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NUMERICAL-ANALYTIC TECHNIQUE FOR THE SOLUTION OF NONSTATIONARY 
PROBLEMS OF HEAT CONDUCTION IN LOCALLY INHOMOGENEOUS MEDIA  

B. Ye. Hryts’ko  UDC 517.958: 536.12 

We propose a procedure of simultaneous application of the splitting method, boundary-element method, 
step-by-step time scheme, and iterative FD (Finite-Discrete) procedure for the construction of the inte-
gral representation of the solution of a nonstationary problem of heat conduction for a closed domain 
with Dirichlet condition given on its boundary containing a locally inhomogeneous subdomain whose 
physical characteristics depend on the coordinates.  We perform a comprehensive numerical analysis of 
this approach with regard for the fact that the heat field is affected by the dependences of the heat-
conduction coefficient and specific heat capacity of the material on the coordinates.  

In various branches of economy and engineering and, in particular, in machine-building, instrument-
making, and thermal power engineering, it is important to decrease the consumption of materials in inhomoge-
neous structural elements operating under the conditions of high thermal and mechanical loads and be able to 
evaluate their strength and reliability.  For this purpose, it is necessary to know the heat fields in objects of any 
shape, i.e., to find the solutions of nonstationary problems of heat conduction.  The linear mathematical models 
based on the assumption of piecewise constant dependences of the thermal characteristics of materials on the 
coordinates are not always capable to give adequate description of the actual processes [1, 2, 10, 11].  Models 
that take into account the dependences of the heat-conduction coefficient and specific heat capacity of the mate-
rial of a body on the coordinates or temperature and lead to differential equations with variable coefficients or 
nonlinear equations prove to be more reliable [8, 9, 12–15].  As one of the approaches used to find the solutions 
of the obtained boundary-value problems of mathematical physics, we can mention the procedure of separation 
of the operator characterizing the influence of inhomogeneity and application of iterative methods with discreti-
zation of the local domain in which the analyzed physical characteristics depend on the coordinates to this opera-
tor [4–7]. 

Formulation of the Problem and the Choice of Numerical-Analytic Technique for Its Solution 

Assume that the heat-conduction coefficient  λ(x)  and specific heat capacity  c(x)   of the material of the 
body occupying a domain  Ω ⊂ R2   depend on the coordinates in a certain part of this domain  Ω1 ⊂ Ω .  Thus, 
we can write (see [4, 7]) 

 λ(x) = λ0 + λg (x)χ(x)     and     c(x) = c0 + cg (x)χ(x), (1) 

where c0 = const ,  λ0 = const , c(x)∈C1(Ω) , λ(x)∈C1(Ω) , x = (x1, x2 )  are Cartesian coordinates,  χ(x) = 0 ,  
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x ∈Ω\Ω1 ,  χ(x) = 1,  x ∈Ω1,  χ(x)  is the characteristic function of the domain  Ω1,   Γ ∩ Γ1 =∅ ,  Γ   and  Γ1  
are the boundaries of the domains  Ω   and  Ω1,  respectively, and  λg (x)  and  cg (x)  are functions equal to zero 
on the boundary  Γ1. 

Separating the operator characterizing the influence of local inhomogeneity [9] in the differential equation 
with variable coefficients with an aim to find the unknown temperature  u(x,t )   in the locally inhomogeneous 
body, we arrive at the equation [6] 

 a0
∂u(x,t )

∂t − Δu(x,t ) = f (x,t )
λ(x) + Pxu(x,t )− Ptu(x,t ) , (2) 

with boundary conditions 

 u(x,t ) = g(x,t ) ,      (x,t )∈Γ × (0,T ], (3) 

and initial conditions  

 u(x,0) = u0 (x), x ∈Ω . (4) 

Here,  T = {t : 0 < t < ∞} ,  t   is time,   

 a0 =
c0
λ0

,   

 Pxu(x,t ) =
1

λ(x)
∂λ(x)
∂xi

∂u(x,t )
∂xi

,      Ptu(x,t ) =
cg (x)λ0 − c0λg (x)

λ(x)λ0

∂u(x,t )
∂t , 

f (x,t )   is the power of given internal sources in the domain  Ω ;  

  u = u(x,t )∈C2 (Ω × (0,T ])∩C(Ω × (0,T ]),     g(x,t )∈C(Γ) , 

u0 (x)∈C(Ω),  and  Cm (A)  is the class of continuously differentiable functions with  derivatives of order  m   
in a domain  A .  Note that we use the Einstein rule of summation over the repeated indices. 

