per(�)d×d � c, c = const (c0, ‖a‖L∞ , d). (4.9)

By (iii), we can represent each entry of the matrix g(ε−1x)z(x) as follows:

ghs(ε
−1x)z(x) =

∑
t

(DtG
h
st)(ε

−1x)z(x) =
∑
t

Dt(εG
h
st(ε

−1x)z(x))− ε
∑
t

Gh
st(ε

−1x)Dtz(x).

(4.10)

Hence for any ϕ ∈ C∞
0 (Rd)n

(gεz,Dϕ) =
∑
h,s

(gεhsz,Dsϕh)

=
∑
h,s

∫

Rd

( ∑
t

Dt(εG
h
st(ε

−1x)z(x))− ε
∑
t

Gh
st(ε

−1x)Dtz(x)

)
Dsϕh(x) dx

=
∑
h

∫

Rd

∑
s,t

εGh
st(ε

−1x)z(x)DtDsϕh(x) dx− ε
∑
h,s,t

∫

Rd

Gh
st(ε

−1x)Dtz(x)Dsϕh(x) dx,

where ∫

Rd

∑
s,t

εGh
st(ε

−1x)z(x)DtDsϕh(x) dx = 0,

since the matrix Gh = {Gh
st} is skew-symmetric and the matrix of second order derivatives

DDϕh = {DtDsϕh} is symmetric. Thus,

(gεz,Dϕ) = −ε
∑
h,s,t

∫

Rd

Gh
st(ε

−1x)Dtz(x)Dsϕh(x) dx,

which implies

‖D∗(gεz)‖H ∗ � ε
∑
h

‖(Gh)εDz‖L2(Rd)d . (4.11)
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Recalling that the smoothing SεDkuj of components of the matrix-valued function Du (cf. (4.8))

is taken for z and u ∈ H2(Rd)n, we see that Lemma 3.3 implies

‖(Gh)εDz‖L2(Rd)d � ‖Gh‖L2
per(�)d×d‖u‖H2(Rd)n . (4.12)

From (4.11), (4.12), the elliptic estimate for u, and the estimate (4.9) for the matrix Gh it

follows that

‖D∗(gεz)‖H ∗ � εC‖f‖L2(Rd)n . (4.13)

Thus, the first estimate in (4.7) is proved.

The terms of the sum S2 in (4.6) can be also estimated by using Lemma 3.3 since

‖N jk(ε−1x)⊗D(DkS
εuj)‖L2(Rd)n×d

(3.24)

�
∑
j,k

‖N jk‖L2
per(�)n‖u‖H2(Rd)n

(3.22)

�
∑
j,k

C‖N jk‖L2
per(�)n‖f‖L2(Rd)n

(3.10)

� c‖f‖L2(Rd)n . (4.14)

Thus, the second estimate in (4.7) is proved. From (4.2), (4.3), (4.6), and (4.7) we obtain (3.26).

3◦ In the estimate (3.26), we can replace vε with v̂ε since vε−v̂ε = Sεu−u and

‖Sεu− u‖L2(Rd)n + ‖D(Sεu− u)‖L2(Rd)n×d � εC‖f‖L2(Rd)n .

To obtain the last estimate, we use the property of the Steklov average (3.31) and the elliptic

estimate (3.22). Thus, we proved the estimate (3.29).

4◦ To obtain (3.28), we ignore the term with gradient in (3.29) and note that uε − u =

(uε − v̂ε) +Kε(x), where ‖Kε‖L2(Rd)n � εC‖f‖L2(Rd)n by Lemma 3.3.
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