To optimize the procedure of solution of the formulated problem, in view of the universality of the approach 
based on the direct solution of differential boundary-value problems and the advantages of the methods of inte-
gral equations for piecewise homogeneous media, we propose to combine these advantages in a single numeri-
cal-analytic technique.  Its efficiency is explained by the transition to the integral representation of the solution 
(instead of the numerical differentiation in the method of finite differences and finite-element method) with dis-
cretization solely of the domain of local inhomogeneity and the boundary of the body. 

Construction of Integral Representations of the Solution of the Problem by the Indirect  
Boundary-Element Method (IBEM) 

In what follows, to simplify calculations, we set  f (x,t ) ≡ 0.  We apply the IBEM [2] and introduce un-
known fictitious heat sources.  As a result, to find temperature, we get the following integral representation of 
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the solution of problem (6), (3), (4): 

 u(x,t ) = E(x,t, y,τ)ϕ(y,τ)dτd
0

t

∫
Γ
∫ Γ(y)+ E(x,t, y,0)u0 (y)dΩ

Ω
∫ (y) 

  + E(x,t, y,τ)Pxu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y)  

  − E(x,t, y,τ)Ptu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y), (x,t )∈Ω × (0,T ], (5) 

where   

 E(x, t, y, τ) = e
− r2 (x,y)
4a0 (t−τ)

4πa0 (t − τ)  

is the fundamental solution of Eq. (2),   

 r2 (x, y) = xi − yi( )2
i=1

2

∑ .  

Since the operators   

 Pxu(x,t )      and      Ptu(x,t )    

contain the unknown derivatives of the required function with respect to the space coordinates and time, in view 
of (5), we get the following integral representations for these derivatives  ((x,t )∈Ω × (0,T ]): 

 ∂u(x,t )
∂x j

= ∂E(x,t, y,τ)
∂x j

ϕ(y,τ)dτd
0

t

∫
Γ
∫ Γ(y)+ ∂E(x,t, y,0)

∂x j
u0 (y)dΩ(y)

Ω
∫  

  + ∂E(x,t, y,τ)
∂x j

Pxu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y) 

  − ∂E(x,t, y,τ)
∂x j

Ptu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y) , (6) 

 ∂u(x,t )
∂t = ∂E(x,t, y,τ)

∂t ϕ(y,τ)dτd
0

t

∫
Γ
∫ Γ(y)+ ∂E(x,t, y,0)

∂t u0 (y)dΩ
Ω
∫ (y)  
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  + ∂E(x,t, y,τ)
∂t Pxu(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y)  

  − ∂E(x,t, y,τ)
∂t Ptu(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y) . (7) 

If we let the point  x   tend to the boundary of the body in relation (5), then we get the following boundary 
integral equation: 

 g(x,t ) = − 1
2 ϕ (y,τ)+ E(x,t, y,τ)ϕ (y,τ)dτd

0

t

∫
Γ
∫ Γ(y)  

  + E(x,t, y,0)u0 (y)dΩ(y)
Ω
∫  

  + E(x,t, y,τ)Pxu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y)  

  − E(x,t, y,τ)Ptu(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y), (x,t )∈Γ × (0,T ]. (8) 

By using the solution of Eq. (8), we can find the introduced unknown fictitious heat sources and determine the 
values of temperature at the inner points of the body and on its boundary according to relations (6) and (7). 

Construction of a Discrete-Continual Model 

For the analytic integration with respect to time, we split the interval  (0,T ]  into K  equal subintervals 

  tk = kΔt ,     tK = T ,  

and apply the scheme of sequential initial conditions (SSIC) [2] according to which, at the end of each time in-
terval, we determine the values  uk (x,t )  and use them as initial values for the next step  in relation (5).  We split 
(discretize) the boundary of the body into curvilinear Hermitian elements of the second order [3]:  

 
 
Γ = Γ i

i=1

N

∪ ,       Γ i ∩ Γ j =∅ ,      i ≠ j . 

At the same time, the domain  Ω1  is split into eight-node Hermitian elements of the second order [3]:   

 
 

Ω = Ωq
q=1

N inside

∪ ,      Ωq ∩Ω j =∅ ,   q ≠ j .  
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The unknown density of distribution in each time interval is approximated by beta-splines of order zero 
(constants): 

 ϕk (x) = χkj (x)dkj , χij =
1, x ∈Γ j ,

0, x ∉Γ j ,

⎧
⎨
⎪

⎩⎪j=1

N

∑ dkj = const,  

i.e., in each time step, we determine the vector of unknown constants   dk = (dk1,…,dkN ) . 
In the last step of construction of the discrete-continual model, we apply the iterative FD procedure.  As the 

initial approximation, in each time step, we take the solution of the homogeneous problem  

 uk
0 (x,t ) = dki

i=1

N

∑ Eτ (x,t, y)d
Γ i

∫ Γ i (y)+ E(x,t, y,0)uk−1(y,(k −1)Δt )dΩ
Ω
∫ (y) .  (9) 

Then the integral representations (5)–(7) for the p th  ( p = 1,…,N iter )  iteration of the k th time interval take the 
form  ((x,t )∈Ω × (tk−1,tk ]):  

 uk
p (x,t ) = dki

p

i=1

N

∑ Eτ (x,t, y)d
Γ i

∫ Γ i (y)  

  + E(x,t, y,0)uk−1(y,(k −1)Δt )dΩ
Ω
∫ (y) 

  + E(x,t, y,τ)Pxuk
p−1(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y)   

  − E(x,t, y,τ)Ptuk
p−1(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y), (10) 

 
∂uk

p (x,t )
∂x j

= dki
p

i=1

N

∑ Qjτ (x,t, y)d
Γ i

∫ Γ i (y) 

  + ∂E(x,t, y,0)
∂x j

uk−1(y,(k −1)Δt )dΩ
Ω
∫ (y)  

  + ∂E(x,t, y,0)
∂x j

Pxuk
p−1(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y)   

  − ∂E(x,t, y,0)
∂x j

Ptuk
p−1(y,τ)dτd

0

t

∫
Ω1

∫ Ω1(y), (11) 
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∂uk

p (x,t )
∂t = dki

p

i=1

N

∑ Qtτ (x,t, y)d
Γ i

∫ Γ i (y) 

  + ∂E(x,t, y,0)
∂t uk−1(y,(k −1)Δt )dΩ

Ω
∫ (y)  

  + ∂E(x,t, y,0)
∂t Pxuk

p−1(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y)  

  − ∂E(x,t, y,0)
∂t Ptuk

p−1(y,τ)dτd
0

t

∫
Ω1

∫ Ω1(y),  (12) 

where 

 Φτ (x,t, y) = Φ(x,t, y,τ)d
0

t

∫ τ, Φ ∈{E,Qj ,Qt } ,   

 
dk
p = dk1

p ,…,dkN
p( )   is the intensity of unknown heat sources in the p th iteration for the k th time interval. 

If the sequence of integral representations (10) is convergent, i.e.,  

 ∃ lim
p→∞

uk
p (x,t ) = uk (x,t ),  

then it is easy to see that (10) satisfies Eq. (2).  
On the boundary of the body, we choose a set of collocation points   x = x1, x2 ,…, xN( )  and satisfy the 

boundary integral equation (8) on this set.  We get the following system of linear algebraic equations (SLAE) for 
the unknown heat sources introduced in boundary elements:  

 Adk
p = Bp ,   (13) 

where   

 A = {aij } ,     i = 1,…,N ,     j = 1,…,N ,      dp
k = {dkj

p } ,     j = 1,…,N ,      Bp = {bi
p},     i = 1,…,N ,   

are the coefficients of the matrix and the right-hand side for the p th step of iteration  ( p = 1,…,N iter ).  These 
coefficients are determined as follows: 

 aij = E(xi ,Δt, y,τ)dτdΓ j (y)
0

Δt

∫
Γ j

∫ , 



NUMERICAL-ANALYTIC TECHNIQUE FOR THE SOLUTION OF NONSTATIONARY PROBLEMS OF HEAT CONDUCTION  47 

 bi
p = g(xi ,kΔt )− E(xi ,Δt, y,0)uk−1(y)dΩ(y)

Ω
∫  

  − E(xi ,Δt, y,τ)Pxuk
p−1(y,τ)dτdΩ1(y)

0

Δt

∫
Ω1

∫  

  + E(xi ,Δt, y,τ)Ptuk
p−1(y,τ)dτdΩ1(y)

0

Δt

∫
Ω1

∫ . 

It is clear that, in finding the initial approximation, the corresponding SLAE takes the form   

 Adk
0 = B0 ,   

i.e., is similar to (13) and, in view of (9), the parameters  bi
0   are given by the formulas 

 bi = g(xi ,kΔt )− E(xi ,Δt, y,0)uk−1(y)dΩ(y)
Ω
∫ . 

After the completion of the iterative process, we find the values of the required function and its derivatives 
with respect to the coordinates and time in the set  Ω × (tk−1,tk ]  by using relations (10)–(12), respectively. 

Note that, for  f (x,t ) ≠ 0 ,  we do not encounter any fundamental difficulties.  In fact, the only difference is 
connected with the appearance of the terms 

 a0 E(x,t, y,τ) f (y,τ)dτd
0

t

∫
Ω
∫ Ω(y)      and      −a0 E(xi ,Δt, y,τ) f (y,τ)dτd

0

Δt

∫
Ω
∫ Ω(y)  

in the integral representation (5) and, hence, on the right-hand side of the SLAE (13).  

Numerical Investigations 

The proposed numerical-analytic approach was tested for a domain  Ω   chosen in the form of a circle of 
unit radius centered at  (0,0) .  The dependences of the heat-conduction coefficient and specific heat capacity on 
the coordinates in a rectangle  Ω1  with sizes  2k1 × 2k2   centered at  (0,0)   were specified by the functions 

 λ(x) = λ0 + kλg 1+ cos
πx1
k1

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
1+ cos

πx2
k2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
, 

 c(x) = c0 + kcg 1+ cos
πx1
k1

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
1+ cos

πx2
k2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
, 
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 (a) (b) 

Fig. 1. Propagation of the heat field in the inhomogeneous circle of unit radius  (λ0 = 1  W/(m · °С),  c0 = 2 ,  kλg = 2 ,  kcg = 0 )  for 
different times:  (а) 0.1 sec; (b) 0.2 sec. 

where   

 λ0 = 1 W/(m · °С),      c0 = 2 J/(kg · °С),      k1 = 0.25 ,      k2 = 0.25 ,      and      kλg     and    kcg    

are constants. 
The dimensions of all quantities are presented in the SІ system of units, with the exception of temperature 

measured in degrees centigrade.  We choose the step of splitting with respect to time  Δt = 0.05 ,  the number of 
boundary elements  N = 24 ,  the number of elements of discretization of the domain of local inhomogeneity  
N inside = 48 ,  the number of steps for the iterative procedure  N iter = 3,  and the boundary (3) and initial (4) 
conditions in the form:  

 g(x,t ) = x2 ,      u0 (x) =

0, r(x,0) < 0.95,

x2 (
r(x,0)− 0.95

0.05 ), r(x,0) ≥ 0.95,

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (14) 

 g(x,t ) = x2 1+ t
4Δt

⎛
⎝⎜

⎞
⎠⎟ ,      u0 (x) = x2 . (15) 

Thus, in the first case, the initial condition is equal to zero almost everywhere inside the circle, except the 
inner near-boundary layer, where this condition linearly decreases from the value  x2   on the boundary to zero.  
In the second case, the boundary condition is chosen so that, at the end of the fourth time interval, the value of 
temperature on the boundary becomes twice higher.  

In Fig. 1, we illustrate the process of propagation of heat in a locally inhomogeneous body with regard sole-
ly for the coordinates dependence of the heat-conduction coefficient in the second and fourth time steps under 
conditions (14).  
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 (a) (b) 

Fig. 2. Estimation of the influence of the coordinate dependence of heat-conduction coefficient on the distribution of temperature in the 
inhomogeneous circle of unit radius at different times for the boundary conditions (14) (a) and the initial conditions (15) (b). 

   

 (a) (b) 

Fig. 3. Estimation of the influence of the coordinate dependence of the specific heat capacity (a) and the total influence of the coordi-
nate dependences of both coefficients (b) on the distribution of temperature in the inhomogeneous circle of unit radius for dif-
ferent times.  

It is easy to see that, at the end of the fourth time interval, the process becomes almost stationary and, in the 
rectangle  Ω1,  where the heat-conduction coefficient is higher than  λ0 ,  we get a more uniform distribution of 
temperature because the isotherms go around the rectangle.  Note that, in the homogeneous circle  (kλg = 0, 
kcg = 0 ),  the process also becomes stationary at the end of the fourth step.  

We separately investigate the dependence of the heat-conduction coefficient on the coordinates  (kλg = 2, 
kcg = 0 )  in the same circle under conditions (14) (Fig. 2a) and (15) (Fig. 2b).  A part of the obtained results is 
presented in Fig. 2 for different times:  t = 0.05   (◆), 0.1 (■), 0.15 (●, ○), and 0.2 (  ▲▲ , ▵).  Note that, in Fig. 2а, 
the obtained results are compared with the homogeneous case (the plots with blank symbols).  It is also worth 
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noting that, in the locally inhomogeneous body (Fig. 2b), due to the high thermal conductivity inside the do-
main  Ω1,  the temperature in this domain is identical almost everywhere (horizontal lines), which was not  
observed in the homogeneous body.  Thus, the variations of temperature on the boundary lead to weaker chang-
es inside the body due to its high heat capacity.  

We also investigated the influence of the coordinate dependence of the specific heat capacity (kλg = 0,  
kcg = 5 )  in the same circle and the total influence of the coordinate dependences of both coefficients under 
conditions (14).  A part of the obtained results is presented in Fig. 3 for different times and compared with the 
homogeneous case. 

In the initial period of time, prior to the penetration of heat into the domain of inhomogeneity, the solutions 
coincide.  Later, the analyzed solutions become different and, finally, the process becomes stationary.  

CONCLUSIONS 

To find the solutions of nonstationary problems of heat conduction in locally inhomogeneous media, 
we propose a numerical-analytic technique that combines the indirect boundary-element method (with regard for 
its advantages for piecewise homogeneous media) with the procedure of separation of the operator characteriz-
ing the influence of the local domain of geometric inhomogeneity and subsequent discretization solely of the 
indicated domain.  A more complex mathematical model that leads to a differential equation with variable coef-
ficients and the iterative FD procedure enable us to combine the advantages of the indicated methods and opti-
mize the numerical analyses of temperatures and heat fluxes in locally inhomogeneous objects of any shape.  
The developed numerical-analytic technique noticeably decreases the errors caused by the approximation of the 
boundary-value problem because the fundamental solution exactly satisfies the original equation (2) in the  
domain  Ω \Ω1  and the initial conditions (4).  The influence of the errors caused by the discretization and nu-
merical integration is insignificant and is fairly well controlled due to the arbitrariness in the choice of the num-
ber of boundary elements, the number of elements of discretization of the domain of local inhomogeneity  Ω1,  
and the time step.  

The numerical experiments reveal the necessity of taking into account the coordinate dependences of the 
heat-conduction coefficient and specific heat capacity of the material of the domain caused by the fact that the 
relative errors of the values of heat field obtained with and without regard for these dependences attain  8–10% 
and do not decrease with time.  

The modular principle of the program realization of this approach makes it possible to unify the develop-
ment of its components and leads to an increase in the universality and flexibility of the constructed mathemati-
cal model used for the solution of similar problems in piecewise homogeneous bodies with local domains of  
inhomogeneity.  The accumulated results can be useful for the development of contemporary procedures of iden-
tification of local inhomogeneities in solid thermoelastic bodies.  
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